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This study investigates several parameter estimation techniques for the Kumaraswamy 

Weibull regression model using economic value-added data. Five methods are 

compared: maximum likelihood estimation (MLE), ordinary least squares (OLS), 

weighted least squares (WLS), Cramér-von Mises (CVM), and Anderson-Darling 

(AD). The analysis, based on quarterly data from five firms over 24 periods, shows that 

MLE consistently achieves the lowest values across the three information criteria (AIC, 

BIC, and HQIC). After identifying MLE as the optimal estimation technique, 

parameters for both Kumaraswamy Weibull and standard Weibull models were 

estimated. Statistical tests reveal the superiority of the Kumaraswamy Weibull model 

in handling economic value-added data, yielding a higher p-value (0.196) compared to 

the standard Weibull model (0.185). Additionally, the regression model based on the 

Kumaraswamy Weibull distribution demonstrates a superior fit (R² = 0.96 compared to 

0.84) and aligns more closely with economic theory. In particular, economic value-

added is found to be positively related to firm size and negatively related to both 

leverage and collection periods. The findings offer important methodological insights 

for selecting appropriate distributions and estimation methods in complex financial data 

modeling. 

Mathematical Subject Classification: 62F10, 62J05 

 

 

1. Introduction 

Regression models are a fundamental tool for understanding relationships between variables across 

various disciplines. Recently, researchers have shown increased attention to the development of new 

and more precise regression models, especially in finance and economics, where classical models 

sometimes fall short. Although the standard Weibull distribution is common in reliability and survival 

analysis, its limitations become apparent in financial time series, which often display bathtub-shaped 

or unimodal hazard functions (Lai et al., 2003; Zhang & Xie, 2007). 
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The Kumaraswamy Weibull distribution, introduced by Cordeiro et al. (2010), offers enhanced 

flexibility through its four parameters (two shapes, one scale, and one location). This flexibility is 

particularly useful for modeling financial metrics like economic value added, which typically exhibit 

non-normality, skewness, and heavy tails (Bali et al., 2008). Unlike the standard Weibull—which 

restricts the failure rate to a monotonic increase or decrease—the Kumaraswamy Weibull can 

accommodate bathtub, unimodal, and other complex hazard rate shapes (Al-Mofleh, 2016). This blend 

of desirable mathematical properties makes it an attractive choice for rigorous statistical inference 

(Cordeiro et al., 2013). 

Kumaraswamy-type distributions have proven effective in various fields such as reliability and 

survival analysis. For example, the Kumaraswamy generalized Rayleigh distribution (Gomes et al., 

2014) and the Kumaraswamy transmuted-G family (Afify et al., 2018) demonstrate superior flexibility 

over traditional distributions, indicating their potential utility in financial data analysis. 

Earlier studies, such as Ortega et al. (2003) on censored observations in generalized log-gamma models 

and Hashimoto et al. (2010) on interval-censored data in log exponentiated Weibull models, laid the 

groundwork for improved parameter estimation techniques. Building on this foundation, Cordeiro et 

al. (2011) proposed new estimation procedures for regression models based on the exponentiated 

generalized gamma distribution. Our work revisits these classical estimation challenges in the context 

of more complex distributions (Choi & Bulgren, 1968; MacDonald, 1971). 

Recent comparative studies have increasingly focused on estimation methods. Ergenç and Şenoğlu 

(2023) demonstrated via Monte Carlo simulations that MLE outperforms alternative methods for the 

Kumaraswamy Weibull distribution, with AD estimation ranking second. In another study, Ali et al. 

(2020) compared ten estimation methods for the flexible Weibull distribution, discussing the impact 

of sample size and parameter configurations on method selection. 

Additional research by Alduais (2021) and Zheng et al. (2024) further emphasizes the need for robust 

estimation techniques. Although these studies highlight the importance of refining estimation methods, 

comprehensive comparisons for the Kumaraswamy Weibull regression model remain scarce, a gap this 

paper aims to fill. Accordingly, we systematically examine MLE, OLS, WLS, CVM, and AD methods, 

assessing their performance through information criteria (AIC, BIC, and HQIC). 

Pascoa et al. (2013) compared maximum likelihood estimation and a Bayesian approach for regression 

analysis with censored data as a foundation for parameter estimation of Kumaraswamy-type 

distributions. These and other recent studies show that the research interest in optimizing estimation 

methods is still active. However, the comparison of comprehensive comparisons for the Kumaraswamy 

Weibull regression model is limited, and this is a research gap that this study aims to fill. Based on this 

foundation, we thoroughly investigate five estimation techniques for five estimation techniques: 

maximum likelihood estimation, ordinary least squares, weighted least squares, Cramér-von Mises, 

and Anderson-Darling. The effectiveness of these methods is tested using financial data analysis 

focusing on economic value-added modeling. The performance of these estimation methods is 

compared using AIC, BIC, and HQIC criteria. 

The main contributions of this study are: (1) An empirical comparison of five distinct estimation 

methods for the Kumaraswamy Weibull regression model. (2) An application to economic value-added 

data, highlighting practical implications in financial analysis. (3) Evidence of the Kumaraswamy 

Weibull model’s superiority over the standard Weibull model for modeling complex financial 
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distributions. (4) Practical guidelines for selecting the most appropriate estimation method based on 

empirical criteria. 

The remainder of this paper is organized as follows. Section 2 introduces the Kumaraswamy Weibull 

distribution along with its properties and mathematical formulation. Section 3 develops the regression 

model framework. Section 4 details the five estimation methods under consideration. Section 5 applies 

these methods to economic value-added data, including model validation and comparative analyses. 

Finally, Section 6 concludes the study and outlines future research directions. 

2. The Kumaraswamy Weibull Distribution 

2.1 Definition and Properties 

The density function of the Kumaraswamy Weibull distribution (Cordeiro et al., 2010) is given by: 

𝑓(𝑥) =
𝑎b𝜆

𝛽𝜆
  𝑥𝜆−1 𝑒

 −(
𝑥
𝛽
)𝜆 
[1 − 𝑒

−(
𝑥
𝛽
 )
𝜆

 
]

𝑎−1

{1 − (1 − 𝑒
−(
𝑥
𝛽
 )
𝜆

 
)

𝑎

}

𝑏−1

 (1) 

Where 𝑥 ≥ 0 and shape parameters satisfy the conditions 𝑎 > 0 and b > 0.  

 

Figure 1. The probability density function for Kumaraswamy Weibull distribution with different parameter values 

The density function demonstrates the distribution's flexibility in modeling various data patterns. For 

parameter values λ =1.5, β = 2.5, a =1, and b = 6.5, the distribution exhibits a pronounced peak near 

zero followed by a rapid decay. When parameters are set to λ =2, β = 5, a = 4.5, and b = 2.5,                      

the distribution takes on a more symmetric bell-shaped form. The distribution becomes skewed with 

parameters λ = 3, β = 6, a = 1.5, and b = 3.5, illustrating how different parameter combinations can 

capture various shapes in the underlying data. As demonstrated in Figure 1, these diverse forms make 

the Kumaraswamy Weibull distribution particularly valuable for modeling financial data, which often 

exhibits complex patterns that simpler distributions cannot adequately capture. 

2.2 Cumulative Distribution and Survival Functions 

The cumulative distribution function is expressed as: 

F(x) = 1 − {1 − (1 − 𝑒
−(
𝑥
𝛽
 )
𝜆

 
)

𝑎

}

b

 (2) 
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for x≥0. This function describes the probability that the random variable takes a value less than or 

equal to x. 

 

Figure 2. Cumulative Distribution Function of Kumaraswamy Weibull Distribution with Different Parameter Values 

Figure 2 illustrates how parameter values affect the rate at which the CDF approaches 1.                         

The configuration λ = 1.5, β = 2.5, a = 6.5, and b = 1 shows rapid convergence to 1, reaching near-

complete probability mass by x = 2. The configurations λ = 2, β = 5, a = 4.5, b = 2.5 and λ = 1, β = 6, 

a = 2.5, b = 3.5 show more gradual increases, with the latter maintaining substantial probability mass 

beyond x =10, demonstrating the distribution's ability to model various tail behaviors. This flexibility 

in the cumulative distribution function further emphasizes the model's capacity to represent different 

risk patterns in financial data. The survival function, which represents the probability of an event 

occurring after time x, is: 

 

 
Figure 3. Survival Function of Kumaraswamy Weibull Distribution for Different Parameter Values 

 

As shown in Figure 3, the survival function exhibits distinct patterns under different parameter 

configurations. With λ= 1.5, β = 2.5, a = 6.5, b = 1, survival probability drops rapidly, approaching 

zero by x = 2. The configuration λ = 2, β = 5, a = 4.5, and b = 2.5 shows a moderate decline, with 

approximately 50% survival at x = 4. The most gradual decline occurs with λ = 1, β = 6, a = 2.5, b=3.5, 

maintaining substantial survival probability beyond x = 8. These varying survival patterns highlight 

S(x) = {1 − (1 − 𝑒
−(
𝑥
𝛽
 )
𝜆

 
)

𝑎

}

b

 (3) 
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the distribution's versatility in modeling different durations until an event occurs, which is particularly 

useful for financial analyses involving time-to-event data. 

 

2.3 Hazard Function and Moments 

 

The hazard function, in terms of the probability density function f(x), is derived as: 

 

The nth moment about zero for the Kumaraswamy Weibull distribution is given by: 

𝜇𝑛
′ =

𝜓𝛽𝑛+𝜆 

𝜆(𝑖 + 𝑟 + 1)
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+ 1) (5) 
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and the variance can be computed using: 
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These functions provide a comprehensive framework for modeling various data patterns, including 

those with increasing, decreasing, and non-monotonic hazard rates. 

3. Kumaraswamy Weibull Regression Model 

Let X be a random variable following the Kumaraswamy Weibull density function given in Section 

2.1. If we define y = 𝑙𝑜𝑔(𝑥), 𝜇 = 𝑙𝑜𝑔(𝛽), 𝑎𝑛𝑑 𝜆 =
1

𝜎
 , the density function of y can be expressed as: 

𝑓(𝑦) =  
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𝜎
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𝑎
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 (8) 

For y ∈ ℝ. This represents the Log Kumaraswamy Weibull distribution, denoted as Y ~ LKW (a,b,σ,μ) 

, where μ ∈ ℝ is the location parameter, σ > 0 is the scale parameter that determines the distribution's 
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spread, and a, b > 0 are shape parameters that control the distribution's form. The cumulative 

distribution function and survival function are: 

𝐹(𝑦) = 1 − {1 − (1 − 𝑒−𝑒
(
𝑦−𝜇
𝜎

) 
 )
𝑎

}

𝑏

 (9) 

𝑆(𝑦) = {1 − (1 − 𝑒−𝑒
(
𝑦−𝜇
𝜎

) 
 )
𝑎

}

𝑏

 (10) 

For the regression model, we consider the following framework: 

𝑌𝑖 = 𝑋𝑖
𝑇𝛽 + 𝜎𝑖𝑍𝑖     , 𝑖 = 1,2,3, … , 𝑛 (11) 

where: 

• 𝑌𝑖 is the response variable following the Log Kumaraswamy Weibull distribution 

• 𝑋𝑖
𝑇  = (1, 𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑝) is a vector of p+1 covariates 

• 𝛽 = (𝛽0, 𝛽1, ……… . 𝛽𝑝)
𝑇 is a vector of p+1 unknown regression coefficients 

• σ𝑖  𝑍𝑖    is the error term 

Using the link function: 

𝜇 = 𝑋𝑇𝛽 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯+ 𝛽𝑝𝑥𝑝 (12) 

We can express the regression model of log Kumaraswamy Weibull distribution as: 

log 𝜇(𝑦𝑖) = 𝑋𝑖
𝑇𝛽; 𝑖 = 1,2,3, … , 𝑛 

Therefore, the log Kumaraswamy Weibull distribution regression model can be written as a linear 

log location-scale regression model. 

 

4. Parameter Estimation Methods 

This section presents five distinct estimation methods for the Kumaraswamy Weibull regression model 

parameters, each approaching the estimation problem from a different theoretical perspective.  

The comparative evaluation of these methods constitutes a central contribution of this research. 

The five estimation methods examined are: 

 

1. Maximum likelihood estimation (MLE): A parametric approach that maximizes the 

probability of observing the specific data under the assumed distribution. MLE has theoretical 

advantages, including asymptotic efficiency and consistency. The log-likelihood function is 

given by: 𝑙𝑛 𝐿(𝜃) =  ∑[𝛿𝑖 𝑙𝑛 𝑓(𝑦𝑖)] + ∑[(1– 𝛿𝑖)𝑙𝑛 𝑆(𝑦𝑖)] where 𝛿𝑖 indicates censoring. 

Parameter estimates are obtained via numerical solutions of the resulting system of equations. 

2. Ordinary least squares (OLS): A distance minimization approach that estimates parameters 

by fitting a line through the points such that the vertical distance, or residual, between the 

observed data and the fitted line, is minimized, also known as the sum of squared errors.           

The least squares method has a long history in statistical modeling (Plackett 1972, Stigler 

1981). 

3. Weighted least squares (WLS): An extension of OLS that uses weights to the observations 

based on the variance of each observation such that it may be more efficient when the data has 

heteroscedasticity. This approach is based on the work of Aitken (1936) for the linear 

combination of observations. 

4. Cramér-von Mises (CVM): A minimum distance method that uses integrated squared 

difference as a measure of distance to calculate the difference between the empirical and 

theoretical distribution functions, and it does so uniformly across the distribution.                        
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The theoretical results for minimum distance methods in distribution fitting were proved by 

Wolfowitz (1957). 

5. Anderson-Darling (AD): A weighted variant of CVM that puts more weight on the 

observations in the distribution's tails, which can be helpful for data with necessary tail 

behavior. 

 

The comparative performance of these estimation methods will be assessed using three well-

established information criteria: 

• Akaike Information Criterion (AIC): AIC =  2𝑘 − 2𝑙𝑛(𝐿), where k is the number of 

parameters, and L is the maximized value of the likelihood function. AIC is a tradeoff between 

the fit of the model and complexity. 

• Bayesian Information Criterion (BIC): BIC =  𝑘 × 𝑙𝑛(𝑛) − 2𝑙𝑛(𝐿), where n is the sample 

size. BIC is more conservative than AIC and penalizes complex models more severely, 

especially when working with large sample sizes. 

• Hannan-Quinn Information Criterion (HQIC): HQIC = 2𝑘 × 𝑙𝑛(𝑙𝑛(𝑛))  − 2𝑙𝑛(𝐿).         
HQIC presents a penalty for complexity that lies between AIC and BIC. 

Models with smaller AIC, BIC, or HQIC values are preferred because they provide reasonably good 

explanatory power without unnecessary complexity. 

4.1 Maximum Likelihood Estimation (MLE) 

The log-likelihood function for the Kumaraswamy Weibull regression model is: 

𝑙𝑛𝐿(𝜃) =∑𝛿𝑖𝐿𝑛(𝑓(𝑦𝑖

𝑛

𝑖=1

)) +∑(1 − 𝛿𝑖)𝑙𝑛( 𝑆(𝑦𝑖

𝑛

𝑖=1

)) (13) 

Where θ represents the parameter vector (𝛽0, 𝛽1, …… , 𝛽𝑝, 𝜎, 𝑎, 𝑏) and 𝛿𝑖 indicates whether the ith 

observation is censored (0) or uncensored (1).  

By substituting the density and survival functions, we obtain: 
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(14) 

The parameter estimates are obtained by setting the partial derivatives of the log-likelihood function 

concerning each parameter equal to zero and solving the resulting system of equations using numerical 

methods. 

 

4.2 Ordinary Least Squares (OLS) 

The OLS estimators for the Kumaraswamy Weibull distribution are obtained by minimizing: 

 

𝑆 =∑[𝐹(𝑦(𝑖)) −
𝑖

𝑛 + 1
]
2𝑛

𝑖=1

 (15) 
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For the Kumaraswamy Weibull distribution with multiple covariates, this becomes: 

𝑆 =∑[1 − {1 − (1 − 𝑒−𝑒
(
𝑦𝑖−𝑋𝑖

𝑇𝛽

𝜎
) 
 )

𝑎

}

𝑏

−
𝑖

𝑛 + 1
]

2

 

𝑛

𝑖=1

 (16) 

 

Parameter estimates are obtained by setting the partial derivatives for each parameter equal to zero and 

solving the resulting system of equations. Least-squares approaches have been successfully applied to 

estimate parameters in various distribution systems (Swain et al., 1988). 

4.3 Weighted Least Squares (WLS)  

The WLS approach addresses heteroscedasticity by assigning weights to observations. The estimators 

are obtained by minimizing the following: 

𝑊 =∑
(𝑛 + 1)2(𝑛 + 2)

(𝑛 − 𝑖 + 1)𝑖
(𝐹(𝑦(𝑖)
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𝑖
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)2 (17) 

For the Kumaraswamy Weibull distribution with multiple covariates: 

𝑊 =∑
(𝑛 + 1)2(𝑛 + 2)
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4.4 Cramér-von Mises (CVM) 

The CVM estimators minimize: 

𝐶𝑉𝑀 =
1

12𝑛
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4.5 Anderson-Darling (AD) 

The AD estimators are obtained by minimizing: 

𝐴𝐷 = −𝑛 −
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(20) 



The Egyptian Statistical Journal (ESJ), 69(1): 87-102 

 

   

95 
 

5. Application to Economic Value-Added Data 

5.1 Data description 

The dataset contains economic value-added measurements from five companies across 24 quarterly 

periods (2016-2021). The data structure includes: 

Dependent variable: 

• Economic value added - This variable represents the economic profit of the firms 

Independent variables: 

• Average collection period - This variable represents the average time taken for a company to 

collect payments from its customers, measured in days 

• Firm size - This variable represents the size of the firm, measured by the natural logarithm of 

total assets 

• Leverage - This variable represents the firm's level of debt about its assets, calculated as the 

ratio of total debt to total assets. 

Based on financial theory, we anticipate that Economic Value Added will be positively associated with 

Firm Size due to economies of scale and negatively associated with Average Collection Period and 

Leverage due to their effects on capital efficiency and financial risk, respectively. 

5.2 Model Validation 

5.2.1 Goodness-of-Fit Test of Real Data 

To assess the appropriate distribution for modeling, we compared the goodness-of-fit statistics between 

Kumaraswamy Weibull and standard Weibull distributions. 

Table 1. Goodness-of-Fit Test Results   

The goodness of fit 

statistics 

Kumaraswamy 

Weibull 

Weibull p-value 

(KW) 

p-value 

(Weibull) 

Kolmogorov- Smirnov 0.12356 0.20952 0.196 0.185 

Cramer- von statistic 0.34865 1.45120 - - 

Anderson- darling  2.13240 8.42470 - - 

 

Table 1 comprehensively compares goodness-of-fit statistics between the Kumaraswamy Weibull and 

standard Weibull distributions. The Kumaraswamy Weibull distribution consistently outperforms the 

Weibull distribution across all three tests. Lower values indicate a better fit to the real data, suggesting 

that the Kumaraswamy Weibull distribution is more suitable for modeling the economic value-added 

data. The p-value for the Kumaraswamy Weibull model (0.196) exceeds the conventional significance 

level of 0.05, indicating that we cannot reject the null hypothesis that the data follows this distribution. 

Similarly, the p-value for the Weibull model (0.185) is also above the significance threshold, though 

its Kolmogorov- Smirnov statistic (0.20952) is substantially higher than that of the Kumaraswamy 

Weibull model (0.12356). This statistical evidence, along with the significantly lower Cramer-von 

Mises and Anderson-Darling statistics, supports our choice of the Kumaraswamy Weibull distribution 

as the appropriate model for this financial dataset. 
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5.2.2 Histogram Fitting 

 

Figure 4. Fitting Data with Kumaraswamy Weibull and Weibull Distributions 

Figure 4 illustrates the empirical distribution of the data alongside the fitted Kumaraswamy Weibull 

and standard Weibull probability density functions. Both distributions capture the data distribution's 

general shape, exhibiting positive skewness with a concentration of values near zero and a long right 

tail. The Kumaraswamy Weibull distribution provides a slightly better fit, particularly at the peak 

density and tail region. The superior fit of the Kumaraswamy Weibull distribution is especially 

apparent in the right tail, where the standard Weibull distribution underestimates the probability 

density. While both models adequately represent the data distribution, the Kumaraswamy Weibull 

distribution's additional parameters allow for more precise modeling of the data's characteristics, 

making it particularly valuable for financial data that often exhibit complex distribution patterns. 

5.2.3 Analysis of Variance 

Table 2. Kumaraswamy Weibull ANOVA Results 

Source DF SS MS F p-value 

Model 3 9.6423109 3.21410365 1044.374 9.67e-84 

Residual 116 0.3569946 0.00307754    

Total 119 9.9993056    

 
Table 3. Weibull ANOVA Results 

Source DF SS MS F p-value 

Model 3 8.450924 2.81697452 211.039 8.24e-47 

Residual 116 1.548382 0.01334812   

Total 119 9.999306    

 

The ANOVA results (Tables 2 and 3) reveal that both models are statistically significant. However, 

the Kumaraswamy Weibull model demonstrates a superior fit with a substantially higher F-statistic 

(1044.374 vs. 211.039) and lower p-value (9.67e-84 vs. 8.24e-47). The dramatically higher F-value 

for the Kumaraswamy Weibull model indicates that its explanatory power is approximately five times 

greater than the standard Weibull model. Additionally, the Kumaraswamy Weibull model explains 

more variance, as evidenced by its more significant model sum of squares (9.6423109 vs. 8.450924) 

and smaller residual sum of squares (0.3569946 vs. 1.548382). This means the Kumaraswamy Weibull 
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model leaves less unexplained variation, further supporting its selection as the more appropriate model 

for this economic value-added data.  

 

Figure 5. Comparison of CDF with Fitted Models 

Figure 5 demonstrates the superior fit of the Kumaraswamy Weibull model to the observed cumulative 

distribution function compared to the standard Weibull model. While both models perform adequately 

in the lower range of values, the Kumaraswamy Weibull model maintains accuracy throughout the 

entire range, particularly in the middle and upper regions where the standard Weibull model 

significantly underestimates cumulative probability. This visual evidence further supports the 

numerical findings from the goodness-of-fit tests and ANOVA analyses, confirming the 

Kumaraswamy Weibull distribution's superior ability to capture complex patterns in the economic 

value-added data. 

5.3 Comparison of estimation methods 

Five estimation methods based on information criteria were compared to determine which approach 

provides the best parameter estimates for the Kumaraswamy Weibull regression model. 

 
Table 4. Parameter Estimates from Different Estimation Methods 

 MLE OLS WLSE CVM AD 

�̂� 0.3709 0.6108 0.7113 0.5621 0.2893 

�̂� 783.4944 2.7097 1.9335 3.5682 1.8390 

𝜷�̂� 4.926352 18.203455 18.709562 18.051014 15.799424 

𝜷�̂� -0.006491 0.060773 0.004167 0.046024 0.004388 

𝜷�̂� 0.822918 -0.244148 -0.010471 -0.173840 -0.053979 

𝜷�̂� -1.4511 -0.2672 -0.3083 -0.2442 1.8153 

 

Table 4 displays the parameter estimates obtained using the five different estimation methods. Notable 

differences can be observed across methods, particularly for the shape parameter �̂�, where MLE 

produces a substantially higher estimate (783.4944) than other methods (ranging from 1.8390 to 

3.5682). Similarly, the regression coefficients show considerable variation, with MLE 
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suggesting a positive relationship between firm size ( 𝛽2̂ = 0.822918) and economic value added, while 

other methods indicate a negative relationship. These disparities highlight the method selection's 

crucial role in parameter estimation and subsequent model interpretation. 

Table 5. Model Selection Criteria for Different Estimation Methods 

Criterion MLE OLS WLSE CVM AD 

AIC 4295.875 4536.706 4565.007 4530.103 4511.800 

BIC 4332.112 4572.943 4601.244 4566.340 4548.037 

HQIC 4310.591 4551.422 4579.723 4544.819 4526.516 

 

While the log-likelihood function is presented in its general form that can accommodate censored data, 

no censored observations are contained in the economic value-added dataset. This means the indicator 

variable δᵢ equals 1 for all observations in the analysis. The model selection criteria values for each 

estimation method are provided in Table 5. The lowest AIC (4295.875), BIC (4332.112), and HQIC 

(4310.591) values among all five methods are consistently yielded by maximum likelihood estimation, 

indicating superior performance in terms of balancing model fit and complexity. Second place is 

ranked by Anderson-Darling estimation, while the highest values across all three criteria are 

consistently shown by weighted least squares, suggesting it may be less suitable for this dataset. Strong 

evidence for selecting MLE as the optimal estimation approach for the Kumaraswamy Weibull 

regression model when applied to economic value-added data is provided by the substantial difference 

in information criteria values between MLE and other methods (differences of over 200 points in some 

cases). 

Based on this analysis, Maximum Likelihood Estimation emerges as the superior method for 

estimating Kumaraswamy Weibull regression parameters for the Economic Value-Added data. Given 

its optimal performance across all information criteria, MLE will be used for subsequent model 

comparisons. 

5.4 Comparison between Kumaraswamy Weibull and Weibull Regression Models 

Using the MLE method, the performance of Kumaraswamy Weibull regression was compared 

against standard Weibull regression. 

Table 6. Model Comparison Results 

Based on the regression results, the Kumaraswamy Weibull regression model can be expressed as: 

𝑙𝑜𝑔�̂�𝑖(Economic Value Added) = 4.926 - 0.006 (Average Collection Period) + 0.823(Firm Size)  

                                                       -1.451 (Leverage) 

This equation demonstrates that Economic Value Added is negatively associated with Average 

Collection Period and Leverage while positively associated with Firm Size. The coefficients indicate 

that a one-unit increase in firm size is associated with a substantial increase in added economic value, 

while increased leverage significantly reduces it. These findings align with financial theory: larger 

firms often benefit from economies of scale, enhancing their ability to generate value beyond capital 

costs; higher leverage increases financial risk and interest expenses, reducing economic profit; and 

𝑅2 AIC BIC HQIC 𝛽3̂ 𝛽2̂    𝛽1̂ 𝛽0̂ Regression model 

0.96 4295 4332.1 4310.5 -1.451 0.823 -0.006 4.926 Kumaraswamy 

Weibull 

0.84 4566 4580.5 4572.2 -0.154 0.995 -0.004 0.115 Weibull 
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more extended collection periods tie up working capital, diminishing a firm's ability to generate 

additional value. These relationships provide actionable insights for financial managers seeking to 

improve their firms' economic value creation.  

5.5 Limitations and Future Research Directions 

As there are some limitations in this study, they should be acknowledged. First, our analysis was 

performed on data from a single sector, which may lead to a lack of generalization of the results. Future 

work should subsume this comparative analysis to other industry sectors, including manufacturing, 

healthcare, or technology, to check whether the methodological findings of this study are supported in 

other settings. 

Moreover, examining how sample size influences the comparative effectiveness of these estimation 

procedures would be helpful for researchers and practitioners working with various-sized datasets. 

Other studies could also examine the behavior of these methods with respect to different parameters 

and data properties, e.g., the presence of heavy tails or outliers in the data. 

Another interesting direction for future work would be to contrast the Kumaraswamy Weibull 

distribution with other flexible distributions for financial data. The Kumaraswamy family has been 

generalized to other base distributions, such as the log-logistic distribution (De Santana et al., 2012), 

log exponential power distribution (Korkmaz et al., 2021), and the extended Pareto distribution 

(Alshanbari et al., 2021). These comparisons would also help expand the knowledge of which 

distributional forms are suitable for which financial metrics and contexts, thus supporting the 

importance of this class of models. 

6. Conclusion 

This research makes a significant methodological contribution by providing the first comprehensive, 

empirical comparison of five distinct parameter estimation methods for the Kumaraswamy Weibull 

regression model. A rigorous analysis using economic value-added data establishes Maximum 

Likelihood Estimation as the superior approach, consistently outperforming Ordinary Least Squares, 

Weighted Least Squares, Cramér-Von Mises, and Anderson-Darling methods across all information 

criteria (AIC, BIC, and HQIC). This finding aligns with theoretical expectations regarding MLE's 

asymptotic efficiency while providing empirical validation in the specific context of economic value-

added modeling. 

Furthermore, the comparative analysis between the Kumaraswamy Weibull and standard Weibull 

regression models demonstrates the substantial advantages of the more flexible four-parameter 

distribution. The Kumaraswamy Weibull model achieved a significantly better fit (𝑅² =
 0.96 𝑣𝑠. 0.84), lower information criteria values, and superior performance in goodness-of-fit tests. 

These empirical results validate the theoretical advantages of the Kumaraswamy Weibull distribution's 

ability to model complex data patterns, particularly for financial data characterized by asymmetry and 

heavy tails. 

From a practical perspective, the findings provide financial analysts with methodological guidance and 

actionable insights. The regression results reveal that economic value added is positively associated 

with firm size (𝛽₂ = 0.823) and negatively associated with both leverage (𝛽₃ =  −1.451) and 

collection periods (𝛽₁ =  −0.006). These statistically significant relationships align with theoretical 

expectations from financial economics and provide quantitative evidence for strategies to enhance 
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economic value creation. The parameter estimates' magnitudes offer precise guidance on the relative 

importance of these factors, with leverage having the most substantial impact on economic value 

added. 

While the in-depth analysis focused on economic value-added data from a specific sector, allowing for 

detailed parameter estimation and model comparison, future research should extend these methods to 

other financial contexts and industry sectors. The strong theoretical foundation of the Kumaraswamy 

Weibull distribution, combined with the empirical validation of MLE as the optimal estimation 

approach, provides a robust framework for such extensions. 

This study bridges an essential gap between statistical theory and applied financial modeling by 

demonstrating how advanced distributional forms and estimation techniques can significantly improve 

model fit and predictive accuracy in economic value-added analysis. The findings contribute to both 

the statistical literature on parameter estimation and the financial literature on economic value 

modeling, providing a methodologically sound approach for researchers and practitioners working 

with complex financial data. 
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