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Third-order; In this paper, the qualitative properties of solutions for a kind
Neutral delay . . .
) i of non-autonomous third-order neutral delay differential
differential
equation; Non equations (NDDEs) are discussed. New results on the stability,
i“tonomous: boundedness and square integrability of solutions and their
yapunov o ) i
functional: derivatives are obtained by using the method of Lyapunov
Stability; functional. Our results generalize and extend many related results
Boundedness; . . . . . .
Square on third-order neural differential equations with and without delay
integrability. in the literature. Moreover, an example is given to show the

correctness and feasibility of the main results.



mailto:math_ayman27@yahoo.com

Quialitative results of third order NDDEs

67

Introduction
In this research, we examine the
asymptotic stability of a zero solution for

the following non-autonomous third-
order NDDEs:

[rr(t] (x@) +x(— a]]I]" +8Ox" D +e@x't— D +PEOR(E—1)) =0, (11)

as well as the square integrability and boundedness of

[r:(t)(x(t) +{x(t— a)}']" +8(E)x" () + (O’ (t— 1) + POR(x(t — 1))
= Q(t,x(®), x(t — 1), x" (&), x" (t — 1), x" (1)),

for all t=f=t;+p where

p =supfe,7} ,{ is a constant with
0={=1lando,t=0.

The functions n(t), 8@, (&), P(&),
R(x) and @(-) are continuous depending
only on the arguments shown. In

addition, it is also supposed that the
derivative 5" (t) exists and continuous.

By a solution of (1.2) we mean a
continuous function =x: [£,,o2) — R such

that  x(£) +{x(t — o) € C¥([£,;00), R),
and which satisfies (1.2) on [£;;00).

A family of differential equations known
as neutral differential equations includes
both the function and its advanced or
delayed argument. Control theory,
biology, economics, and engineering are
among the fields that use these equations
to understand how a system's prior states
influence its current behavior.

The qualitative characteristics of neutral
differential equations are the subject of
several textbooks, frequently in relation
to functional or delay differential
equations, for instance (Hale and
Verduyn Lunel, 1993; Kolmanovski and
Myshkis, 1992 &1999; Kuang, 1993;
Lakshmikantham et al., 1994; Strogatz,
2018).

NDDEs can exhibit rich dynamics,
including fixed points, limit cycles, and
even more complex attractors. The study

(1.2)

of bifurcations in such systems is crucial
to understanding how these dynamics
evolve as parameters change.
Third-order NDDEs are a specific type
of delay differential equation where the
highest derivative is third-order, and the
equation involves neutral terms meaning
that the delayed arguments appear not
only in the terms involving derivatives
but also in the terms without derivatives.
These equations are more complex than
standard delay differential equations
because of their structure.

NDDEs are applied in many domains,
including population dynamics, control
theory, and mechanical systems, where
the current behavior of the system is
influenced by its prior state and rate of
change.

In the advanced field of differential
equations  with  delays, Lyapunov
functionals are used to analyze the
stability, boundedness, and integrability
of solutions to NDDEs. Here is an
organized method for doing this study,
along with several sources for more in-
depth knowledge.

Lyapunov  functionals provide a
powerful tool for analyzing the
qualitative properties of NDDEs, though
they require careful construction and
manipulation to handle the neutral term
effectively. The key is to find a
functional that appropriately captures the
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dynamics of the system and vyields a
negative time derivative, indicating
stability.

Several authors have studied that
stability and boundedness of solutions
for certain differential equations with
and without delay using Lyapunov's
direct method. We can mention in this
direction, the works of (Fellous et al.,
2022:; Graef et al., 2015; Mahmoud, 2016;
Remili and Beldjerd, 2015; Remili and
Oudjedi, 2014& 2016(a,b,c); Remili et al.,
2016; Santra et al., 2020) and the
references therein.

The problem of neutral differential
equations with and without delay has
received considerable attention in recent
years, for example, (Ademola et al., 2019;
Graef et al., 2018, 2019 and 2021; Khatir,

x'(8) = y(2),
y' (&) ==z,
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2022; Khatir et al., 2020; Oudjedi et al.,
2019; Philos and Purnaras, 2010;
Rahmane and Abdellaoui, 2024; Remili
and Oudjedi, 2020) and some other
papers in literature before proving our
results.

Asymptotic Stability

Setting x'(£)=y(t), x"(t) ==(t) and
Y(&) =n@®(x' )+ x'(t—a)) , then
(1.1) is equivalent to the system of first-
order differential equations.

20 =—0(0)z — 9@y —$(ORC) +o() [ 2)an 2

+9(®) f R (x(w)) y(u)d.

For the brevity, we put

Y(t) =n@)(»(t) +{ ¥t — a)).

According (2.1), we get

(2.2)

z@) =Y () = [@@OG@ + Tyt — )]
=" O(y() + {y(t — ) +0@)(z(2) + {2zt —0)).  (23)

The following theorem is the stability

result of this paper:

Theorem 2.1. Assume that there are

positive constants

89,91, Wo . Pr. M. N2, L1, L2,84,82,8,A and
R(x)

(Hy) R(0)=0,——
X

E, such that the following conditions are

satisfied, forall t = &; =5+ p:

(Hy) 0<8p<8(t) <8 ,0=<9po <9p(t) < p(t) <y;
(Hp) 0 <my <qlt) <nz, and — L =n'(1) = G;
(H;) L ='()=9'(0) =0

>8,>0, x+0, and |R'(x)| < &8, forall x;

(Hs) 28ym2 < B < 8.
Then the zero solution of (2.1) is asymptotically stable, provided that
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A
£ < min {Z{ﬁf-z[l + &)X+ wlﬁlﬂé +@(1+ 8L+ B)} ]

2{p1L2{(1 + ;) + @M + 120, (1 + 5, )}
where
M=F+(L;+72)(1+),

BE' (&) + 2yl 2+ ) — B} + {1+ {+ 8) + L3 — B + L, (A + D} =—-A
<0,

11 (B —80)(2 — 0) +L2(8y — BY(1L+ )+ S@umz + {n2(6, — B + 1) =—B <.
Proof. Define a Lyapunov functional I'(-} = I'(£, x;,¥;.2;) such that:

I'(-) =exp (—; fh'[ﬂlds)l?[t. X5, ¥es Ze ) (2.4)
ty
where

1e(t)

> &)Y’+ z’

V = Vit X020 22) = B () f RE)dE + YORGY + =
T f y2(u)du+ g f 22 (u)du (25)

s jizz{u}duds+mji y*(u)duds,

where w; are positive constants and to be selected below suitably, for all i = 1,2,3,4.

The functional V defined in (2.5) can be written in the following form
) f (68— 2n R I + 20 (Sv2 +ntom (z))

le@®)( 1 #f[t) 1

tay fﬂu)auu: fﬂu}auu; f f 72(u)duds
t—a ' —t =5

ot
+#4f fy’[u}dud&
ti=
Since the following integrals

M1 fyz[u}du B2 _fz’[u)du.

#sf fz’[u)duds ﬂlﬂ#q-_f f?’[u}dud-'-'.

are positive, it follows that
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H z
v =p0@ (8- 20 @R ENRQIE + XD G+ nRe) )
o

1o(t) 19(t) 1 1
iu(—t}(l_iﬁ)"’ +5 Z+B) 2+ B — By™.

By conditions (H,) — (Hs), it tends to
V2 o8~ 2na8)x? + 2002 + 26 (8 — By +5 (2 + By)?
=2%0 a7y, 2 2 I

Then there exists a positive constant K5 such that
V=KG&2+y2+ Y2 +22). (2.6)
Based on condition (H;) and (2.4), we deduce that

rQ)> ep{— 6@~} K67 +5 + 77 +27)
> exp (> (m — )} Ka(x? + 52 + Y2 + 22).

Then, we obtain

()= K, (x2+y2+ Y2+ 22), 2.7)
with

K;=Kjexp (;, (1']'1 _‘l]'z))

The derivative of the functional ¥ in (2.5) along the trajectories of the system (2.1) is
given by

. . olt)
PO f RE)AE+ 9 ORGY +2 ( [ﬂ) yz
+HBPORG)Y +OR GHY + pORKZ + "’Et ,:;' ¥z
+Z+ By) {—ﬂ (B)z— )y —P(t)R(x) + o(t) f z(u)du
+(t) f R’ (x[u))y{u}du} +BzZ + % B (E)y?

+BO(t)yz + py¥? — pay2(t — ) + poz? — py 2%(t— 0)
+pgTz® — g f z%(s)ds + pazy® —pg J-y’[s}ds-

From (2.2) and (2.3), then we can re-write it as the following
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= 8, O+ 8,0 + 85 + (559D — Bo + P EOMOR ) + 1y + 14 52
HBn(e) —8(En(e) + pz + patdz? —y*(t —0) —pz 22t —0)

s [ #2E)as—ps [y2ras
where o ”

8® =p® f Rz +woreor+1(%9) e
az[t)—ﬁr[t)n[t)ﬂ'[z)yy{t o)+ )yt —0)Z + (B —#(2))zZ,
As() = [Z+ﬁr}{w[t) [ Hwrau+v@ fn'(x[u))y{u}au}.

We have two cases:
Case I: If ¢"(£) < 0, then A4 () can be written as

@) = ﬂr’[t)\ﬂ' f R@)dE +RGx )r‘ (’[") y2

()
1 ¢'(®) YEm@® )" 'O
—ﬂr'[t)’ﬁj R[f)df+zq[t) o [:){YJ' pTes) R[x)} 20'( R*(x )l
o(t)n'(t)
o
From (H;) and (H3), we observe that
1#'[ } Pt )
e~ M 0=gm=Tt
thus from (Hs)
L® ﬂwﬁ)L _eOm0),,
< ;ﬁx I (OI¥2.

Case IlI: If ¢'(£) = 0, and from (Hy) — (Hz), it follows that

_1fe() _19'(®) 1p(t)n'(®) @,
4= ([t))"z =20 7 @ ¢ SO @9

Hence, on combining (2.8) and (2.9), we have
A () < %w&)m forallt> tand ¥.

From (2.3), we can re-write 4;(t) as

8, () = Loyt — o' (D) (y(@) + Oyt — @) + 9@ (2(2) + {2 (& — 0))}
+(B —8(®)) ' OO + Iyt — 6)) + (&) (z(8) + L=zt — 7))}
(DR (x)yy(t — o).

From (H;) — (Ha) and applying the estimate 2ab =< a?+ b2, we obtain

71
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8.0 <5 Kp(n8, + In' I8, — B) +Tonlly?
+2 {G@umz + L8 — 1+ O+ (@@ — Bz

1
+§{fﬁ3ﬂz+ (B — Bl + @1 L {1+ )+ {pamz + Cpyma 2t — o)

+3 (na8 — B + (@l —o).

Also, from the conditions (Hy) — (Hs) and applying the inequality 2ab < a? + b2, we have

AL = (Z+ﬁr){w[t) [wan+v@ | n*(x[u))ytu)au}

—T

<> {oa(lz + B+ 8y + 5 {ouma (1 + 8))a?

+%{wlaz[1+81)r}y’[t—a)+%{wl{nz[usl)r}ﬂt—a)
+% oM fzz[u}du+%wlﬁlﬂ J-j"z[u}d‘l.l,
where

M=g+(L;+n)(1+).
Using (H,) — (H.), we observe that V' can be replaced by
V' = Eﬁﬂ'[ﬂ+ ()8, — B) +%f@[ﬂﬂlﬂz + %ﬁ[f-z +p)1+ 61):+#1+#4=]r’
+{mfﬁ'—ﬂn)(1—— +%Lz[ﬂ1—ﬁ}[1+{)+%{ﬁuz+%nuz[1+ﬂlh
+;.|'.z+;.t;.,'lr]zz
1
+5Ku8amz + (B — BILoS + @1 Lo{(1+ ) + Sz + Pz — 2
+ @ {L,(1+ 8 )ily*(t— o)
+5 na8 — B+ C2pumy — 2y + u8na(1+ 8y 1222 —0) + A4(0)

+%[ﬁu—z,u=) fzz[u)du +%[wlslu—2.m fﬂu}dm

where
2@ =3I ® Ii,ﬂ +{(o,— p)+ m}f] < Kahy' @I +72),
such that
Ks— m{ﬂ GRS +m}-
2n;

Let
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e = Slpma( 4L+ 8) 4 (8 — Pl + 01 L1 +0) + a1+ 5))

1
By = i{nz[ﬂl —B+ @l + @, (1+8)1},

F‘!_zwl »
1
#4=§w181M-

Now, in view of estimates of 4 and E in Theorem 2.1, the inequality V' becomes

V< SEA+Hi (148X + 0y 8M + s (1 + 5z + B))ely?
+£1, [-B + {@1L2(1 + 8,) + @M + @y128(1 + 8,)}x]z2 +K5ln" (D1 r* + ¥7).
Then, from (2.6), we obtain
V< AL+ 8+ 01 85M +03(1+8)(Ly + B))ely?

+ % [-B +{gL,(1+ &) + @ M + @un2{(1 + 8 )}r]z2 + i—: ' (E)IV.

We take p = E and from (2.4), we get

, 1 Ks ; ,
ol O B iexp(—x—l!h] [s)lds)[[—A

+Hp L1+ 8+ (1 + 8))(L; + B) + @, 8, M}T)y?
+ (=B +{gL;(1+ 8, ){ + @, M + @7,{(1 + &, )}1)2%].

If
A
£ < min Aoy L,(1+ 8,){ + wlug +o,(1+8)1L+B)}° !
21 Lz{(1 + 8;) + @M + 124, (1 + 8,)}
Then

I'() =< —K,(y*+z2) forsome K,> 0. (2.10)
Therefore, all the conditions of Theorem 2.1, are satisfied.
Thus, the zero solution of system (2.1) is asymptotically stable.

Boundedness

To prove the boundedness of solutions of (1.2), we need to write (2.1) as the following
form

x'=y,

?, = £,
7' = —8(D)z — o(tly —PORE) + (1) f w)du

+© fR'(x[u)]y{u)du+0(t,z[t).z[t—r).y{t),r[t—r), ). G
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For the next theorem, we impose the following conditions:
le(e, x(@), x(& — 1), (@), ¥t — 1), ()| < 0(®), (32)

and

f 10(s)1ds < . (33)
ty

For the case Q(t, x(t), x(¢ — 1), ¥(£), ¥(t — 1), 2(t)) = Q(-), our second main result of our

paper is the following theorem.
Theorem 3.1. If the conditions of Theorem (2.1) and (3.2) — (3.3) hold, then there exists
a positive constant D such that any solution of (3.1) satisfies

Ix@l=D, ly@I=<D,I¥r®l= D, 1ZEI=D, forallt=t;=0. (34)
Proof. Along any solution (x(£), ¥(£), Z(£)) of (3.1), we have

L () =Ty () +exp (—5 J-ll'l' (s)lds ) (Z + By)Q().
0

From (2.10), we obtain
I () = Ksl0@I Uyl + 121D,

where
Ks = exp (= | max{1, ).
1
From the relations |y] =1+ y? and |Z] = 1 + Z2%, we get
T O < Ksl@I2 +22 +2).

From the inequality (2.7), it follows that

T () = Kgl0(@)] () + Kgl(), (3.5)
where

_ Ks
K;= max{ZE'E R Kz}

Integrating the above estimate from ; to t, £ = &; =ty + p, We can obtain

I —T() < Ke flﬂ[s)ll'[s)ds+ Ke flﬂ[s)lds
ty ty
Thus, from (3.3)

r
M@ <) + K [10()Ir(s)as + K.
£y
Using Gronwell-inequality, it follows that

) = ([C(,) + KGH)EKP(KG flﬂ[S)Ids) =N, (3.6)
£y

where
N, = (T(t;) + KgN) exp(KgN).
This result implies that there exists a constant D such that
Ix(N =D,y <D,IYOI<D,IZ@I <D, forall t=1,.
This completes the proof of Theorem 3.1.
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Square integrability
Our next result concerns the square integrability of solutions for equation (1.2).
Theorem 4.1. In addition to the assumptions of Theorem 3.1, if we assume that

(He) o8 _%ﬁ >0,
(H7) J-lﬂ'(S)Ids < a.
Iy

Then all solution of (3.1) are elements in L?[t, , +<0).
Proof. Define W(t) as

W©=T@+y f (2() +22(s))ds, forallt >t, @.1)
Ly

where ¥ is a positive constant to be determined later.
By differentiating W (t) along the solution of system (3.1) and using the inequalities
(2.10) and (3.5), we obtain

Wi @ =" +y(2@) +22(1D)

< —K,(y2(®) + 22(1)) + y(52 (@) + 22(1)) + K, (T @)+ DIa@)
= (y — K52+ 22(8)) + K (T (®) + DIa)].
If we choose ¥ — Ks =< 0, then

Wy (@) < Ke(T(2) + D).

From (3.6), it follows that
Wis ) (8) < Kg(N; + DI0(0)] = K- [0 (42)

where K; =K (N, +1).

Integrating (4.2) from £; to £ and using the condition (3.3), we obtain

W) —wi(t) = K;N.
Using equality W(ty) =T(%), we get

W(t) < K;N+T(t,).
We can conclude by (4.1) that

f (y2(s) + 72(s))ds < w ,
ty

which imply the existence of positive constants x; and &z such that
t

[+*@as= f y2(s)ds <my ,
ty

ty
t

f 2" (s)ds = f 22(s)ds < xy.
£y

£y

75
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Given the data above, we obtain
t t—a ity

fx'z[s— o)ds= f x?W)dv < f (Wdvirg <3y +x,
ty totp—o totp—o
and
t t—o 121
J-x"z (s—o)ds = J- x"z[v}dv = J- " (WV)dv+x, = 2, + K.
Ty totp—o totp—a

To prove that _r:lzz[s}ds < oo, We multiply (1.2) by x(& —7), we obtain

x(t —1) @O + {xt ) | +2@x —Dx"®
+o@)x(t —D)x'(t—1) +P®)x(t —R(x(t — 1)) (4.3)
= x(t — 1)Q(t, x(¢), x(t — 1), x' (1), x'(t —1),x" ().

Integrating (4.3) from t; to t, we have
[962xt — DR(xr— D)av =0, + 0,0 + 2,0, @4)
121

where
it

0,0 =— [ 20— [r@) e+ 52— ) | o,

ty

0,0 =~ [ 2@ty —Dx"@lav— [ exlw — )= v —av,
ty ty

03(t) = I x(v —DQ(v,x(@),x(v — 1), x’ (), x' (v— 1), x" (v)) dv.
=1
Then, we have from (3.3) and (3.4)

00 < flx[v —Dl|@(v,x(v), x(v — 1), x' W), x' (v — 1), x"(v)) |dv
=1

=D J-Iﬂ[v}ldv (4.5)
Ly
< ND.

From (2'3)’:it follows that

0,() =— J-X[v—ﬂz'[v}dv

ty
- f 2 — D W) () + {2 (v— 0)} + 7" @) + {x" (v — 6)} v
ty

By integrating the above equality by parts to get
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0,00 = f 2 (v— D @)+ ¢x' W — )} + WIx" @) + {x" (v — o)}
ty

+M, (£) — M, (¢,)
< My (8) — My (eD)] + f b @)’ (v — D) " (v) + G’ (v — )}l
by

t
+ [ e @~ 0" @) + 42" (v — 0D}l av.
£y
Next from the condition (H2) and by use of inequality 2ab < a®+ b2, we obtain
4

0, () < |M,(£) — My (e +% f[[1+ Ox*(v—1) +x @)+ {x"(v—o)]dv
Iy

+ (a4 0r -9+ 2 @)+ e - oaw,
ty

where
M, (t) = —=x(t — 1) Z(¢).
We remark by the inequalities (3.4) that
1My (&) — My (8)] < D2+ My (&)l forallt = 4y,

and
t t—T Iy
Ix'z[s—t}dsz J- 2 (W)dv < J- x'z[v}dv+ll
ta tptp—T totp—T
= Az Ky,
thus

0,0 <510+ (g + 1) s + 1) + L + 72} + (e +722)]
+D% + My (83l = By

Similarly, we have
t

0,06 = — f PO — 1)2"() + p@)xlv —1)x' (v — 1))
ty

(4.6)

= % J-{z'z[v —T)+ x'z[v}}dv + % J-[xz['l.r —D+xw— I}}d‘l’
Ly Ly
+8,07+ eI+ [19 @I — Dl @l
Iy

+ flﬂv)l {flx'[u— r)llz'[u)ldu} dv,
ty Ey

M; (&) = 8(t, )x(t; — 1)x"(t,).
Then, we obtain by using the inequality 2ab < a®+ b?

where



78 Ayman M. Mahmoud (2025)

0,0 <205 +26)+ 2 (s +) + 2 [ 22— Dav

Ty
1 T
+8,07 + Myl + (D7 4525 +x,) f 19 ()1,
Ty
It follows that

nz&)ﬂ(al + Iﬂ'[v)lthr)(ﬂz+%ls+11)+IMz[t1)I
ty
t 4.7)

+% (A5 +xl)+% J-zz[v—t}dv.
£,
On applying conditions (H;) and (H4), we conclude that

fﬂ'[v)x(v —DR(x(v—1))dv = 1,5, J-Iz[v —T)dv. (48)
£y £
Substituting estimates (4.5) - (4.8) and condition (Hz) in equation (4.4), we obtain
¢nﬂzfz’[v—t)dv£ﬁz+% fxz[v—r)dv,
£y £y

where
1
fi,= ND+ R, + (8 +a) (Dz +i‘1’+"‘)+ M5 (2] + %[I;HEJ-

Therefore
it

(vos—5 1) [#2@—odav<n,.
ty

Then from condition (H:), we observe that
o

J-xz[v—t)dv = oo,
ty
hence

J- x2(v—1)dv < oo,

ty
This fact completes the proof of Theorem 4.1.

Example
We consider the following non-autonomous third-order NDDE

[G +5 1_ tz) (x(t) + 1—10 x(t— ﬂ))'l + Gt:m_‘ t+ 513) x'(8)

1 , 1 7 x(t—1) (5.1)
+(3 *32 +4=:’=)z E-a)+ (3 e ﬁz)[ﬁ(‘&_ 2 1+z2[t—:))]
1
1+ E2rx2)+ 22—+ x2 @)+ x20E—1) +x" ()
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The above equation is equivalent to a system of the first-order differential equations as
the following

x=y,y=z,
z :—Gtmfit+%3)z— (3+2+14t3)r_(3+4+14t3)[%(x+1—::3)]

1 ‘ 7 1 r 1—x
+(3+2+4t2):__[z(")d"+ﬁ(3+4+4t2):._[(1 (a+ z)’)y[ Y
1
I+ 20+ 20—D 170 1 G- D+ 20 (5-2)

Comparing the two systems (3.1) and (5.2), we find the following functions
e The function

1 <n(2) 1+ 1 - 3
Ty E M T 0+ s
it follows that
= 002<y @)=
L= =TW=to+97
Figure (1) shows the path of n(t) on the interval [0,10].
0.60
059
058
0571
056
055
054
0531
0521
051 | , | ,
0 2 4 6 8 10

e

Fig. (2): The path of the function g{t). ¢ € [0, 10].

e The function
R[x}——[x+ )
fulfills R(0) =0 and

R _7 1
~ —(1+
10 x 10 1+ x2

The derivative of B(x) is defined as

1—x*
R'(x)= ( (H:,),),Iﬂ(x)l_——&l forall x.

), with x = 0.
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The path of the functions % and R'(x) appear in Fig. (3) through the interval x € [0,10].

a 3 - G & 10 a 3 - L & 10
N N

R(x)
x

— R'(x)

Fig. (4): The behavior of the functions 22 and #*(x) for x € [0.10].

e The function
13
2(t) = tmr‘ t+ >

we note that
ﬁ—ﬂ., {ﬂ[t}{ﬂl—? forall tER, amnd

Ilﬂwlds I [l <3-=

The shape and path of ﬂ[t) is shown in F|g. 5).

6.91

6.8

6.71

6.6

(=]
h

) 2 4 6
t

Fig. (6): The path of the function #(z} for ¢ € [0.10].
e The functions

X)) =3+ ——

o0 4
—
o

amd i 3+—,
2 4 42 PO = 4 4 42

since 4+ 4t2 = 2 + 4t2 for all £t R, then it follows that
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3=y=vtl=@(t) =@, =35, foral tER
The coinciding paths of @(t) and ¥(£) on the interval ¢ € [0,10] are presented in Fig. (4).

Ja2

33 3.151

Fig. (7): The behaviors of the functions g{z) and ¥{z) for ¢ € [0,10].

Moreover, the derivatives of the functions (&) and @(#) with respect to the
independent variable t

. —ot . —ot
F(ﬂ=m and 1’(’5):@1_—“2)2-
Noting that
¢ ) <y'(D), foralltER, alsa
lim ¢'() = 0 = lim 3'(2).
Thus, the inequality
e =9 (<0, foralicR".

We can see that Fig. (8), illustrate the behaviour of @ (£) and %' (£), through the interval
t € [0,10].

-03

o ? H é H 10 0 2 4 6 8 10

[—91] —yit)
Fig. (9): Paths of @"(z) and y"(¢) for t € [0,10].

e The function
1

1
et = 1+t1+zzl[t‘,l+x=l[t—r‘,l+;;r2l[r:1i+;;rzt[t—r‘,l+z’l[t]ll5 1+¢2
Therefore, we conclude

= 0(¢),
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t
1 n
J.IH(S)Idszjlmlds{:E:N-
B

It is straightforward to verify that for all £ = t,, that
28,m, = 168 < B < 6=1,.

If we let B = 2.6, then we have the following estimates

M=pg+(L; +n.)(1+{)=3282,

B (&) + 2o l8im(2+ ) — B} + {leum (1 + { + &) + Ly(8 — B) + @ L (1 + ()}

=—3.64828 = —A <0,

7,(B—8)2— ) +L,(8, —B)(1+ Q) + g n, +in, (0, — B+9,0)

=—24282 < —-B <0,

T < min{0.046869 ,0.101109} = 0.046869,

1 7
PO —5P1 =55~ 0

The behaviour of the solutions of (5.1) is depicted in Fig. (10).

[—x®)—y ) —z@

O =
X
= -5
=
z |
-10

0 10 20 30 40 50

t

Fig. (11): The solution's behaviour for (5.1).

Then all the assumptions of Theorem 4.1
are satisfied, we can conclude that every
solution of (5.1) are bounded and
elements in L%[t, ,+o0).

Conclusion

In this paper, the Lyapunov functional
approach is applied to investigate a
third-order  non-autonomous  neutral
delay differential equation. To ensure the
stability, bounderness, and square
integrability of solutions, the standard
Lyapunov functional is designed to
fulfill the necessary requirements. Our

findings add to the body of excellent
existing research in the literature and
make several new discoveries. To
exemplify the efficacy of the achieved
results, an example was suggested that
performed the supplied results in all
functions.
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