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     The sine-Gordon (SG) equation is a fundamental aspect of 

nonlinear physics. It models a wide range of phenomena in many 

scientific fields. While its mathematical structure allows analytical 

solutions under certain conditions, the complexity of real-world 

applications often requires numerical methods. Accurate and 

efficient numerical solutions enable a deeper understanding and 

advances applications in many fields. This study presents a finite 

difference scheme for the SG equation in two dimensions. Both the 

local truncation error and stability of the scheme are studied. We 

also present numerical simulations and error analysis to ensure the 

accuracy of the scheme. 

 
 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 



 

46 Soliman et al., (2025) 

 

Introduction 

Two-dimensional sine-Gordon (2D 

SG) equation (Ablowitz and Clarkson, 

1991) is a fundamental, nonlinear partial 

differential equation (NPDE). It describes 

the dynamics of a scalar field over time 

and two spatial dimensions. The 2D SG 

equation models a variety of physical 

phenomena involving wave propagation 

and nonlinear interactions. In 

superconductivity, it describes the 

dynamics of the phase difference across 

Josephson junction (Perring and Skyrme, 

1962; Barone and Paterno, 1982). The 

2D SG equation also models the 

propagation of light pulses in nonlinear 

optical media (Agrawal, 2013). The 2D 

SG equation can model the behavior of 

various phenomena in many fields 

(Cuevas-Maraver et al., 2014). NPDEs 

arise in various mathematical models of 

biological systems (Ahmed et al. 2002a; 

2004; 2020) and theoretical games 

(Ahmed et al., 2002b; 2005). 

In general, NPDEs (Evans, 2010) are 

difficult to solve analytically. The presence 

of nonlinear terms makes the traditional 

methods such as separation of variables 

and Fourier analysis ineffective. While 

there are certain analytical solutions for 

some special cases and certain boundary 

conditions (Ablowitz and Clarkson, 

1991), many real-world problems involve 

nonlinearity or complex boundary 

conditions that make analytical solutions 

intractable. In these cases, numerical 

methods (Press et al., 2007) provide 

robust tools to solve these challenges. 

The finite difference (FD) method 

(Thomas, 1995; Samarskii, 2001) is 

widely used to solve NPDEs numerically. 

It involves the following steps. The spatial 

and temporal domains are divided into a 

grid of points. The derivatives are 

approximated using FD formulas, and the 

resulting algebraic equations are solved 

numerically. Advantages of the FD method 

include its simplicity and efficiency, 

especially for problems with regular grids. 

The FD method plays a crucial role in 

solving real-life problems (Elgazzar, 

2021; Soliman et al. 2025). 

The stability of a numerical technique is 

an important concept in numerical 

analysis. The von Neumann stability 

analysis (Hoffman, 2001) is a method for 

examining the stability of linear FD 

schemes. It involves analyzing the 

amplification factor, which represents the 

growth of error modes over time. A 

numerical scheme is considered stable if 

the absolute value of the amplification 

factor is less than or equal to one for all 

possible error modes. 

The local truncation error (LTE) 

(Dahlquist and Bjorck, 2008) of a FD 

scheme measures the error caused by the 

approximation of the derivatives. It is 

calculated using Taylor series expansions 

to express the function values at 

neighboring grid points, then comparing 

the discretized equation to the original 

equation. 

Numerical convergence is an important 

aspect of numerical analysis. It is evaluated 

by error norms such as the L2 and L∞ 

norms (Djidjeli et al., 1995). These error 

norms measure the inconsistency between 

the numerical and analytical solutions. 

Various numerical methods were 

developed for solving the SG equation in 

one and two dimensions. Here, some 

examples are given, starting with the one-

dimensional case. A meshfree numerical 

scheme was proposed demonstrating ease 

of implementation and high accuracy 

(Jiang and Wang, 2012). Predictor-

corrector schemes (Bratsos, 2008a; 
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2008b) were successfully applied. 

Dehghan and Mirzaei (Dehghan and 

Mirzaei, 2008) used the dual reciprocity 

technique. Raslan et al. (Raslan et al., 

2023) used both FD and non-standard FD 

methods. 

With respect to the 2D SG equation, the 

differential quadrature technique was used 

effectively (Jiwari et al., 2012). Dehghan 

and Shokri (Dehghan and Shokri, 2008) 

provided accurate results by using the 

radial basis functions. A modified 

predictor-corrector technique was 

introduced to improve the accuracy of the 

numerical solutions (Bratsos, 2007; Kaya, 

2004). 

Soliman et al. (2007; 2008a; 2008b; 

2009a; 2009b; 2012) presented various 

methods for solving complex equations 

and simulations. These include numerical 

solutions based on similarity reductions, 

exact solutions using the exponential 

function method, decomposition methods 

for solving coupled modified equations, 

improved tanh-function methods for 

solving nonlinear physical problems, 

numerical simulations of equations 

modelling neuron interactions, and exact 

travelling wave solutions for NPDEs. The 

combined findings offer efficient and 

accurate solutions applicable to a range of 

mathematical and physical models. 

The development of accurate and efficient 

numerical solutions for the 2D SG 

equation is necessary for the following 

reasons. 

1. Accurate numerical solutions enable 

deeper understanding and more accurate 

predictions in areas where the 2D SG 

equation is applied. 

2. Numerical methods can help in the 

development and optimization of systems 

subject to the 2D SG equation. This can 

lead to advances in technologies and 

materials. 

3. Numerical methods allow researchers to 

study the complex dynamics of solutions, 

especially when analytical solutions are not 

available. 

This work aims to extend the numerical 

techniques for solving the 2D SG equation. 

The FD method is used. The FD technique 

is known to be of second-order accuracy 

and unconditionally stable for linear 

problems, but its performance for 

nonlinear problems requires further 

investigation. We investigate the stability 

and LTE of the FD scheme of the 2D SG 

equation. We also present numerical 

solutions and error analysis to ensure the 

scheme’s accuracy. The remaining content 

is structured as follows. Section 2 

describes the 2D SG equation. Section 3 

presents the FD method. In sections 4 and 

5, stability and LTE of the scheme are 

studied. In section 6, we present numerical 

simulations and verify the accuracy of the 

numerical solution. The conclusion is 

presented in section 7. 

The problem 

 The 2D SG equation is an important 

NPDE. It arises in various physical 

contexts. It is given by  

2 2 2

2 2 2
( ) sin( ) 0,

v v v
v

t x y

  
   

  
          (1)                                                             

where v(x, y, t) represents a physical 

quantity, and x, y and t refer to the spatial 

and temporal coordinates, respectively. Let 

−1 ≤ x, y ≤ 1, t > 0. Equation (1) arises in 

many physical topics. We assume the 

following initial conditions                                      
1

2( )

( , ,0) 4 tan ( ),

4
( , ,0) .

1

x y

x y

t x y

v x y e

e
v x y

e
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
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


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(2)                      

                    

The exact analytical solution (Dehghan 

and Ghesmati, 2010) is 

   
1( , , ) 4 tan ( ).x y tv x y t e               (3)                                                                     
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The boundary conditions are obtained from 

Eq. (3). To better understand of the FD 

method, we use it to numerically solve the 

2D SG equation. We perform a stability 

and error analysis and present numerical 

simulations that include comparing the 

numerical solution to the exact one. This is 

discussed in the following sections. 

The finite difference method 

The approximation of the derivatives using 

finite differences plays a crucial role in the 

FD technique. Suppose v(x, y, t) is a C
4
 

continuous function. For a grid with spatial 

spacing Δx = Δy = h and Δt = k in time, 

where h, k > 0, the second-order partial 

derivatives of v are expressed in 

discretized form as follows                                                                                

2

1
( , , ) [ ( , , 1) 2 ( , , )

( , , 1)],

ttv i j n v i j n v i j n
k

v i j n

  

 

                                                             

(4)                                                                                  

2

1
( , , ) [ ( 1, , ) 2 ( , , )

( 1, , )],

xxv i j n v i j n v i j n
h

v i j n

  

 

                                                             

(5)                                                                     

2

1
( , , ) [ ( , 1, ) 2 ( , , )

( , 1, )],

yyv i j n v i j n v i j n
h

v i j n

  

 

                                                             

(6) 

where v(i, j, n) denotes the value of v at 

grid point (i, j) and time step n. By 

substituting from Eqs. (4)-(6) into Eq. (1), 

we get 

2

2

( , , 1) 2 ( , , ) ( , , 1)

[ ( 1, , ) ( 1, , )

( , 1, ) 4 ( , , )]

sin ( ( , , )),
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r v i j n v i j n

v i j n v i j n

k v i j n

   

   

  



       

                                                         (7)                   

where r
2
 =k

2
/h

2
. By including this 

recurrence relation with both initial and 

boundary conditions, the corresponding 

value at time n+1 can be obtained. The 

stability and LTE of the scheme (Eq. (7)) 

are discussed in the next two sections. 

Stability analysis 

The von Neumann method (Hoffman, 

2001) is a powerful tool for examining 

stability of linear FD scheme. It involves 

the analysis of the behavior of Fourier 

modes of the error over time. We can apply 

this method to a linearized form of the 

scheme of the 2D SG equation (Eq. (7)). 

This is explained in Theorem (1). 

Theorem (1): The numerical scheme (Eq. 

(7)) is conditionally stable. The stability 

condition is 

                                

2

2

2
1.

k

h


                                                                                        

Proof. We begin by approximating the 

nonlinear term in Eq. (7) as sin (v(i, j, n)) 

≃ v(i, j, n), and Eq. (7) becomes 

        

2

2
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( 1, , ) ( , 1, )
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  

    

                                                       (8) 

Then we represent v(i, j, n) as a Fourier 

mode as follows 

                                     
( )

( , , ) ( ) .x yI h k i k j
v i j n U n e


                (9)                                                                                                                                                                                                                                                                                                                                                                                                                                     

In Eq. (9), U(n) refers to the amplitude of 

Fourier mode at time step n, kx, and ky 

refer to the wave numbers in the 

directions of the axes x and y, 

respectively, and I is the imaginary unit. 

Substituting from Eq. (9) into Eq. (8) 

yields
2

2 2 2

( 1) 2 ( ) ( 1) 4 ( )

(sin ( ) sin ( )) ( ).
2 2

yx

U n U n U n r U n

k hk h
k U n

    

 
    

                                                     (10) 

Let the amplification factor be G, such 

that 
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( 1) ( ).U n GU n                           (11) 

By substituting in Eq. (10), we obtain the 

characteristic equation of the 

amplification factor as follows 

   

2
2 2 2

2

2[1 2 (sin ( )
2 2

sin ( ))] 1 0.
2

x

y

k hk
G r

k h
G

  

  

  )   12)   

The stability of a numerical technique 

requires that the magnitude of the 

amplification factor must 

satisfy                                                        

         1.G                                 (13) 

This requires 

2
2 2 21 2 (sin ( ) sin ( )) 1.

2 2 2

yx
k hk hk

r          

                                                     (14)                                  

Then                                         

2
2 2 22 2 (sin ( ) sin ( )) 0.

2 2 2

yx
k hk hk
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                                                    (15) 

The term (-k
2
/2)-2r

2
 (sin

2
 (kxh/2) +sin

2
 

(kyh/2)) is always negative, then the 

condition (Eq. (13)) requires 

2
2 2 2(sin ( ) sin ( )) 1 1.

2 2 4

yx
k hk h k

r    
   

                                                    (16) 

To ensure the satisfaction of Eq. (16) for 

all possible wave numbers kx and ky, we 

take sin
2
 (kxh/2) +sin

2
 (kyh/2) at its 

maximum value, then    

22 1.r                                             (17) 

Therefore, the numerical scheme (Eq. 

(7)) is conditionally stable, and the 

stability condition is 

         
2

2

2
1.

k

h
                                   (18) 

Local truncation error 

The LTE (Dahlquist and Bjorck, 2008) is 

the error that occurs in a single time step 

due to approximating the derivatives. The 

LTE can be analyzed by comparing the 

analytical solution with the numerical 

scheme using Taylor expansions. The 

following theorem determines the LTE of 

the numerical scheme (Eq. (7)). 

 

Theorem (2): The LTE of the FD 

numerical scheme of the 2D SG equation 

(Eq. (7)) is O(k
2
+h

2
). 

 

Proof. The Taylor expansions of v(i, j, n) 

around n are 

                       
2 2
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(20) 

Then 

                        

2

2
2

2
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v
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(21) 

 

This means that the LTE of the time 

discretization is O(k
2
). Similarly, we derive 

that the LTE of the spatial discretization is 

O(h
2
). Therefore, the LTE is O(k

2
+h

2
) for 

the entire scheme. 

This result agrees with the corresponding 

result in the one-dimensional case (Raslan 

et al., 2023). 
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Numerical simulations  

In this section, we present numerical 

simulations of Eq. (1). A FD scheme (Eq. 

(7)) is used. The boundary and initial 

conditions are given in section 2. We also 

perform an error analysis to evaluate the 

accuracy of the method. Based on the 

stability condition (Eq. (18)), a grid of size 

Δx = Δy = h = 0.05 and a time step of size 

Δt = k = 0.01 are used in the simulations. 

Figure (1) compares the exact analytical 

solution (Fig. 1(a)) with the numerical 

solution (Fig. 1(b)) at t = 1.0. To illustrate 

the comparison, we graph the solution v for 

certain values of y as a function of x. In 

Fig. (2), both solutions are displayed as 

functions of x at y = −0.7, y = 0.7 and t = 

1.0. Figures (1&2) show excellent 

agreement between both solutions. 

Absolute error of the numerical solution is 

shown in Fig. (3). 

 

 
(a) 

 

 
(b) 

Fig. (1): (Color online) (a) Exact solution, (b) 

Numerical solution of the 2D SG equation at t 

= 1.0. In the simulations, we take h = 0.05 and 

k = 0.01. 

 

 

Fig. (2): (Color online) An illustrative 

comparison between the exact and numerical 

solutions of the 2D SG equation at certain 

values of y at t = 1.0. In the simulations, we 

take h = 0.05 and k = 0.01. 

 

 

Fig. (3): (Color online) Absolute error of the 

numerical scheme of the 2D SG equation at t = 

1.0. In the simulations, we take h = 0.05 and k 

= 0.01. 

To examine the consistency and accuracy 

of the numerical solution, we calculate the 

error norms L2 and L∞ (Djidjeli et al., 

1995), where 

 

                                       
2

2 : ( )( ) ( , ) ( , ) ,exact

i j

L x y v i j v i j                                                               

(22) 

                                         

,: max ( , ) ( , ) .exact

i jL v i j v i j                                                                   

(23) 

                                                                                   

Both L2 and L∞ norms are calculated at 

selected time points, and the results are 

given in Table 1. From Fig. 3 and Table 1, 

the overall magnitude of the error is very 

small. This indicates that the numerical 

scheme of the 2D SG equation using the 

FD technique is accurate. 
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t L2 ∗ 10
−4

 L∞ ∗ 10
−4

 

0.1 7.034 5.005 

0.2 12.776 9.919 

0.3 16.875 14.579 

0.4 19.090 18.850 

0.5 19.302 22.234 

0.6 17.530 23.243 

0.7 13.942 20.585 

0.8 8.892 14.397 

0.9 3.478 6.638 

1.0 5.718 7.502 

 

Table (1): The results of the error norms L2 

and L∞ of the numerical scheme (Eq. (7)) of the 

2D SG (Eq. (1)) at different time points. 

                

Conclusion 

The 2D SG equation has numerous 

applications in various fields. The FD 

technique is powerful in solving NPDEs. 

We investigate a FD numerical scheme for 

the 2D SG equation. It is shown that the 

scheme is stable under the condition, 

(2k
2
/h

2
)≤1. The LTE is O(k

2
+h

2
). This 

ensures that the FD scheme of the 2D SG 

equation is accurate of the second-order in 

space and time. 

Numerical simulations show good 

consistency between both the exact and 

numerical solutions. Our results are 

consistent with those of the one-

dimensional case (Raslan et al., 2023). 

Despite its simplicity, the presented 

scheme provides similarly accurate results 

as given in (Jiwari et al., 2012; Dehghan 

and Shokri, 2008; Bratsos, 2007; Kaya, 

2004). These results are important for 

understanding the properties of the FD 

method, the 2D SG equation and its 

numerous applications. This scheme could 

be used for modeling wave propagation in 

nonlinear media and superconducting 

Josephson junctions. Future work could 

focus on the extension to more complex 

boundary conditions and/or higher-

dimensional problems. 

Acknowledgements 

The authors are very thankful to the 

reviewers for their valuable suggestions. 

Conflict of interest 

The authors declare that they have no 

conflict of interest regarding the 

publication of this paper. 

References 

Ablowitz,   M.   A.;    Clarkson,   P.   A. 

(1991): Solitons, Nonlinear Evolution 

Equations and Inverse 

Scattering, Cambridge University Press. 

Agrawal,  G.  (2013):  Nonlinear   Fiber 

Optics (Fifth Edition), Academic Press. 

Ahmed, E.; Hegazi, A. S.; Elgazzar, A.S. 

(2002a): An Epidemic Model on Small-

World Networks and Ring 

Vaccination, International Journal of 

Modern Physics C 13: 189-198. 

Ahmed, E.; Hegazi, A. S.; Elgazzar, A.S. 

(2002b): On Spatial Asymmetric 

Games, Advances in Complex Systems 5: 

433-443. 

Ahmed, E.; Hegazi, A. S.; Elgazzar, A.S. 

(2004): On Persistence and Stability of 

Some Biological Systems with Cross 

Diffusion, Advances in Complex 

Systems 7: 65-76. 

Ahmed, E.; Hegazi, A. S.; Elgazzar, A.S. 

(2005): On Some Variants of Prisoner's 

Dilemma Dynamics, Applied Mathematics 

and Computation 163: 163-168. 

Ahmed, E.; Elgazzar, A. S.; Elsadany, A. A. 

(2020): Simple Mathematical Models of 

Antimicrobial Resistance, Journal of 

Fractional Calculus and Applications 11: 

22-25. 

Barone,    A.;     Paterno,    G.    (1982): 

Physics and Applications of the Josephson 

Effect, John Wiley & Sons, Inc. 



 

52 Soliman et al., (2025) 

Bratsos,     A.     (2007):    A     Modified 

Predictor-Corrector Scheme for the Two-

Dimensional Sine-Gordon 

Equation, Numerical Algorithms 43: 295-

308. 

Bratsos,   A.    (2008a):    A    Numerical 

Method for the One-Dimensional Sine-

Gordon Equation, Numerical Methods for 

Partial Differential Equations 24: 833-

844. 

Bratsos,  A.  (2008b):   A   Fourth Order 

Numerical Scheme for the One-

Dimensional Sine-Gordon 

Equation, International Journal of 

Computer Mathematics 85: 1083-1095. 

Cuevas-Maraver, J.; Keverkidis, P. G.; 

Williams, F. (Eds.) (2014): The Sine-

Gordon Model and Its 

Applications, Springer. 

Dahlquist,       G.;       Bjorck,       A. 

(2008): Numerical Methods in Scientific 

Computing, Society for Industrial and 

Applied Mathematics. 

Dehghan,  M.;  Mirzaei, D. (2008): The 

Boundary Integral Equation Approach for 

Numerical Solution of the One-

Dimensional Sine-Gordon 

Equation, Numerical Methods for Partial 

Differential Equations 24: 1405-1415. 

Dehghan,  M.;   Shokri,  A.   (2008):  A 

Numerical Method for Solution of the 

Two-Dimensional Sine-Gordon Equation 

Using the Radial Basis 

Functions, Mathematics and Computers in 

Simulation 79: 700-715. 

Dehghan,       M.;       Ghesmati,       A. 

(2010): Numerical Simulation of Two-

Dimensional Sine-Gordon Solitons via a 

Local Weak Meshless Technique Based on 

Radial Point Interpolation Method 

(RPIM), Computer Physics 

Communications 181: 772-786. 

Djidjeli,  K.;  Price,  W. G.;  Twizell, E.H. 

(1995): Numerical Solutions of a Damped 

Sine-Gordon Equation in Two Space 

Variables, Journal of Engineering 

Mathematics 29: 347-369. 

Elgazzar,    A.    S.     (2021):     Simple 

Mathematical Models for Controlling 

COVID-19 Transmission through Social 

Distancing and Community 

Awareness, Zeitschrift für Naturforschung 

C 67: 393-400. 

Evans, L. C. (2010): Partial Differential 

Equations, American Mathematical 

Society. 

Hoffman,   J.   D.   (2001):    Numerical 

Methods for Engineers and 

Scientists, CRC Press. 

Jiang, Z.; Wang, R. (2012): Numerical 

Solution of One-Dimensional Sine-

Gordon Equation Using High Accuracy 

Multiquadric Quasi-

Interpolation,  Applied Mathematics and 

Computation 218: 7711-7716. 

Jiwari,   R.;   Pandit,   S.;   Mittal,   R. 

(2012): Numerical Simulation of Two-

Dimensional Sine-Gordon Solitons by 

Differential Quadrature 

Method, Computer Physics 

Communications 183: 600-616. 

Kaya, D. (2004):  An  Application of the 

Modified Decomposition Method for 

Two-Dimensional Sine-Gordon 

Equation, Applied Mathematics and 

Computation 159: 1-9. 

Perring,   J.   K.;   Skyrme,  T.   H.   R. 

(1962): A Model Unified Field 

Equation, Nuclear Physics 31: 550-555. 

Press,   W.    H.;    Teukolsky,    S.    A.; 

Vetterling, W. T.; Flannery, B. P. 

(2007): Numerical Recipes: The Art of 

Scientific Computing, Cambridge 

University Press. 



 

53 A finite difference scheme for the two-dimensional sine-Gordon equation 

Raslan, K. R.; Soliman, A. A.; Ali, K. K.; 

Gaber, M.; Almahdy, S. R. 

(2023): Numerical Solution for the Sine-

Gordon Equation Using the Finite 

Difference Method and Nonstandard 

Finite Difference Method, Applied 

Mathematics & Information Sciences 17: 

253-260. 

Samarskii,  A.   A.  (2001):  The Theory of 

Difference Schemes, CRC Press. 

Soliman,     A.   A.;     Abdou,     M.   A. 

(2007): Exact Travelling Wave Solutions 

of Nonlinear Partial Differential 

Equations, Chaos, Solitons & Fractals 32: 

808-815. 

Soliman,    A.    A.;    Abdou,   M.    A. 

(2008a): The Decomposition Method for 

Solving the Coupled Modified KdV 

Equations, Mathematical and Computer 

Modelling 47: 1035-1041. 

Soliman,   A.  A.     (2008b):    Extended 

Improved Tanh-Function Method for 

Solving the Nonlinear Physical 

Problems, Acta Applicandae 

Mathematicae 104: 367-383. 

Soliman, A. A.; Ali, A. H. A.; Raslan, K. R. 

(2009a): Numerical Solution for the KdV 

Equation Based on Similarity Reductions, 

Applied Mathematical Modelling 33: 

1107-1115. 

Soliman, A. A. (2009b): Exact Solutions of 

KdV-Burgers Equation by Exp-Function 

Method, Chaos, Solitons & Fractals 41: 

1034-1039. 

Soliman,    A.   A.   (2012):   Numerical 

Simulation of the FitzHugh-Nagumo 

Equations, Abstract and Applied 

Analysis 2012: 762516. 

Soliman,   A.   A.;   Dahshan,   M.  M.; 

Elgazzar, A. S. (2025): Stability 

Properties of an Epidemic Model with 

Cross-Diffusion, Applied Mathematics & 

Information Sciences 19: 541-549. 

Thomas,   J.   W.   (1995):     Numerical 

Partial Differential Equations: Finite 

Difference Methods, Springer. 

"
غوردون ثنائيت الأبعاد-مخطط الفروق المحذودة لمعادلت سايه

"
 

 ، أحمذ سعذ الجزاردهشانمنار محمذ  القادر سليمان، المقصود عبذ عبذ

 ، ِصشجاِعح اٌعشٌش، وٍٍح اٌعٍىَ، اٌشٌاضٍاخلسُ 

غىسدوْ ثٕائٍح الأتعاد. تعتثش هزٖ اٌّعادٌح -ٌهذف هزا اٌثذث إٌى تطىٌش طشٌمح عذدٌح فعاٌح ٌذً ِعادٌح سآٌ

ِهّح فً اٌعذٌذ ِٓ اٌتطثٍماخ اٌفٍزٌائٍح واٌهٕذسٍح. تُ استخذاَ طشٌمح اٌفشوق اٌّذذودج ٔظشاً ٌسهىٌح تطثٍمها 

 .فً دً اٌّشىلاخ اٌشٌاضٍحووفاءتها 

تشوز اٌذساسح عٍى اختثاس أداء هزٖ اٌطشٌمح ِع اٌّعادلاخ غٍش اٌخطٍح. ٌتُ تذًٍٍ استمشاس اٌطشٌمح ودساب 

 .الأخطاء إٌاتجح عٓ اٌتمشٌة اٌعذدي. وّا ٌتُ تمذٌُ اختثاساخ عٍٍّح ٌٍتأوذ ِٓ دلح إٌتائج

غىسدوْ الأساسٍح. ثُ ٌتُ عشض طشٌمح اٌفشوق -ٌٌٕٓمسُ اٌثذث إٌى عذج ألساَ. ٌثذأ تششح ِعادٌح سا

اٌّذذودج اٌّستخذِح فً اٌذً. تعذ رٌه ٌتُ دساسح استمشاس اٌطشٌمح وتذًٍٍ الأخطاء. أخٍشاً ٌتُ تمذٌُ إٌتائج 

 .اٌعذدٌح واٌتذمك ِٓ صذتها

واٌفٍزٌاء إٌظشٌح. تساعذ تساهُ هزٖ اٌذساسح فً تىفٍش أداج فعاٌح ٌٍثادثٍٓ فً ِجالاخ اٌشٌاضٍاخ اٌتطثٍمٍح 

. وّا تفتخ اٌّجاي ٌتطثٍماخ عٍٍّح فً ِجالاخ فً تعذٌٓ غىسدوْ-ِعادٌح سآٌ إٌتائج فً فهُ أفضً ٌسٍىن

 ِتعذدج.

 


