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ABSTRACT

Bayesian and non-Bayesian methods of estimation are used to make
inferences given a random sample of observations from a generalized Burr
distribution (GBD). Complete and type Il censored samples are considered
and inferences are made on the unknown parameters. The one-parameter GBl is
also studied. A numerical illustration is provided by means of a numerical

example.

INTRODUCTION

Burr (1942) introduced twelve types of cdf’s which might be useful for fitting distributions to
the data. The twelfth type is the so-called "generalized Burr distribution” abreviated to GBD. All other
types can be easily derived from the GBD by simple transformations. Further, many other
distributions such as the Lomax and Logistic are special cases of the GBD. Moreover, Lewis (1981) has
shown that the two most common failure time distributions, the Weibull and cxponential, are special

limiting cases of the GBD.

This paper is concerned with the estimation of the unknown parameters of the GBD. Its pdf
and cdf are, respectively,

f(x) = ke x°1 (1+xc)-(k+l), € >0 k >0, 0 < xo0, (1.1)
and

F(x) = 1-(14x%)°k | (1.2)
where ¢ and k are the shape parameters, Al-Marzoung and Ahmad (1985) estimated the two unknown
parameters k and ¢. Ahmad (1985) estimated the two unknown parameters from the ratio fn x(r) / &

x(s), where x(i) is the i th order statistics for a random sample of size n drawn from a GBD.
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In the case when c is known, Lewis (1981) and Radwan (1990) obtained the MLE of k for the one-
parameter GBD, based on a type Il censored sample. Radwan (1990) also obtained the uniformly

minimum variance unbiased estimate of k.

Papadopoulos (1978) obtained the Bayes estimate of k, when c is known, by considering two
prior distributions of k (uniform and gamma) using a complete sample. Evans and Ragab (1983)
obtained the Bayes estimates of k and c, based on a type II censored sample. They assumed that ¢ is
restricted to be a finite discrete number and that the prior distribution of k has the gamma pdf. We
believe that the discrete prior is not suitable to represent the general prior belicf about c.

Based on a type Il censored sample and using Lindley’s approximate expansion, Radwan
(1990) obtained approximate Bayes estimates of c and k. lic used the gamma prior for k and the

exponential prior for c. He illustrated his results numerically, by taking samples of large sizes.

The purpose of this paper is to obtain ML estimates and exact Bayes estimates for the two
unknown parameters k and c. We take the gamma prior for both ¢ and k (which is rich enough to
enable a convenient presentation of any prior beliefs about k and c). Clearly, our Bayesian results,
based on the gamma priors, would be more realistic than those of Evans & Ragab (1983) and we
generalize the results of Radwan (1990) who employed the exponential prior. In addition, our DBayes

estimats are exact, not approximate.

To illustrate the new theoretical results numerically, we use samples of differcnt sizes (small,
moderate and large) and type Il censoring with different uncensored items, covering also the case of a
complete sample. A numerical illustration shows that these mcthods are practical and they are

applicable to experiments in which the GBD is the appropriate statistical model.

2. MAXIMUM LIKELIHOOD ESTIMATION

Let X,, X;,....X, be n i.id. r.v.s with pdf given by (1.1) and suppoee that X(l), X(z),...,
X(') satistfying O < X(l)< X(2)< . < X(t) < 00, represent thc obeerved life times
of the first r items to fail in this random sample of n items put on a test (type Il

censoring). The likelihood function is
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L (ke | 55y = n! {@-0))7 ¢ k7 x(e) (), (2.1)
where
r
- x(c) = i —..:ﬁl x(;')l (1+x‘(3i))‘1 and y (c) = i§1 Zn(1+x<(:i)) + (n-r) ¢n(1+x€r)). (2.1a)

Taking the natural logarithm of (2.1), differentiating it with respect to k and c respectively and

equating the results to zero, at k = k and ¢ = &, we have

rkl-y@) =0, (2.2)
and

rét 4 i én x(i)(1+ x((si))'l -k y/(¢) = 0, (2.3)
where =l |

y@ = ¥ ta(i+ xGy) + () a1 x), (2.3a)
and =1 ' '

y«(¢) = izil x%i) én x(i)(1+ x%i))'l + (n-?) xfr) in x(r)(1+x‘(3r))‘1. (2.3b)

The value k is determined by

k=r {y@©)? | | (2.4)
and substituting it in (2.3), we have

R fr_: én x,. ”(1+ x5, y1t- ’ n€) {y(€)} =0 (2.5)
Coam O TOWEREL '

which is solved to obtain the MLE &. Using (2.2) and (2.3), the elements of the information matrix,

evaluated at k =k and ¢ = ¢, are

-t L/ O = 2 (2:6)
- 8 tn L/ 0k 8c = yi(¢) ‘ (2.7)

- 8 tn L/ 8c? lz &2y ¥ . o )? € )2 4k ¢ )
/8t =r&?y iglx(‘) (¢n x(l)) 1+ x(i)) + k yn (&), (2.8)
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where

y®) = 32 x(tn x)? (4G + () ayy(tn x) 2045

i=1

The inverse of the information matrix is the approximate variance-covariance matrix of k and &, with

vor (k) = D! [r &4 y* (&) {y (O (29)

var (&) = {rD}! {y (&) (2.10)
and cov (k,é) = -pl y«(¢&), (2.11) .
where

D =1 {y(&)}? [rc?+ y* (&) {(©))7Y - {ycn))? (2.12a)
and

Y@ = friy@) X 36 (Enxp)? (1 + o)
= @} 2 x(;) (tn x) ®

+ r(n-r) xfr) (&n x(l,))2 1+ x‘i’r))'2 (2.12b)

Numerical methods and computer facilities are needed to solve these equations.

3. BAYESIAN ESTIMATION

Let X,, Xj,....X, be n i.i.d. r.v’s having the pdf and cdf given by (1.1) and (1.2), respectively
Let O < X(l) < X(z) < .. < X(r) < 00, be the observed life times of items put on a test (type |
censoring). The pair (k,c) is treated as unknown. The informative conjugate prior family for k and ¢ is

g(kic) = g(k | <) g(c). CRY

Assuming that both of the distributions on the right hand side of (3.1) are gamma (which is ricl
cnough family to enable the presentation of any prior beliefs about k and c), the informative prios

family for k and c is

g(k,c) = 67 APHT(y41) T(B+1))? &8¢k (T gac (THAH]
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1> -Ld>0,8> -1,a> 0,0< c< oo and 0 < k < oo, (3.2)
so that | »
gk | ¢) = (6)7*! {r(y+1))1 K7 &bk | (3.3)
and
g(c) = o1 (D(p1)) 1 F eoc (3.4)

where the prior parameters 76,0 and a are chosen according to the prior knowledge about k and c.

, Taki'ng the limiting values for 7,6,}3 and @, an appropriate non-informative prior for k and ¢ is
g(kso) 9{ (ke)'! | (3.5)
The joint posterior pdf of k and c is
f(k,clxyy) = {T(y+r+1)} 1 exp [e{1+y(e)(6c) 1)) kTHE ea€ o y(c) 1L, (3.6)
where x(c) and y(c) are given in (2.1), and |
I= {oo eoc f x(c).{1+ )'(c)(éc)'1}°(7+r+l)rdc4 | (3.6a)

Now, differentiating (3.6) with respect to k aud ¢ respectively, and equating the results to zero, at k =

ko and ¢ = éo respeétively, the ‘j\dh‘lt posterior mode (kgsco) is the solution of the equations

ko = (141) 8¢g {6cg+ y(cy)} T, ~ (3.7)

and

() {Begrty(co)}™ {y(co) € - yr(eo)} + .Zril i xpy(+ X+ Bl -a =0,
¢ = (3.8)

where y (c5) and yi(c,) are given x‘by7(2.1a) and (2.3b) respectively, evaluated at co- We need

numericalmcphqﬂs and computer facilities to obtain G and ko, from equations (3.7) and (3.8).
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Further, integrating (3.6) from zero to infinity for ¢ and also for k, one can obtain the
univariate marginal posterior pdf’s of k and ¢ as

(kI3 () = (TOr+r+ D) KT [ exp [r{143(0)(60) 1] € e? x(e) de T,
(3.9)

and
flelsgey) = % < x(0) {4y ey THHY rt (3.10)
From (3.9), the {th posterior moment of k is
wrgl) =Trr+£+1) T+ [ €2 B x(e) {143y T+ ge. 1!
0
(3.11)
Similarly, from (3.10), the £th posterior moment of c is

ple) = [ e AH () {14y(e)(6e) 1y 7D ge 1, (3.12)

In particular, from (3.11) and (3.12), under a squared-error loss function the posterior means (Bayes

estimates) and variances (estimated risks)of k and ¢ respectively, are

() = (1414+1) [0 & P x(e) {L4y(e)(eey Y T+ de. 11

var(k) = (r+r+1)(r4142) [ € B x(¢) {1+y()(6ey T+ ge. 11 ()
pe) = [ e PH x(e) (14y(e)(Ee) ) T HH) ge 11

and

var(e) = [ FHE () (14y(e)6 "y ) de. Ty )

Moreover, differentiating (3.9) and (3.10) with respect to k and ¢ respectively, and equating the
results to zero, at k=k* and c=c® respectively, we have the marginal posterior modes k® and c*, which
are the solutions of the equations
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* -1
J®lr+1)- K*{1+y(e)(6c) 1)) eo¢ F & {14+¥(©)E) Yy oy e (3.13)
0
and
r *
D) ) ) + 3 gy (14 1))
1=
+6c*l.a=0 (3.14)
For the non-informative prior, using (3.5),- the joint posterior pdf of k and ¢ reduces to
(kebsy) = {TEY! x(e) 1 k-1 ), peot, (3.15)
where

I*= [ x() " {7(e))" de.
‘The marginal posterior pdf and €th posterior moments of k and ¢ are, respectively
flksyy) = {r(:)}fl kr-1 [ &Yy () 1 ge. 1+1,
flebsgey) = x(9) & {y(@) ™. 1+,
) = TE+OITEYT [0 x(0) o1 {y(@)f O+ de. 1, | (3.16)
and prg(c) = ’(l; % x(c) cF+&1 {y(c)} T de. 11, (3.17)
Under a squared-error loss function, it is easy to deduce the posterior means (Bayes estimates) and

variances of k and c. Further, from (3.15), the joint posterior mode (k,c) is obtained as the solution of

the equations

= (r-1) @), (3.18)
and -
‘+(r-l)l 5; n x) {1+x(l)} -y(®) {y@) =0 (3.19)

The marginal posterior modes for k and ¢ are the solutions of the equations

[(e1* y()} &) x(e) 1 g = 0 Lt
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and
(r-1) x(*) ¥(c*) -rc® yo(e*) x(c*) + c* y(c*) x(c*) = 0, (3.21)
where

* #C2 *
o) =B sy Gy ey

Next we consider the situation when ¢ is assumed to be kuown, I this case, ihe postericr pdf,

given by (3.6), becomes

f(kisy) = {T(r+r+1)) L kA ey vyt (3.22)

\

with posterior £th non-central moment

prg(k) = T(y+e+e+ D{T(r+r+ 1)) L(sety(e)) Y (3.23)

In particular, the posterior mean (Bayes estimate) and variance (estimated risk) of k are,
respectively

wy(k) = (yHr+1) {Sey(e)) L,
and

var(k) = (y+r+1){6c+y(c)) 2.

Differentiating (3.22) with respect to k and equating the result tc zero, at k==ks, we obtain the
posterior mode k/, as

ki= (y+1){Sc+y(c)) 1,
which is the MLE k, given by (2.4), when y=0 , é=0 and c is known,

NUMERICAL ILLUSTRATION

The main object of the present section is to illustrate numerically most of the theorctical
results of the two proceeding sections. This numerical illustration has been achieved using a personal

computer, with the following specifications :
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(i) Six sets of artificial data have been gencrated from the generalized Burr distribution with
" parameters c=4 and k=2, for samples of sizes 10,15,20,25,30 and 35. Another hypothetical example
given by Papadopoulos (1978) is also used.

(ii) We have used censored type II samples with 50% and 70% uncensored items and complete
samples to have an idea about the effect of changes of the sample size and the number of censored

" jtems on the properties of the new estimators.

(iii) Numerical computations are carried out to obtain the maximum likelihood estimates and
their approximate variance-covariance matrix and also different Baycs estimates such as univariate and
bivariate modes, Bayes estimates and risks with respect to the squared error loss. We also illustrate

another set of Bayes estimates, based on the univariate posterior distribution of k, when ¢ is known

(c=s5) .
(iv) Different prior parameters, including a non-informative prior, have been chosen and used.

(v) A trial and error technique has been used to obtain the maximum likelihood estimates and
different posterior modes. Simpson’s rule for numerical integration has been used to obtain Bayes

etimates and risks with respect to squared error loss (see Mc cormik & Salvadari (1971)).

(vi) The results based on the six generated data are listed in El-Wakeel (1992), while the results
based on Papadopoulos’ example are displayed in tables (1), (2), (3) and (4).

Based on the analysis of the seven sets of the artificial data, we have the fo‘llowing conclusions :

\a) The estimated value of any unknown parameter is within two sigma of the value of the
correspdnding population parameter.

(b) The suggested iterative technique needs a reasonably short time and the use of a personal
computer makes these methods practical and applicable to experiments in which the gencralized Burr
distribution is the appropriate statistical model.
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(c) Moet of the variances of the MLE’s decrease when n or r increase. The covariance of the pair

(k, &) are positive and it decreases when n or r increase.

(d) The estimated values of the joint mode of the pair (k,c) and their univariate modes depend on
the choice of the prior parameters. A comparison of the estimated values of the joint and univariate
modes of k and its MLE’s (using non-informative priors) show that they are close to each other. This

is not true for c.

(¢) Bayes estimates and risks of k ad c are senmsitive to the assumed values of the prior

parameters. Most of the Bayes estimates are more efficient than the MLE’s.

(f) If ¢ is known, the MLE of k and the corresponding Bayes estimate of k (in the case of non-
informative prior) are very close. Further, the estimated values of the mode of k and the Bayes

estimate of k are close to each other in all samples. The Bayes risks of k decreases as n and r increase.

All these comments are based only on the present numerical illustration. To investigate this
problem thoroughly, more Monte-carlo simulation is needed and substantial computer calculations are

needed to arrive at concrete conclusions.

Table (1)
Maximum likelihood estimates of ¢ & k and their
approximate variance-covariance matrix

using Papadopoulos’ data (n=10)

MLE Variances & covariance
r
é k | var(e) var(k) cov(¢,k)
8.499 3.408 2.785 49.056 44.870
6.850 3.341 1.586 15.331 22.274
10 6.1999 10.656 2.013 5.948 5.903
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Table (2)

Joint modes of (c,k) and their univariate

modes using Papadopoulos’ data (n=10)

Prior parameters Joint modes Univariate modes

r B o4 6 o ko c* k*
5 1 -1 -1 1 1.7257 1.0830 1.2229 5.1867
1 -1 5 5.1650 10.1790 3.3939 5.3029
1 -1 8 4.3497 12.3504 2.6354 5.3142
3 -1 7 1 9.0486 7.9278 5.8767 5.1763
5 7 -1 1 5.7257 2.2078 5.2229 5.0144
8 9 -1 1 4.7257 2.0166 4.2230 5.1146
1 7 -1 3 85067 3.3837 8.1354 5.3205
NIP 3.7286 3.2087 3.1176 4.0460
7 1 -1 -1 1 3.4435 2.5000 1.0863 2.9950
1 -1 7 5 6.0407 12.0930 2.0669 3.0630
1 -1 9 8 4.8478 14.5030 1.3338 3.0689
3 -1 7 1 10.6230 9.6660 3.8908 2.9894
5 7 -1 1 7.4435 3.6592 4.9137 2.0289

8 9 -1 1 6.4436 3.4502 3.9136 2.2786

1 7 -1 3 9.6695 5.1540 7.7460 3.1978

NIP 5.8917 3.0860 2.8282 2.3364

10 1 -1 -1 1 6.1872 5.0008 3.5599 0.7892
1 -1 7 5 7.4878 15.0155 3.3841 0.8069

1 -1 9 8 5.8836 17.1926 3.7472 0.8086

3 -1 7 1 11.6750 16.8680 3.7158 0.7877

5 7 -1 1 10.1872 6.0577 2.4401 0.6402

8 9 -1 1 9.1872, 5.8495 1.4401 0.6579

1 7 -1 3 7.6108 8.9626 5.8600 0.8787

NIP 9.1943 10.4190 2.0940 0.6156




- 12

THE EG

Table (3)
Bayes estimates and risks of ¢ & k
using Papadopoulos’ data (n=10)

Prior parameters Joint modes Univariate modes
r a B v & é k v(€) v(k)
b 1 -1 -1 1 1.6759 1.9892 0.5972 0.7914
1 -1 7 5 2.7676 9.9792 0.6432 7.6604
1 -1 9 8 1.6764 9.4877 0.5377 6.0010
3 -1 7 1 2.2351 5.1719 0.2184 2.0577
5 7 -1 1 1.7205 0.8853 0.7229 0.1566
8 9 -1 1 1.3992 0.8864 0.1554 0.1559
1 -1 3 6.4937 1.9613 3.1990 0.7694
NIP 7.9424 3.3013 23.5980 2.1798
7 1 -1 -1 1 3.4751 2.6929 1.6515 1.0409
1 -1 7 5 3.2420 11.3645 2.0142 8.6102
1 -1 9 8 1.6763 12.2325 1.5873 10.6571
3 -1 7 1 2.2934 9.2416 0.9040 0.7781
5 7 -1 1 3.3973 1.2148 1.3973 0.2263
8 9 -1 1 3.4430 1.2149 1.4430 0.2109
1 7 -1 3 6.6750 2.7056 0.7055 1.0457
NIP 6.2272 4.2797 39.5310 2.9815
10 1 -1 -1 1 2.6219 3.6863 0.9912 3.5470
1 -1 7 5 2.7699 13.3318 0.6137 9.7617
1 -1 9 8 1.6761 14.2483 - 0.5471 8.9106
3 -1 7 1 2.3294 6.3551 0.9420 4.6785
5 7 -1 1 3.1205 2.4790 1.2567 0.5610
8 9 -1 1 3.2970 1.6812 1.2784 0.4375
1 -1 3 6.4069 3.7745 2.3951 1.4247
NIP 5.1962 2.3808 2.0940 4.4393
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Table (4)
MLE, modes, Bayes estimates and risks

of k when ¢ known (c=5)

using Papadopoulos’ data (n=10)

prior par-
ameters
r MLE modes Bayes estimates Bayes risks
¥ )
5 | 6.53029 5 2 0.92888 1.02177 0.09491
5 3 0.63429 0.69772 0.4423
|16 2 | 1.02177 1.11466 0.10354
6 3 0.69772 0.76114 0.04828
NIP | 5.22423 6.53029 8.52893
7 | 7.63367 5 |2 | 1.09920 1.19080 0.10908
5 3 0.75391 0.81674 0.05131
6 |2 | 1.19080 1.28241 0.11786
6 3 0.81674 0.87956 0.05526
NIP 6.54315 7.63367 8.32471
10 | 752211 |5 |2 [1.32399 | 141225 0.12465
5 3 0.91859 0.97983 0.06000
6 |2 |141225 | 1.50052 0.13244
6 3 0.97983 1.04107 0.06375
NIP 6.76989 7.52211 5.65821

(*) C does not depend on k , see (4.10 d).
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