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MAXIMUM FLOWS IN FLOW NETWORKS
SUBECT TO RANDOM ARC FAILURES

IBRAHIM MOUSA ABDEL-FATTAH

The reliability of directed capacitated networks subject
to random arc failures is evaluated by the expected value of
maximum flow. It is known that calculating the expected
value of maximum flow is very difficult and complicated. An
upper bound on the expected value of maximum flow in dire-
cted networks is given by Onaga, while a lower bound is
found by Carey and Hendrickson. The lower bound sometimes
gives the exact value, e.g., if networks are bipartite. The
purpose of this paper is to give necessary and sufficient
conditions for a directed network to have the lower bound
that is equal {o the exact value. Finally, we develop a
simple and efficient test that decides whether a given network
satisfies\lhe necessary and sufficieni conditions and then an

illustrative example is introduced.

1. INTRODUCTION

The reliability of capacitated directed networks subject
to random arc failures, such as communication, transportation,
power, and waler networks, is often evaluated by such mea-
sures as probabilistic connectedness and expected value of
maximum flow [8]. The problem of calculating probabilistic
connectedness is very hard and complicated process [4],
though efficient algorithms are known for series-parallel
graphs. Since the expected maximum flow problem conlains

as ils special case the probabilistic connectedness problem,
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it is also quite difficult to be computed. Efficient algorithms
are known if at most two arcs are subject to failure in a
direcied network [7]. An upper bound on the expected value
of maximum flow in general directed networks is given by
Onaga [6], while a lower bound in general directed networks
is found by Carey and Hendrickson [2]. In computational
experiments for some directed networks, it was reporied by
Wallace [11] that the lower bound often provides more
accurate approximate values than does the upper bound.
However, the condition as to when the derived lower bound
on the expected value of maximum flow gives the exact

value is not known except for the case of bipartite directed

networks [10].

In this paper, the main objective is to give necessary
and sufficient conditions for a general directed network to
have the lower bound that is equal to the exact value of
the expected maximum flow. Additionally, a simple and
efficient test is developed to check whether a given network

satisfies the necessary and sufficient conditions or not.

2. DEFINITIONS AND NOTATION

Consider the single commodily flow problem in the

following directed network N=(G,s,t1,¢):

G=(V,A): A connected directed graph, where V is a
sel of nodes and A is a set of arcs.

s € V: A source node.

t e V: A sink node (s # t).

c: A +R"is a capacity function, where R* is the set

of positive real numbers.
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For a set U & A, the graph G' = (V, A-U) oblained
by removing U from G is denoted by G-U, and similarly the
network (G-U,s,t,c) by N-U. Let

ita): the initial node of arc a,

t{a): the terminal node of arc a.
For a set X ¢V, let

OUT(X) ={ ae A| ila) € X, t(a) € V-X 1},
IN (X) ={acA] i(a) e V=X, tla)e XL

For two nodes x and y, the following sequence r alternating
between nodes X; and arcs a; ¢ A with i(ai) = Xy and

tla;) = x; ., is called an x-y path:

+1

mioxp(=x), apaxs0a,ee 3y, Xy, 1(=Y) (k > 1).

Let us denote the sel of all x~y paths in network N by
P(x,y). The set of arcs in a path = is denoted by A(T).
An x-y path with x=y is called a cycle. A network
without cycle is called acyclic. We define the capacity
of a path n by

c{n) = min{c(a) | a ¢ A(x)}. (1)

For a subset B € A and a consiant o satisfying

0< o < min{c(a) | a ¢ A}, let
N-a | B
denote the network (G', s,t,c') with G'=(V,A') obtained by

decreasing the capacitly of each arc in B by a, i.e.,

- cla) - a if ae B
c'(a)=
c(a) if ae A - B,
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and

A' = {a e A | ¢c'(a) >0}

Let f(a) denote the amount of flow in arc a, which is

feasible if it satisfies the following capacity constraint:

fla) < c(a) for ace A, (2)
where
f(a) = L Gl(as") f(")y
neP(s,t)
and
1 if a e Al(xw)
sla,n) =
0 if a ¢ Aln).

For each U & A, define

vf(N-U) = L f(n). (3)
1eP(s,t) with A(n) =A-U

Clearly, v (N) is called the flow value of f in N. The

following flow conservation rule is immediate from (2) and (3):

vf(N) if x=s
I fla) - z f(a)= 0 if x#s,t
acOUT(x) acIN(x)
—vf(N) if x=t.

Thus, any network has a feasible flow f(n) = 0, neP(s,1). A
feasible flow with maximum flow value is called a maximum

flow in N, and the maximum flow value is denoted by v(N).
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3. THE EXPECTED MAXIMUM FLOW
IN PROBABILISTIC NETWORKS

We consider the expected value of v(N) in a network
N that is subject to random arc failures. Arc failures are
assumed to be mutually independent, and the failure (sur-
vival) probability of an arc acA is denoted by pla)
[q(a) = 1 - p(a)]. We will assume that O<p(a)<l for every
acA. Lel p denote the vector (p(a), aeA), and let (N,p)
denote the resulting probabilistic network. The expected
value of maximum flow in (N,p) is defined by

v(N,p) = £ v(N-U) p(U), (4)
UsA

where p(U) is the probability that all arcs in U fail while

the rest of arcs survive, i.e.,

p(U) = 1 pla). T qfa). (5)
ael acA-U

Clearly, the straightforward computation of (4) is intractable
especially for dense and large size networks. In general,
it is known that the problem of calculating the expected
value of maximum flow is a very hard and complicated
process [5].

Before proceeding, we will introduce the following defini-

tions and lemmas which are essential for subsequent analysis.

Definition 3.1. The maximum real number ¢ >0 such that

c{a) -a> f(a) for any acyclic feasible flow f, is called

the residual capacily r(a) of arc a where r(a) > 0 for any a.
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If a network N has an arc a' such that no s-t path

passes through a', then r(a') = c(a').

Lemma 3.1. For an arc a' in network N=(G,s,t,c) with
G= (V,A), let N' = N-r(a') |[{a'y. Then, r'(a')=0 and
r'(a) = r(a) for a ¢ A - {a'}, where r'(a) denotes the

residual capacily of arc a in N'.

Proof. Clearly, r'(a) > r(a) for a#a'. By definition
of r(a), each arc a has an acyclic feasible flow f(a) with
fla) = c(a) - r{a). Since each of such f(a) is obviously
feasible in N', r'(a') = 0 and r'(a) < r(a) for a#a'. So,

r'(a) = r(a).
Q.E.D.

Definition 3.2. Lemma 3.1 asserts that a network obtained
by removing all residual capacities is unique [2]. Such

network is given by
R(N) = (G',s,t,c') with G' = (V,A'),

where A' = {aeA | c(a) - r(a) > 0} and c'(a) = c(a)
- r(a) (aeA').

Evidently,
P(s,t;N) = P(s,t;R(N)),

where P(s,t; R(N)) denotes the set of paths from s to t in
network R(N).

Lemma 3.2. Networks N and R(N) satisfy v(N,p) = v(R(N),p)
for any probability vector p.

Proof. Let N= (G=(v,A),c). Consider the network N(G,c')
defined by c'(a) = c(a) - r(a) (aeA), where c'(a) is allowed

to be zero. It is easy to see that [3] v(N'p) = v(R(N),p).
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Then, it suffices to show v(N,p) = v(Nip), i.e., v(N-U) = v(N'-U)
for any U = A. v(N'-U) < v(N-U) is obvious. Let f be an
acyclic maximum flow in N-U. By definition of r(a), f(a)< c(a)
-r{a) for any a e¢ A-U. This implies that f is feasible in
N*'-U, proving v(N'-U) > v(N-U), so, v(N-U} = v(N'-U), and
consequently, v(N,p) = v(R(N), p).

Q.E.D.

4. BOUNDS ON THE EXPECTED MAXIMUM FLOW

To derive the lower bound due to Carey and Hendrickson
[2], recall that, for each failure set U, it is possible to
make rerouting of flows so as to maximize the flow value. If
we prohibit this rerouting, a feasible flow [ gives the following

lower bound:

vr(N,p)= L {f(n). q(a)} <v(N,p). (6)
neP(s,t) aerl{ n

l.e., vf(N.p) represents a lower bound on v(N,p).
For an upper bound, Onaga [6] has shown that

viN,p) € c(n) p0) = viinp),

z
neP(s,t) U=sA-A(rn)
where vf(N.p) is the maximum flow value in the network
N = (G,s,t,c') defined by c'(a) = qla) c{a) for acA; that is
vf(N,p) provides an upper bound on v(N,p).

Definition 4.1. Let f be a feasible flow in N. f is called
critical in (N,P) if it satisfies (6) by equality.

C]eax_‘ly, if there is a critical flow, then il maximizes the
expected flow v (N,p) over all feasible flows f [9]. However,
some networks do not have critical flows. In the subsequent

parts, we derive necessary and sufficient conditions for a
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Properties of the Lower Bound

Let f be a feasible flow in N. For a path 7 € P(s,1),

m qla) = z T pla)l. m qfa)
aeA(n) Uec A-A(xw) acel aeA-U
= I p(U)
UE A-A(T)

holds, where p(U) is defined in (5). Then, we have

v.(N,p) b { £(u) qla)}
f ae.lX(n)

neP(s,t)

z z f(w) p(U)
meP(s,1) Us A-Aln)

= I z f(x) p(U)
UsA A7) sA-U

I vf(N—U) p(U), (8)
UcA

where vf(N-U) is shown in (3).
Lemma 4.1. Let f be a feasible flow in N.

(1)  v(N-U) > vf(N—U) for all Ug A.

(ii) If there exists a set U= A such that v(N-U)> vf(N—U),
then v(N,p) > vf(N,p) for any 0 < p < 1.

Proof. (i) Immediate from definitions of v(N-U) and
vf(N~U). (ii) Obvious from (i) and (8). Q.E.D.
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Lemma 4.2. A feasible flow f is critical to (N,p) iff

fir) = c(x) ¥ neP(s,t) (9)

Proof. Sufficiency is obvious from vf(N,p)
= z cln). T qla) = L c{n) p(U)
neP(s,t) aeA( n) UsA A(r)=A-U
and Lemma 4.1 (ii). To show necessity, assume that a
maximum flow f in N has an s-t path =' with f(+') < c(x').
For U' = A-A(¢'), VIN-U') = c(g') > f(g') = vf(N-U'), and
hence f is not critical by Lemma 4.1 (ii). Q.E.D.

Lemma 4.3. A feasible flow f which is critical to (N,p) has
the following properties [11]:

(i) f is the unique maximum flow in N.

(ii) f is acyclic.
(iii) R(N) = Ng.
Proof. (i) The maximality follows from
Lemma 4.1 (ii) with U=¢. If there is another maximum flow
f', there exist two s-t paths n; and n, such that f(n1)> f‘(nl)
and f( 'n2) <f‘(n2), indicating that N has no f satisfying (9).
(ii) N always has an acyclic maximum flow f, which is
unique by (i). (iii) 1If an acyclic flow f' in N satlisfies
f'(a') > f(a) for some a' e A, there must exist an s-t path =
with f'(x) > f(r), which contradict f(n) = c(n). Q.E.D.

5. NECESSARY AND SUFFICIENT CONDITIONS
FOR A DIRECTED NETWORK TO HAVE
CRITICAL FLOW

In this section, we characterize those networks that

have critical flows.
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Definition 5.1. A network N = (G,s,t,c) with G = (V,A) is
called balanced if the capacity function satisfies
>0 for X=s

z cla)- = c(a)
aeOUT(x) aeIN(x)

0 for all xeV-{s,tl} (10)

1]

< 0 for x=1
The next Lemma follows directly from the definition.

Lemma 5.1. Let N = (G,s,t,c) with G = (V,A) be balanced.
For an s-t path =, network N-q|A(w) (0<

=]

< cfx)) is also
balanced and satisfies v(N-oa|A(x)) = v(N)

a .

Definition 5.2. A node xeV - {s,t}in N (G,s,t,c) is

called a junction if |P(s,x) | >2 and |P(x,1)]| 2 2.

For example, network N in Figure 1 has junctions

x2,x3. and x[..

2 A A
S 1
a1 a3
3 a, X5

FIGURE 1. Network N.

Also, an arc a in N is called monofil if there is a
unique s-1 path that passes through a. Such an s-1 path is

also called monofil and is denoted by n(a) [7].
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For example, network N shown in Figure 1 has a monofil
arc a, with w(az): s + X+ X+ L

Lemma 5.2. [3]}. Let N = (G,s,t,c) be a balanced acyclic
network.

(i) 1f a maximum flow f in N is unique, N is junction
free.

(ii) N is junction free iff the following (a) and (b)
are satisfied:

(a) N has no node x with [IN(x)| > 2 and
|OUT(x)| > 2.

(b) Ply,z) =¢ for any y with |IN(y)| > 2 and
any z with jOUT(z)| > 2.

(iii) Any monofil arc a in N, satisfies c(a) = c(x(a)).

(iv) For any arc aeA, P(s,v) # ¢ and P(v,t) #¢ for
v ¢ {i(a), t(a) )

Proof. The proof is given in the Appendix.

Definition 5.3. A network N is called monofil if N is balanced,
acyclic and has no junction.

This definition is based on the following observation [2]:
Assume without loss of generality that N = (G,s,t,c) with
G = (V,A) is a monofil network in which no node x satisfies
|IN(x)| = |JOUT(x)| = 1 (remove such x by replacing
ta,a't = IN(x) U OUT(x) by an arc a" with c(a") = c(a)).
Let X be the set of all nodes x with |IN(x)] <1 (i.e., x=s,
where |IN(x)] = 0, or JIN(x)] = 1 by Lemma 5.2 (iv). IN(X) = ¢
holds since t(a)eX implies i(a)eX by |OUT(t(a))|>2 and (b)
of Lemma 5.2(ii). Thus, the subgraph G_ induced by X is a
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directed oul-tree from source s. Similarly, V-X gives the set

of all nodes x with |OUT(x)| < 1(i.e., x=t or x with |OUT(x)|=1),
and the subgraph G, induced by V-X is a directed in-tree with
sink t. This means that P(s,t) is given by {x(a;),n(a,),...,
wa )}, where OUT(X) = {al,az,...,am} , and every

ﬂ(ai), i=1,2,...,m, is monofil. This is illustrated in Figure 2.

FIGURE 2. A monofil network (broken arcs are monofil).

From the previous concepts, definitions, and Lemmas

discussed so far, it is possible to derive two main subsquent

resultls.

I- A probabilistic network (N,p), where O < p < 1, has a

critical flow if and only if R(N) is monofil.
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Proof. Necessity, By Lemma 4.3 (i), let f be the unique
maximum flow in N. By Lemma 4.3 (iii), R(N) = N¢, which is
" balanced. By Lemma 4.3 (ii), Ng is acyclic. From Lemma 5.2
(i), N is junction free. Consequently, N = R(N) is monofil.

Sufficiency. Without loss of generality, assume that
a monofil R(N) has node x with |IN(x)] = |OUT(x)| =1
(see definition 5.3). Let X be the set of all nodes x with
[IN(x)] < 1. Then, P(s,t) of R(N) is given by {n(a;), n (a;)
veees wla )}, where OUT(X) = laj,ay,...,ap ), and every s-t
path ﬂ(ﬂi) is monofil. By Lemma 5.2 (iii), each monofil path
wla;) satisfies c(n(a;)) = cla;); i=2,3,...,m, hold. Repeating
this, we see thal there is a flow f satisfying f(r (a;))=c(v(a;)),
i=1,2,...,m. This f is critical by Lemma 4.2, the result

follows.

As an example, consider the network N shown in Figure 3.

When the capacity function is balanced, N is monofil.

31 %3

FIGURE 3. Directed Network.
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In this case, its obvious that

X = CRITEINE
OUT(X) = {ayr85:85,35:3g)
P(s,1) = {s=+ a,+ag +ag +1, s+a1+a3+a6'

+a9 +t, 5+ ay +a5 +a9 + 1, s+
»apva; +a; vag>t, s va;ra,
> a8 -ht}-
and by (6) and the previous obtained result (1), we get
v(N,p) = v;(N,p) = cla,) q(a2) q(a6) q(a9)
+ c(a3) q(al) q(a3) q(ag) q(a9) + c(a5)
ala;) qlag) qlag) + cla;) ala;) qla,)

ala;) qlag) + clag) qla;) qla;) qlag).

Now, we characterize a second result concerning

a network N whose R(N) is monofil.

11- A network N = (G,s,t,c) with G=(V,A) has a
monofil R(N) iff the following (a), (b), and (c) hold for a

maximum flow f in N:
(a) N is acyclic and junction free.
(b) P(s,1;N) = P(s,t;Nf).

(c) cly) = f(n) for all = sP(s,l;Nf).

Necessity is immediate from result 1 and Lemma 4.3 (i),
(iii) [(b) comes from that P(s,i;N) - P(s,t;Nf) # ¢ implies that
R(N) # N.J].
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Sufficiency 1is obvious since (a), (b), and (c) imply (9)

However, whether R{N) of a general network N is monofil
or not can be easily checked by the following developed test
which is denoted by MF-Test;

Step 1: Find an arbitrary maximum flow f in N, and
let Ay ={acA|f(a) >01}and Ne = ((V,Af),s,1,6).

Step 2: If Nf contains a cycle or a junction, then
terminate by concluding that R(N) is not monofil.

Step 3: For each path n:P(s,t;Nf), check whether
P(S.t;N-Bf(n)) contains a path n'(£ 7) or not, where

Beln) = {acA|f(a) > 0, i(a) € V(r), af A(n)},

in which arcs not in A(x) have higher priority than those in
A(w). If there is such a n' for some ueP(s,t;Nf), then ter-
minate since R(N) is not monofil.

Step 4. For each ueP(s,t;Nf)(= P(s,tiN)), check whether
f(z) = c( %) holds or not. If there is a y with f(n) < c(y),
then terminate since R(N) is not monofil. Otherwise, R(N) is
monofil and R(N) = Nf.

Illustrative Example: To illustraie the previous steps
of MF-Test consider the network N shown in Figure 4. Arc
capacities are given in Table 1.
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Arc Number : i 112 (3|45 |6(718 |9 10 11| 1213

Arc Capacity :c(ai) 614 17|35 (5431416 5|4 |4

Arc Number : i 141 15116( 17] 18 119( 20] 21 {22| 23

Arc Capacity :cla;)f 33 |5 3|8 |415]|4 |67

—» : arc a with f(a) > 0

——w» : arc a with f(a) =0
bold arcs denole Nf

FIGURE 4. Example Network.
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Step 1. Let f be a maximum flow, where
f(rrl: s +ay »aa» ag+ 823 +1) = 3
f(“zz S+a) 33 ¥ Ay 2, 3)r Ajg* Ay t) =3

f(ﬁs: s+a; +a > 878y, 8jer Ayt Agy* t) = 3

3
f( M S +ay 8, a9+ dgg +t}) =3
f(ws: §+ay +agr a;0% 859 YAyt a22+t) =3

Step 2. 1t is shown that N is acyclic and junction
free. Thus N; is monofil and v (i=1,2,...,5) give all paths
in P(s,t;Nr).

Step 3. Test m ¢ P{s,t;N;) as an example. Delecting
arc set Bglm) = {ayaq} from N, we conclude that P(s,1;N-Bg(n)=
{n} [if N has an arc b (indicated by a double arc) from
vy 1o Vos then path ©': s +ags as» ag+ b+ ajg *a,5~ a17
+ 89 +Byp+ t is found at this point and the MF-test terminates
by concluding that R(N) is not monofil]. Similarly, other
paths =, (i=2,3.4,5) pass Step 3 successfully.

Step 4. We see that f(n;) = e(m) = 3 for i=1,2,...,5. So,
R(N) is monofil and R(N) = N¢ holds.

6. SUMMARY AND CONCLUSIONS

This paper has been concerned with evaluation of the
“expected value of maximum flow in capacitated and directed
networks subject to random arc failures. It is known that
cal_culating the expected value of maximum flow in probabilistic
networks is very hard and complicated process. An upper
bound on the expected value of maximum flow in directed

networks is given by Onaga, while a lower bound on it is
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found by Carey and Hendrickson. The lower bound sometimes
gives the exact value, e.g., if networks are bipartite. We
derive necessary and sufficient conditions for a directed
nelworks to have the lower bound that is equal to fhe exact
value. The conclusion is that it holds if and only if the
network R(N) obtained by removing all residual capacities is
monofil (i.e., balanced, acyclic, and junction free). Additiona-
11y, a simple and efficient test (MF-Test) is developed to check
whether a given network R(N) is monofil or noi. Furthermore,
two points are still open for research and investigation.
Firstly, exlension the obtained results io undirected networks
and multisource-multiterminal networks. Secondly, necessary
and sufficient conditions for Onaga's upper bound to provide
the exacl value of the expected maximum flow in probabilistic

networks.

APPENDIX

Proof of Lemma 5.2.

(i) Assume that N has a junction 4, i.e., there are
four distinct pathsw |, n, eP(s,u) and 4,7, ¢ P(u,t) (see
Figure 5). Let ™ denote the s-t path consisting of n . (i=1,2)
and nj(j=3,4). Let

o= min {c(nl), c(nz), C(ns), c(n4)} / 2,

11'2 ﬂl;

FIGURE 5. Network with a junction u.
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and construct network N'=(N-al "13) - aln 2%° Since N is
balanced, v(N') = v(N) - 2a . Also, construct network

N" =(G"(V,A"),s,t,c") with v(N") = 2a consisting only of paths
*13 and 4 i.e.,

A= Alrgy) U Alrgy)

2a if a cA(nls) n A(ﬂ2/¢)
c"(a) =

a if aeu\(nls)-A(uu))U{A(nu)-A(nls)}.

For any real number 6 such that 0 < 8<a, flow fe:

a-0 if == "3 or my,
fe(ﬂ) = ] if w= My, OF Tog
0 otherwise,

is maximum in N". Then, f=f' + f5, where {' is a maximum
flow in N', is maximum in N for any ¢, indicating that a
maximum flow in N is not unique.

(ii) Node x of (a), and nodes y,z of (b) with
P(y,z) # ¢ are junctions as obvious from the acyclicity and
capacity balance. This proves the necessity. Conversely, if
N has a junction, then there exists x of (a) or y,z of (b)
from definition of junction. This proves sufficiency.

(iii) Assume that c(a) > c(n(a)). Let f be a
maximum flow in N. Since no s-t path except =(a) contains a,
this arc a is not saturated by f. By the capacity balance,
a and other unsaturated arcs must form an s-t path or a cycle
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But this contradicts the maximality of f and the acyclicity

of N, respectively.

(iv) It suffices to show that P(s,i(a)) # ¢ and
P(t(a),t) # ¢ for any a € A. Let X be the set of nodes x
(containing i(a)) such that P(x,i(a)) #¢ . From IN(X)=¢ and
the acyclicity, X contains a node x' satisfying IN(x') =¢
Thus, x' must be s, that is, P(s,i(a)) #¢ . Similarly for
P(t(a),t) # ¢. Q.E.D.
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