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BSTRA

In this paper we present some modified maximum likelihood predictors of the s-th
order statistic based on r order statistics of random samples of size n from Rayleigh
distribution, where r <'s £ n. We suggest four types of modifications to the predictive
likelihood equations in order to find such predictors. We simulate the values of the bias,
mean square prediction error, and likelihood function. On the basis of these criteria, we
select the one obtained by the so called Type Il modification to be the best predictor. Its
efficiencies compared to those for the best linear unbiased predictors and alternative linear
predictors are remarkably high.
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1. Introduction

Let Xy:p € X2:n < ... £ Xjp:p denote the order statistics of a random sample from an
absolutely continuous cumulative distribution function (cdf) F(x;8) having probability
density function (pdf) f, where 8 is possibly a vector valued parameter. Let Fy.y and fi:n
denote the cdf and pdf of Xx:n, respectively, for k = 1 to n. Suppose we observe only X =

(X1:ns «» Xpp) and the goal is to predict Xg.,, where 1<r<s<n. In the context of reliability
theory, Xs.n represents the life-length of a (n-s+1)-out-of-n system made up of n identical
components with independent life-lengths. When s= n, it is better known as the parallel
system. Thus our concern is the prediction of the life length of such a system based on the
first r failure times of the components.

When F belongs to a location - scale family with location parameter p and scale
parameter G (> 0), the best known predictor is the best linear unbiased predictor (BLUP)
(see, for example, David, 1981, p. 156). This is based on the work by Kaminsky and
Nelson (1975) who applied Goldberger's (1962) results in the context of a linear model
for the prediction of Xg.p. Let Z;.y= (Xi:p - W/o (=1, 2, .., 1), Z = (Z1:n, --v» Zr:n), and
letacand V denote the mean vector and the covariance matrix of Z, respectively. Then, the

BLUP of X., is given by
8L(1) = (i +ag 61) + w' VX - i1 - 6.0, (1.1)

where ﬁL and SL are the least-squares estimators of W and o, respectively, ag=E(Zs.p),
andw' =(wj,...,w) with wj = Cov (Zi.n» Zg.p) (i=1, 2,..., 1) and | is a vector whose
elements are all unity. Gupta (1952) has proposed alternative linear estimators of it and &
by replacing the variance-covariance matrix of Z, V, by an identity matrix I. Ragab (1993)
has also obtained an alternative linear unbiased predictor (ALUP) of Xg.p, by replacing V
by D, where D = diag(vyy, .., vir). Letus denote this ALUP by § (2).

Kaminsky and Rhodin (1985) have extended the method of maximum likelihood to
allow the joint prediction of a future random variable and estimation of an unknown
parameter. The resulting predictor is being called the maximum likelihood predictor
(MLP). They gave some sufficient conditions for the existence and uniqueness of the MLP
and illustrated the method with several examples,
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It is not possible to obtain a closed form expression for the MLP in most cases. In
estimation problem; Mehrotra and Nanda (1974) obtained approximate maximum
likelihood estimators (MLE's) for the normal and gamma distributions by replacing h(x) or
xh(x) by their respective expected values, where h, the hazard rate function, is given by

f(x)
1-F(x)"

h(x) = (1.2)

Using numerical computations they showed this procedure produces estimators that are
efficient when compared to the best linear unbiased estimators (BLUE's). Balakrishnan
and Cohen (1991, Ch.6 ) used the Taylor series expansion of h(x) and f(x)/F(x) around the
pr-th quantile where p; = r/(n+1), to obain modified MLE's of the parameters of the
normal and Rayleigh.distributions.. The main point in their approach is that the likelihood
equation involves messy terms and it is impossible to obtain an explicit form for the MLE.
Similar is the case with prediction as well because of the nature of the predictive likelihood
function(PLF).
Now, the PLF of Xg:p and 8 is given.by

T
L(Xs:n, 83 X) =Cp(r,9)[ ] fXj:n) [FX5:n) FXp:n))¥ T X s:0)
=1
L-FXe ™, 1.3)

where Cp(r,s) = n//{(s-r-1){(n-s)!]. The PLF of X., and.€ in (l.3j can be written as a

produci of two likelihood functions L1 and Ly where _
r

L1 X) = 8 X) = I £0%im) U-F O™
=

and

) FXep) FXpp)S T
(s-r-1)}(n-s)! “'F(Xr:n)]n-r
- DR S gep).

LZ(Xs:n: 9_- ).5) =

The predictive likelihood equations (PLE's) corresponding to L, L1, and Ly are in the
following forms: .
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M=O,andalo—g-]"=0. (1.4)
9Xs:n 96;
dlogL1(0)
—=0, 1.5
%, (1.5)

where 6; is a component of 6; and

dlogLa(Xs:
oglo(Xs:n) =0 (1.6)
0Xs:n
So the PLE's involve h(Xj.5y) (i=r, s), where h is defined in (1.2) and the extended hazard
rate functions hy(Xp.p, Xs:n), h2(X¢-n, Xg:p), defined by

f(x) f(y) :
h&Y) = FgyFay 20 = FyFog » X < Y- (17)

The following section introduces four types of modifications (Type I-1V) to the PLE's
to derive the modified maximum likelihood predictors (MMLP's). Two of these are based
on replacing h, h and hy by their expected values in the PLE's and the remaining two are
based on Taylor series expansions. We apply these techniques in Section 3 to predict a
future order statistic using a Type II censored sample from Rayleigh distribution when the
scale parameter © is unknown. We compare the predictors so obtained on the basis of bias,
MSPE, and the value of the likelihood function at the predicted value. On the basis of these
comparisons we select the one whose performance is the best most often and compare it
with the BLUP's and ALUP's. All these numerical comparisons are discussed in Section
4.

2. Types of Modification
We consider four types of modification to approximate the terms involved hazard rate

and extended hazard rate functions that appear in the likelihood equations (1.4-1.6). The
modifications used are of the following types:
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One-Stage Modified Maximum Likelihood Prediction:
In this technique, h(Xg.p), h1(Xr:ns Xs:n)s and ha(Xp.p, Xs:p) are replaced by their

respective expected values. This allows us to solve the PLE's in (1.4) and obtain simple
MMLP of X,., and PMLE of 8. The resulting predictor is called Type I MLP.

Two-Stage Modified Maximum Likelihood Prediction:

Here, h(X;.) is replaced by its expected value in the likelihood equation (1.5).
Therefore the PMLE of § can be obtained in the first stage. In the second stage, this
estimator will be substituted in the likelihood equation (1.6). Also h(Xs.n), and ha(X.p,
Xs:n) are replaced by their respective expected values. This technique leads us finally to
modified MLP of Xg., and modified PMLE of 9 The resulting predictor is called Type 11

MMLP.

One-Stage Approximate Maximum Likelihood Prediction;

The third modification involves the use of Taylor series approximation of h(Xs.p),
h1(Xr:p, Xs:n), and h(Xp:p, X:n) around the quantile functions at p;, where p; = i/(n+1)
(i =1, s). Thus, the left sides of the equations in (1.4) are approximated by linear
functions. Therefore this technique gives simultaneous approximate MLP of Xg.; and
approximate PMLE of_(_). The resulting predictor is called Type 111 MMLP.

Two-Stage Approximate Maximum Likelihood Prediction:

In this approach, the Taylor series expansion around the quantile function at
p,=r/(n+1) is used to approximate h(X[.;) in the likelihood equation (1.5). This yields the

modified PMLE of @ in the first stage. In the second stage this estimator of 0 is substituted
in the likelihood equation (1.6). Further, the Taylor series expansion of h(Xg.) and
h2(Xr:n, Xs:n) around F'l(ps) and (F'l(pr), Fl(ps)), respectively, is applied again.
Hence an approximation to the MLP of Xs:n may be obtained as an explicit solution. The

resulting predictor is called Type IV MMLP.
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3. Modified Predictors for the Rayleigh Samples

-x2/252
Consider the Rayleigh distribution with density function f(x; ¢) = 12- e X</20 , x>0,
9]

and cumulative distribution functioﬁ F(x;o)=1- e-x2/20'2’ x> 0. This dism’bution can be
considered as a special case of a two-parameter Weibull distribution. It serves as a model
for the failure time distribution with unknown (scale) parameter .

Denote Zg.;; = Xj.n/0, and for notational convenience, let

dlogL dlogL
ML)y = 2282 Ay = 28
2 o 2 o
ALL) _9 l(;,,L’ and A = d lo’,;.L'
aZs:n 80"

When the likelihood is either L or Ly, the partial derivatives are similarly defined.

The PLE's corresponding to (1.4) can be written as

AJ(L) = (s-T-Dh2(Zren, Zgen) - (1-5)h(Zge) - ¥(Zgen) =0, (3.1)
T

Ax(L)=- 1; (D)~ X Zin ¥(Zizn) - Zssn ¥(Zgn) - (5-5-1)

i=1
[Zr:n h1(Zr:ns Zin) - Zs:n h2(Zrps Zgip)) - (0-5) Zgop h(Zg:p)) =0. (3.2)

where ¥(z) = -[f*(z)/f(z)]. The equations in (3.1), (3.2) are the main equations for
producing the PMLEs of ¢ and the MLP of Xg.,. If it is unknown, we will have one more
equation to deal with. However, in this paper we assume that the parameter involved in
this prediction problem is the scale parameter ©.

fi
Using fact that h(z) = z and Qg =f(z)|- z + % J, the equations (3.1) and (3.2) reduce
A

respectively to
: 1
A](L) =- (n-S+1) ZS:n + m + (S'r‘l)hZ(Zr:n, Zszn) = 0, (3.3)

r
2 2
{20+1) - (n-s+1) Zon- Zzi:n
i=1
- (s-1-1) [Zp:p h1(Xpene Xs:n) - Zs:n h2(Zrips ZS:n')J}= 0. )

ML) =-1
o
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' The PLE's corresponding to L1 and L3 are given by

T
’; (Y z+anz2 -] =0, 3.5)
i=]
1
- (n-s+1) Zg:p + - + (s-1-1) h2(Zg.p, Zs:0) = 0. (3.6)

For the two stage procedure, the PMLE of G can be evaluated explicitly from (3.5).
Therefore the MMLP of Xg., can be obtained by modifying only the extended hazard
function ha(Zp.p, Zs:n) in (3-6).

When s =r+1, the PLF is reduced to

r
LZr41:m 05 X) = Cp(r, “'I)H £(Zi:n) f{Zry1:0) [1 - F(Zr+1:n)]n—r']~

i=1
So the PLE's are given by

AL) =-¥(Zryy) - (n-r-1) h(Zpy:0) = 0.

1 r
(L) =- o {(r+1) - z Ziin Y(Ziin) - Zr41:n Y (Zes1in)

i=1

2
- (p-r-1) Zr+l:n}

=0,
It is clear that the above equations need not be modified. Hence the exact PMLE of ¢ and
MLP of X} 1.y, are obtained by the following equations:

(01) X;21:0 - 62 =0, 3.7)

T
-0 Xt D, X2 #2004+ 1) 62 =0, 3.8)
i=1
Upon solving (3.7) and (3.8) simultaneously, we obtain the solutions of ¢ and Xr41.n as
the following: '

A 1

o) =
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S (1)._.‘___]_.___.__
a V@2r+1)(n-1)

Although 8,(1) is the exact solution, it is in inadmissible region since 83(1) € Xp.p. Thus
we take Xr.p, 10 be 8,(1), the MLP of X4 1., and will try to maximize L with respect to ©.

In that case

log L(0) = -2(r+ 1)log © - =3 Z Xl o+ (-1 X[ n]

4

Hence, the PMLE of ¢ is found to be

n + (n- r)X2

"M’ﬂ

A
Ca(l) = 2G+T)

At 03(1) the approximation to A22(L) is less than 0. This implies that L at od(l) is close

to its maximum value. Therefore the PMLE of & and MLP of Xr+1:p are, respectively,

and  84(1) = Xpp-

Type T Modification

Clearly (3.3) and (3.4) do not yield explicit solutions for ¢ and Xg., (s > r+1). We
will now derive the MMLP by replacing h{(Z;.p, Zs:pn) and Zr.nh1(Zr:ns Zg:n)-
Zg-nh2(Zr-n, Zg-p) by their respective expected values. From Lemma 2.3 of Raqab (1993)

and Lemma 2.1 of Mehrotra and Nanda (1974), respectively, we have
n

Ehy(Zpons Zgin) = oo Z E(Zicn - 7 (- 72 2) (3.9)

s-r-1
1=s
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s-1
E(ron 1 Zrae Zein) Zsin D2 Zs)) =5 O ECZin - )

i=r+l
(s-r22). (3.10)

On using (3.9) and (3.10), we may modify the PLE's in (3.3) and (3.4) as
n

1 1
- (n-s+1) Zg:n +m+iZS‘IE(Zi;n -zi—:n)=0. 3.1
T
L {2s- (st 2, - Y 22 Y EEd)) =0 (3.12)
i=1 i=r+1
s-1
Letting by = n-s+1,by = z E(Zi:n - Zn 5—) and b3 = 25 - Z E(Z; n)' the equations
1=5 i=r+1

in (3.11) and (3.12) can be rewritten in the following form:
b]Xz-bchsn-02=0 3.13)
by X2 -b3o? + ZXZ-O (.14)
Upon solving equation (3.13), we obtain two roots; however, the negative root drop's out,

since X5.p > O almost surely. Using (3.14), the admissible solution of (3.13) yields the
MMLP of X as

by + ‘\' bzi +4by 4

8a(l) =———5,—— Sa(1), (3.15)

where

4by ZX
} 1/2
[4b1b3 - (ba +\/ b2 aby) 1

8. ={- @+ 1<s<n).
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Thus, we take the Type | MMLP of Xy, as

6*(1)—{83(]) if 55(1) > Xppandr<s<n
a . Xr:n 1f 63(]) S Xr:n or S= I‘+].

Type II Modification
Here, in the first stage, the likelihood equation in (3.5) can be solved without any

modification to give the PMLE of 6. This estimator has been obtained by Harter and

Moore (1965), and is given by

r
A 1. 2
8a2)= 7= 214 X2 +(n-n X2 (3.16)
1=
A
2 :
02 d : . ,
Harter and Moore showed that 2r —=— = W, where W is a chi-square random variable
o
A

. 2 ; ; . A .
with 2r degrees of freedom. Hence 674(2) is an unbiased estimator of o2 but 04(2) is not

unbiased for ¢. As they point out, an unbiased estimator of © is

NrT() a

5.(2) = 3,
%a(2) T(r+1/2) Ca(2)

Using (3.16) and replacing the extended hazard function hy(Zr.,, Zs.) appearing in (3.6)

with its expected value in (3.9), we obtain the following modified PLE:

n
1 1
'(n's+1)ZS:n+z;;+;E(Zl:n -ZE)—O. (3.17) -

Upon solving equation (3.17) we obtain a quadratic equation in Xg.; which has two roots.
One of them is inadmissible, since Xg., > 0 almost surely. The admissible solution is

given by
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by + \/ bz2 +4by A

8,(2) =T 0a(2), r+l<s <n,

% 2
where Gy(2) is defined in (3.16). At8,(2), we have A)|(L2) = - b+ (G4)8;(2))? | <
0. Then L3 at §3(2) is close to the maximum value of L. So the MMLP of Xg.j, is given
by

5*(2)_{5a(2) if 83(2) > Xp:pandr+l <s < n
A Xy i 83(2) € Xpop or s = r+l.
Type IV Modification

In this approach, we use the estimator of ¢ given in (3.16) to be substituted in (3.6).
Also we expand h(Zy.y, Zs:-py) appearing in (3.6) in the Taylor series around the point

(M(pr), n(ps)); that is,
N2Zein Zgin) =Y+ P Zpin +V Zgp,

where n =F () =[-2log qil '/ gi=1-pj,
2 2
V=g qs s M2 - N2Wp3-

pP=(qrqs Tlrﬂs)/Pszrv
v =(qs/ps){1 - (ar ‘13 Wpsr).
So the modified PLE corresponding to L3 is

-(n-s+])ZS:n+2h+d('y+er:n+st:n)=0. (3.18)

where d=s-r-1. Equation (3.18) can be reduced to a quadratic equation with only one
admissible root and it is given by
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§,(4)= zll—]-{d(y 542+ p xr:n)+\/ d2(y 54(2)+p Xyp) 2+ 4uj cl>a(2) }.

where up = [(n-s+1) - (s-1-1)v]. We have also, at 34(4),

£22(L) = - [b1+ (54(2)/8,(4))- dv). | (3.19)

To show that this derivative is negative, we introduce the following lemma.

Lemma: Assume that F is the cdf of the Rayleigh distribution and
) -
v = (@g/psp) (1 - (@ N2)/pgr), where ng = F 1 (pg), 0 < py < pg < 1. Then v <0.

Proof: Let h(x) = _—_l_c;g%’ pr<x<l.
“Pr

On differentiating h(x), we obtain
h(x) = {g1(x)/za(x)},
X-Pr 2
where g1(x) = Tt log(1-x), and go(x) = (x-pp)~.
It is easily seen that g1(x) is a monotonically increasing function and g1 (py) = log(1-py) <

0, g1(1) = e=. Therefore g1(x) = 0 has a unique solution in (py, 1), say, xg. So

X0-Pr
1-X0

+ log(1-xqg) = 0. (3.20)

Note that h(x) attains its minimum at xy. By making use of (3.20), we have

- Jog(1-xq) _ 1
X0-Pr 1-xq’

h(xqg) =

Since xg &(py, 1), it follows that h(xg) is greater than 1/[2(1-p;)]. Hence h(x) is greater
than 1/{2(1-pp)] for all x in (pr, 1). This completes the proof.
From (3.19) and the above Lemma, it follows that L at 83(4) is close to the maximum

value of Ly. Hence, the MMLP can be written as

Sa(4) if 84(4) > Xy.pandr+l <s <n

8, (4 ={
a® Xpin if 83(4) € Xp.pors =r+l.
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4. Numerical Comparisons

In order to use the MMLP's 5;(1) and 8;(2). the second moment of standardized

- 1
order statistics and the values of E(Z;.p, - 5,—) are needed. The second moment of Z;:; can
n

be compu'ted from Govindarajulu and Joshi (1968). In Table 1 below, present the values

ofE(z;:n-—?—_;), i=1,2,....n, for n=2(1)10.

A simulation study based on 10,000 Monte Carlo runs was performed in double
precision on an IBM 3081 computer in FORTRAN. We used IMSL subroutine DRNUNO
to simulate the first r uniform order statistics. To generate the s-th uniform statistic, we
used the fact that its conditional distribution given the r-th order statistic, is linearly related
to a beta random variable with s-r and n-s+1 (see Devroye (1986) for some further details
and relevant references). Then we employed inverse cdf transformation to obtain necessary
Rayleigh order statistics. This procedure was done for the sample sizes 5, 10 when 6 = 1
and with different choices of r (the number of observed values) and s (rank of the value to
be predicted).

We have to point out that the Type 111 technique fails to give an admissible predictor of
Xgs:n. ZPORC subroutine in IMSL-FORTRAN is used to find out the roots of the
likelihood equations. Unfortunately, the roots of these equations are inadmissible because
they are either complex or negative. Raqab (1993) applied all techniques of modification
discussed in this paper to obtain the MMLP's for the normal distribution. He obtained four
modified predictors along with estimating the location parameter p. Whereas her we
predict a future order statistic along with estimating the scale parameter 6. This indicates
that the parameter to be estimated has important role in obtaining a reasonable modified
predictor.

For the purpose of comparison, we compute the following values:

(1) Bias of 8;(i) , E(55 (1) - Zq.p), (2) MSPE of 83() , E(; (1) - Zg:p)?

(3) Likelihood function at (85(1) , Ga(i)),
where i = 1, 2, 4. Table 2 presents the values of the bias and MSPE of the so obtained
predictors for the Rayleig distribution. As we see in Table 2, all these modified predictors
are negatively biased. On comparing with the other modified predictors, the values of the
bias and MSPE of 5;(2) are found to be smaller for all choices of r, s considered. For this

reason, we define the following ratios:
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* A * A
L(3, (1), Sa(1)) L(3,(4), 044
Ratio (I) = - = ,and Ratio (1V) = = ~ .
L(5. (2), 64(2)) L(5. (2), 0a(2))

Ratio(I) and Ratio(IV) are also presemcd in Table 2. Based on all criteria (Bias, MSPE,
Likelihood Function), we consider 6 (2) 1o be the best one among the other modified

predictors.

In Tables 3, we compute the values of the MSPE's of the BLUP (8 (1)), ALUP
(81.(2)). These values of MSPE's are computed based on the moments of Rayleigh order
stansncs given in Govindarajulu and Joshi (1968). Table 3 also contains the efficiencies of

(2) which are defined by
MSPE(SL(I)) FED = MSPE(SLO))
MSPE(S (7)) MSPE(S )
From these tables, there is a clear evidence that the efficiencies of Type 11 MMLP are
remarkably high when compared to the BLUP, and exceed that of the BLUP in most of the
considered cases of r, s. However, the Type Il MMLP is always more efficient than the

RLUP in all these considered cases.
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Table 1 Values of E(Z;., - .ZT'I—) for Rayleigh Distribution
n

n i Value n i Value n i Value n i Value

2 4 1 - 0.8862 [i6 1 -2.5583 |8 2 -1.0254 |9 8 1.3201
2 0.8862 2 -0.6604 3 -0.3426 9 1.8756

3 1 - 14472 3 0.0253 4 0.1054 {t10 1 - 3.5670
2 0.2357 4 0.5259 5 0.4776 2 -1.3188
3 1.2115 5 1.0123 6 0.8363 3 -0.6189

4 ] - 1.8800 6 1.6552 7 1.2366 4 - 0.1851
2 -0.1489 |17 1 -2.8422 8 1.8138 5 0.1519
3 0.6203 2 -0.8547 |19 1 -3.3422 6 0.4483
4 1.4085 3 - 0.1746 2 -1.1788 7 0.7339

5 1 - 0.2420 4 0.2915 3 - 04887 8 1.0348
2 -04319 S 0.7018 4 - 0.0503 9 1.3914
3 0.2756 6 1.1365 5 0.3007 10 1.9294
4 0.8502 7 1.7417 6 0.6197
5 1.5481 I8 i -3.1018 7 0.9445
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Table 2 Bias and MSPE of MMLP's and Associated Likelihood Ratios for Standard
Rayleigh Distribution.

a. Sample Size 5

s Bias(l) Bias(I Bias(1V) MSPE(]) MSPE(I) MSPE(IV) Ratio(l) _ Ratio(IV)
3 -0.3077 - 0.0955 -03077 0.1658 0.0982 0.1658 1.0000 1.0000
4 -0.3237 -0.1158 -0.2659 03118 0.2521 0.2764 1.1384 0.8252
5 -04024 -0.1539  -0.2977 0.6495 0.5837 0.5943 1.0828 0.8492
4 -0.3499  -0.0848 -0.3499 0.213] (0.1169 0.2131 1.0000 1.0000
5 -0.2437 -0.1137  -0.3348 04291 0.3887 0.4443 1.1136 0.8153
b. Sample Size 10
4 -0.1646 - 0.0505 -0.1646  0.0486 0.0278 0.0486 1.0000 1.0000
6 -0.2301  -0.0588 -0.1328 0.1403 0.099 (0.1043 0.9905 0.8208
8 -0.2695 -0.0767 - 0.1376  0.2690 0.2200 0.2207 0.9629 0.8653
10 -03524 -0.1107 -02339 0.6752 0.6051 0.6054 0.9970 0.8221
5 -0.1608 -0.0431 - 0.1608 0.0472 0.0267 0.0472 1.0000 1.0000
7 -0.1643  -0.0492 - 0.1360  0.1241 0.0948 0.1027 1.0261 0.8009
9 -0.1960 - 0.0667 -0.1491 02750 0.2380 0.2417 1.0014 0.8338
10 -0.2290 -0.0803 -0.2115 0.5247 0.4763 0.4829 1.0166 0.8003
6 -0.1651  -0.0390  -0.2651  0.0503 0.0284 0.0503 1.0000 1.0000
8 -0.1327 - 0.0492 - 0.1509  0.1380 0.1126 0.1237 0.9954 (.7853
10 -0.1737 -0.0720 -0.2128 0.4284 0.3900 (.4056 0.9970 0.7848
8 -0.0947  -0.0408 - 02050 0.0994 0.0786 0.1089 (1.9603 0.7291
10 -0.1403  -0.0720 -0.2286  0.3703 0.3392 0.3649 0.9653 0.7723
9 -0.0893  -0.0483 -0.2434  0.1364 0.1137 0.1572 (0.9261 0.7317
10 -0.1012  -0.0506  -0.2363  0.3151 0.2872 0.2872 0.9443 0.7628
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Table 3 Efficiencies of the Type 1l MMLP When Compared to Linear Predictors for the
Sample Sizes 5, 10 from the Rayleigh Distribution, Assuming o=1.

MSPE's EFFICIENCIES
n_r s {8 5.2) 832 | EFFI EFF2

5 2 3 0.0974 0.1125 0.0982 0.9919 1.1456
4 0.2615 0.2832 0.2521 1.0373 1.1234

5 0.6250 0.6596 0.5837 1.0708 1.1300

3 4 0.1150 0.1415 0.1169 0.9837 1.2104

5 0.3911 0.4269 0.3887 1.0062 1.0983

10 3 4 0.0273 0.0387 0.0278 0.9820 1.3921

6 0.1012 0.1192 0.0991 1.0212 1.2028
8 0.2263 0.2554 0.2200 1.0286 1.1609
10 ] 0.6142 0.6688 0.6051 1.0150 1.1053
4 5 0.0258 0.0401 0.0267 0.9663 1.5019
1 0.0999 0.1206 0.0948 1.0538 1.2722
9 0.2569 ().2880 0.2380 1.0794 1.2100
10 {0.4745 0.5248 0.4763 0.9962 1.1018
5 6 0.0270 0.0443 0.0284 0.9507 1.5599
8 0.1137 0.1365 0.1126 1.0098 1.2123
10 | 0.4060 0.4400 0.3900 1.0410 1.1282
6 8 0.0742 0.1031 0.0786 0.9440 1.3117
10 |0.3233 0.3605 0.3392 0.9531 1.0628
7 9 0.1049 0.1433 0.1137 0.9226 1.2603
10} 0.2859 0.3130 0.2872 0.9955 1.0898
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