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PREDICTION OF STH ORDERED OBSERVATION
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Abstract This paper deals with the problem of predicting the sth ordercd observation X, in
a sample of size n from p t P tial distribution, based on the first (r —k 4 1)
ordered observations (Doubly Type-II censoring (0 < k <r < s <n))

It is shown how to find an interval estimte for X(,) and how the result can be used to
predict the remaining elapsed time in certain life test experiments involving items whose life
times follow an exponential distribution.
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i-Introduction

A prediction interval is an interval which uses the results of past sample to obtain the
results of a future sample from the same population with a specified probability. One of
the earliest papers on this subject was that by Baker [1]. Review papers on prediction
interval are given by Hahn and Nelson [4] and by Patel [12].

Kaminsky and Nelson [6] gives the prediction interval for X(,) based on the obscrved
values of subsets of order statistics from a sample. They use the factor C, where Cy, is 100«
lower percentage point of the distribution of the random variable R = (X(,) — X(r))/0"
and 0* is the best linear unbiased estimator of 6, but the authers have approximated
the distribution of R by an F-distribution. This approximation would be reasonable,
especially when the number of degees of freedom in numerator and denominator are not too
different. J.F. Lawless[7] solves the problem of predicting X{() in the case of one-parameter
exponential distribution and assumes that each of first r values were observed.Let X; <
X2 < -+ < X, be a random ordered sample of size n from the onc-paraineter exponential
distribution .

f(z,0) =0exp(—0z) z,6>0

In this paper we shall obtain a prediction interval for the sth ordered observation X(s)
based on a sample of doubly type-II censored so that one observes only Xy, X(k+1)s
»+* 1 X(r). The results obtained can be considered as extensions of [7]. This prediction
interval would be useful in life testing problems where some of the data arc missing or
where optimal selection of the ordered statistics is desired.



THE EGYPITIAN STATISTICAL JOURNAL

- 347 -
AHMED A. SOLIMAN AND A. H. ABD ELLAH

2-Prediction Intervals for X,

Consider an ordered random sample X; < X3 < -++ < X,, of size n from the exponential
distribution with mean 6~!, having denisty

f(z,6) = 0 exp(—0z), =z,6>0 (1)

Suppose that only X(xy, X(ks1),- <+ X(r) of the same sample ate available (doubly type-
I censoring sample) (0 < k < r < n).
Let

T = kX(k) + Z X(,') + (n — r)X(,.)
i=k+41

In which for k=0 and Xy = 0 gives the case of singly type-II censoring sample.
For given 0 <k < r < s < n (see Likes [11]), we consider the variate

U=U(k,r,s,n)

defined by
U= (X~ X)/T (2)
We note that (see Epstein and Sobel [3],Tanis [13]) U has a distribution not involving
0

The probabilty denisty function of U (see for example, Kendall [5} and Lawless [10]) is
found to be

dF(X (x), X(r), X(a)) =
(FX ) (F(X(ry) = X)) 1 (F(X(sy) ~ F(X(r)* "1 (1 = F(X(y))"

Bk,r —k)B(r,s —r)B(s,n — s+ 1)
AF(X 3y )dF(X(r))dF (X (a)) (3)

Where F(t) = 1 — ezp(—6t), f(a, b) is the beta function ratio.

(1 — eap(—0X(xy))*~!
Bk,r — k)
(exp(—0X (1)) — exp(—0X(,))) 1
' B(r,s—r)
(ezp(—X(1)8) — ezp(—0X(y)))* "t
’ B(s,n—s+1)
(ezp(—0X (s)))"~*0%exp(- 0 X x))ezp(—0X(r)))ezmp(—0X()))
AF(X () )dF(X(r) )AF(X(5))  (4)

dF(X k), X(r), X (o)) =

Making the transformations Y = .X(,.) ~Xw)y Z= X(,) - Xy, aad Xy = Xry-
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- Then equation (4) becomes

(1 — exp(—0Xw))**

dF(X(k)ry, Z) = ﬁ(k r— k)
ezp(=6Xw)(n — r + 1)(1 — exp(~0y)™"* " ezp(—rfy)
ﬂ(rr 5= Y‘)
(1= ezp(-02))* """ ezp(—fsz)exp(~0(y + z)(n +1))
Bls,n—-35+1)

BdF(X(y)dF(y)dF(z) (5)

Integrating out of X(xy and Y, we find the density of Z is given by

i o - ezp(— a—r—1
sty L= 100~ el @
The density of T is given by
st = S0, 0

Since Z, T are independent, we have the joint density of Z and T as

(ezp(=02))*~*+1(1 — exp(—0z))*~r-1(6t)"—*~1

T(-—k)B(s —ryn— s +1) ep(~0t)0>  (8)

f(zt0)=

Making the transformation U = %, T =T the joint density of U and T is

exp(—0t) (exp(—Btu))—st1

fwt6) = P(r—k) B(s—r,n—3+1)
(1 = exp(~Btu)) L (8e)r—*~1g2 = ??’r(“:okt))
(exp(—Btu))n—2+1
m(at) kg
a—r—1
Y =TT ~0tui
; (-1) ( ; )exp( Otui)

8(0t)™—*
T -RBs—rn= s+1)

o—r~1
DI 1)( ; )“P(-Ot(l-l-(n—8+i+l)u) (9

i=0
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Integrating out T, we obtain the denisty of U as shown:

1
f(u)=I‘(r—k),B(s—r n—s+1)

gy s—r—1 I'(r—k+1)
DI ( t )(1+(n—s+i+1)u)r_k+1

=0

r—k
ﬂ(s—rvn—s'*'l)
s—r—1
fs—r—1 1

' A ; ,u>0 (10

; ( )( 1 )(1+(n_3+i+1)u)r-k+l ( )
Integration yields
Pr(U>t)= 1
nvzy= B(s—rn—g+1)

rling —r—1 1 '
; = 1)( 1 >(n—ﬂ-i-i+1)(1+(n—H+i+1)t)'_'c
= P(t,k,r,s,n) (11)

Whence the distribution function of U is given by:
Fi)=1-Pr(U 2>1t)
Probability statements about U give prediction statements about X,, on the basis of
observed X(x), X(k41),* - »X(r)y T

For example, the statement Pr(U < o) = « yields the prediction statement

Pr(X(,) < X(,.) +tT) = o (12)
giving a (one-sided) 100a% prediction interval for X,).
For given values of n,k,r s,t the probabilities Pr(t,k,r,s,n) can be evaluated on a

computer.

Special Cases

(i) When s = n (that is we wish to predict the largest observation on the basis of the
(r — k + 1) smallest, we obtain

P(t,k,r,n,n)=Pr(U; >t) =

n—r—1 —_ =1 1
ﬂ(n-—rn-—n+1)z( ( i )(i+1)(1+(i+1)t)’”"

=0
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where U; = {m,‘,;&:). This can be conveniently rewritten as

P(t,k,r,n,n)=1 —'f(-n-' (n—r) 1

=0 i J4i)*

Where the distribution function of Uy = U(¢,k,r,n,n) is given by

P <=2 (") g (13)
=0

(ii) In the special case where r=s-1, it is known that the statistic

0‘"'*'9(8—1:—1)&"#&12

has an F distribution with (2, 2(s-k-1)) degrees of freedom (see for example [8]) i.e

F=(n—s+l)(a—k—l)(x-('—)_:lh) =(n-s+1)(s—k-1)

where U, = ﬁﬂ:%fiﬂ since

a=Pr[F < foau-k-1ye)

f(2.2(s-k-1):a)
- < —J@2(e=k-1)0)
i [Uz “(n-s+1)(s—k-1)

However if r=s-1 we obtain the factor

f(2,2(l—k—l);a)

Ua(k,s—1,8,n;0) = (T—-T-l-—l_)(s_—-_kTﬁ (14)

where f(, 3;ayis the 100 lower percentile of an F distribution with (a,b) degrees of freedom.
Table'1 gives Uz(k, s — 1, 3, n; @) for n=10, s=7, r=6, k=0(1)5 using o= 0.95, 0.99, 0.995,
0.05, 0.01, and 0.005 values with the exact values in parentheses. We checked the accuracy
of these factor values by comparing them with the exact values using the rclation in (14).
We note that k=0 gives the same results of Bain [2] (single type II censoring).
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Table 1

w

n s r k 95 .99 995 .05 .01 - .005

10 7 6 0 972 . 17316 21274  .012878  .00251  .00125
(97132) (1.73165) (2.1274) (.012878) (.002514) (.00125)

1 1.025 1.89 2.356  .012880  .002516  .001253

(1.0257) (1.8898) (2.3567) (.012889) (.002515) (.001253)

2 1115 21625  2.7606  .012006  .002516  .001253

(1.1147) (2.16228) (2.7606) (.01231) (.002515) (.001253)

3 1.285 2.73 3.66  .012933  .002516  .001254
(1.2858) (2.7311) (3.6360) (.012933) (.002516) (.001254)
4 1735 4.5 6.57107  .012987  .002518  .001254

(1.7360)  (4.5)  (6.57107) (.012989) (.002518) (.001254)
5 475 2475  49.75 0131578 .002525  .001256
(4.75)  (24.75)  (49.75) (.013157) (.002525) (.001256)

3- Applications of The Prediction Result

3.1-A life Test Where All Units Are Observed Until Failure

Consider a life test where n units, whose lifetimes follow the same exponential distribu-
tion, are put on test simultaneously, and where some units are observed until failure. We
can, using the results derived above, given a prediction interval for the largest life time X,
on the basis of the (r — k 4+ 1) smallest life times X < Xi41 < -+ < X,;Xn is in this case
the total elapsed time required to complete the test.

Numerical example

We use Lawless’s example of Section 3.1 [7). Ten items, whose failure distribution is the
same one-parameter exponential, are put on test simultaneously. The test is terminated
after the first 4 failures are observed, giving failure times: 30, 90, 120, 170. For this example
n=10, s=10, r=4, k=0, and then T=1430. We can find from (13) that Pr(U; < 2.098) is
very nearly 95%, this yields the prediction statement:

Pr(X 10y < 170 + (2.098)(1430)) = Pr(X(10y < 3173) = 0.95

That is, we can be (approximately) 95% confident that the total elapsed test time will not
exceed 3173 hours. (the same result of Lawless [7]).

Now, we consider some cases in which some of the failure times are missing.

Case (i) The failure #1 is unobserved, for this case, k = 2, T = 1490, =212,
we can be 95% confident that X(,¢) will not exceed 3329.

Case (ii) the failures #1 and #2 went unobserved, for this case, £ = 3, T =
1550, t = 2.13, we can be 95% confident that X(;0y will not excoed 3472.




ISSR, Cairo Univ., Vvol.37, No.2, 1993.
~ 352 -
PREDICTION OF STH OBSERVATION ...

3.1-B A Life Test Where testing is terminated After The rth failure

Consider a life testing situation similar to that of 3.1-A but suppose that it had been
decided beforhand to terminate the test after fifth failure on the basis of the first four
failure times, we can compute say, an upper 95% prediction limit for X(5) with s = 5,

r=4, k=0, n=10. We consider Uz = (—&27?5‘9- using Pr(Uz < t), we note that in this
case Pr(U, < .185833) = 0.95 given the observed values X(4) = 170, T = 1430 this yiclds
the prediction statement Pr(X(sy < 170 4 (.185833)(1430)) = Pr(X(s) < 436) = .95. We
can be 95% confident that the fifth failure will occur before 436 hours.

Ifk=1, T =1430, t = .285555, X(5y = 578, we can be 95% confident that
X5y will not exceed 578.
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