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ABSTRACT

General results for obtaining recurrence relations for doubly truncated
continuous distributions, are established, in the single'and joint order
statistics. We also present two applications. The first application is:
recurrence relations between factorial generating functions, the examples
considered are  exponential, logistic, extreme-value, and Laplace
distributions. The second application is: some recurrence relations between

reliability and failure rate functions.

1-INTRODUCTIONH

Khan et al (1983a,1983b,1987), obtained general results for obtaining
recurrence relations for moments of order statistics from doubly truncated
continuous distributions and they derived the single and product woments of
order statistics from doubly truncated Burr distribution and its
characterizations. Mohie El-Din et al (1991a,1991b,1992) obtained the single
and product moments of order statistics from doubly truncated parabolic,
skeved and U-shape distributions, they also characterized the Meibull, Pareto
and the power function distributions. They also obtained some 1results for
obtaining recwrence relations betueen single moment generating functions
and between moment generating functions of the sum of two order statistics
from doubly truncated continuous distributions and presented some
applications for these results to exponential, logistic, extreme-value and
Weibull distributions. In this paper, ve derived some general results for
obtaining recurrence relations between the expectations of any continuous
function in both, single and joint order statistics. Ve also specialized
these results to the factorial generating functions, these results are
applied Lo exponential, logistic, extreme-value, and Laplace distributiouns.

Other applications in life testing are also given.

Let X1:15~ X2:n>

distribution function (c.d.f) F(x) and probability density function

o, Xn'n be the order statistics from a continuous
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(p.d.f) £(x). Let,

9., () =g(x_. ), 1<r<n

any continuous functions of xl_,;
- 1

C Ly) =0k LX), l1=sr<ssn, (X =X,X_ =Y)
r,s:n r:n s:n r:n s:n
any continuous functions of X_, and X_, . '
r:n S:r
Ve, (U 5 v (V) 1=r=n
r:mm
[see (1.3)].
:'cr,s:n(tl'tz) = ¥, - Stl,tz), l<r=s=<n
r:n’“s:n
[sve (1.6)]
= < =
Rl_:"(x) R(xr:n) 1 £r<n
= < -
b, () =hix . ) 1Sr<n
thaen,
» r-1 n-r
E(qr:“(x)) = Cin IUJQ(X)[F(X)] [1-F(x)] f(x)dx , (1.1)
vhure,
_ n!
0 GEOTEDT (1.2)
pulting g(x) = t* in (1.1) yields,
* x r-=1 n-r '
Pren(W) = Gy [ ETFOOTT TO-FGOTT GO A SN € )

which, is the factorial generating function in the order statistics [see
Palel et.al. (1976)]). Let Rr.”(x) =1 - F(xr'n) denote the reliability

(survival) function. Thus, the failure rate function at Xr," is given by,

f(x_, )

= r.n .
b, ) TV [see Nagaraja, (1990)].

rin

Given tuo integers r and s such that (1 S r<s<n), then

[=¥] [sb]
B nCoM) = S o [ [ 0oan FO01 T IR, -Fe015 T R 1™
< £(x)f(y)dydx, = <y, (1.4)
vhi:re,
_ n!
S un® DTS TGSE=D)T - (1.5
Pulting { (x,y) = t’l‘ tg in (1.4), yields,
a5 X r-1 gs-r-1 n-s
Yrsn(tt) = O g [ f ¢ ) FOO1TT E) -F 01T T T ()
w X £(x)£(y)dydx, x = vy, (1.6)

which is the joint factorial generating function in the order statistics.
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. Tne doubly truncated p.d.f ft(x) at Ql and Pl‘ where Qli P1 is,
f(x)

P zQ
where, F(Q1) = Q and F(P ) = P [ see Hood et al (1974) ].

i 00 = -

; Qlﬁ x < P1 . (1.7)

Remark: Truncation can be utilized to form other families of dxstrlbutlons.

2 - Recurrence relations between the expected values for
any continuous function of order statistics.

(I): For doubly truncated continuous distributions, the equation (1.1) takes
the form, .

P e
(g, (0 = €0 fQ’g(x) (F, 001" (17, 001" T (o 2.1)
1
where, ft(') is given by (1.7) and Ft(’) is the corresponding c.d.f.

Theorem (2.1)

¥oc any arbitrary continuous distribution and for any continuous

funition 9. (x), 2= r=m, Q1 =X = Pl' ve have,

r:in

.., P , -
E(g,,,00) = Eg_y,0 1 00) = =52 [ ME 601 T e 001" g0, (2.2)
Q

1
wbre, cr:n is given by (1.2).

Proof: From (2.1), one can see that,

c_. P = L
By, (0 - ECgy_p,0 1 00) = 2 | Y900 15, 0017 1 )T
Q

1
["Ft(x) & (r-l)]ft(x)dx, (2.3)
let 7(x) = = (£, 0017 10-F, 01" (2.0
"
hence d (x) = [FL(x)]r-Z[I-Ft(x)]n~r[nl't(x) - (r—l)]it(x)dk, 2.5y
form (2.3) and (2.5) we get,
Cr:n yl
(9, 0N = Blg, 1 (0) = L2 [ g00dr (x). (2.6)
"1
Integrating by parts we get,
P P P P
1
T lade o = gt 1 - f 1 radgeo = - 1 reodgex, (2.7
9 9 e Q

form (2.4), (2.6) and (2.7), the proof is complete.
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Remarks: 1- putting g(x) = exp(tx) in (2.2), yields the results by Mohie
El-Din et.al.(1992).

2- putting g(x) = xk in (2.2), yields the results by Khan el.al.
(1983a).

(11) For doubly truncated continuous distributions, the equation (1.4) takes
the form,

P, P
EC, saGoy) = e o P oo 1R 0017 T R (0)-F (017 -E )™

9 x £, OOE (NAydx, x 5y, (2.8)

Theorem (2.2)

For any arbitrary continuous distribution and for any continuous

function {(X,Y), 1 = r = s = n-1, QIS X =y = Pl' we have,
, Cr ‘n r-1
EC, noM) - EC, oy (0Y)) = i j j HE (0]
: (y)-F 1=l E, (" SHf (x)d _(x,y)dx (2.9 )
llt(y) £ (0] (¥ & L (X y)dx, .

where , C is given by (1.5) and dfx(x,y) means that the differentiation
r,sin
is with respect to y.

Proof:

From (2.8), one can see that,

EQ 0001 - ECQ

r,s—1l:n

c PP
, 8t O PR § r-1
(x,7)) = —top | T TR (FL00]
0,"x

[ (-F (017 TP E I () F (r) = (st DF GO = (s7rm D))
£ () (Y)dydx,  (2.10)

- +1
Lot 20ay) = - B () - F )T T - o) (2.11)

then,

8z, (. )=[F F (01T 2 11-F (11"
(o T)F (¥) - (3-r-1) = (n-s+1)F (01 £ (1)dy. (212)
From (2.10) and (2.12) we cet

c. ... P . By »
o, ¥)) iy QltFt(x)]r ltfx £ (x)4Z, (%, 1))

1

B, 00 Y))EQ

r,s-1:n
ft(x)dx. (2.13)

Integrating by parts yields,
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P . P
ez e = - T ooy ), (2.14)
x - x
From (2.11) ,(2.13) and (2.14), the proof is complete.
Rewarks: 1- Putting £ (x,y) = exp(t(x+y)) in (2.9), yields the results of
Mohie EL-Din et. al. (1992).
2. Yutting l,‘(x,y)=XJYk in (2.9), yields the results of Khan el.
al. (1983b)-
3 - Application (I): Recurrence relations between factorial generating
functions.
The results in (2.2) and (2.9) can be specialized to ¥ifactorial

generating functions as follous,

Proposition (3.1):

Yor any continuous distribution function, 2 % r < n, Q]i X = Pl, the
faciorial generating function wr_"(t) satisfy,
s P1 5
V(O vy () = nen | £ E 01" h-r L™ ax, (3.1)

Q1
Pruof: Putting g(x) = £* in theoren (2.1), we get the result.

Proposition (3.2):

For any continuous distribution function, 1 “'r < s =< n, Ql- X _ =P, the

1
factorial generating function ¥ -'n(tl 2) satisfy,
[} P P
W53 ) ] = =1

Proumll1t) T ¥ st ) = _{%TE?%" (ln(tz))J lf 1t:t; [ht(x)]r

. 0. x

e '1

(L) = F 001 T -F (01 " (ayax, (3.2)

Proof: Putting [ (x,y) = t;ti in theorem (2.2), we get the result.
Lelling t1= t2 =t in (3.2), yields the recurrence relations between the
falorial generating function of the sum of two order statistics.

Proposition (3.3):

For any continuous distribution function, the factorial generating
function wr."(t), satisfies

rwr_m“(Q =W (8 - (v (1), (3.3)
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Proof: Since for 1 S r = n ‘
YRIB(X_ .00 = nE[B(x_, ;)] - (n-r)E[B(x.. )], (3.4)
[sv.: Patel et.al.(1976)],

putting B(x)=tx in (3.4), then the proof is complete.
In the follouing some examples are presented.

Exawple(3.1): Doubly truncated exponential distribution.
The p.d.f of doubly truncated exponential distribution is,

-X/O
= & < =
ft(x) c oty Ql_ X = Pl’ >0, . (3.5)
whuere, 1-P = e-'l‘l/e and 1-Q = e_Ql/e.
_ o 1-v _1-0 -
Lel Pz— ~F=0y and Q2— F=0) , 1+P2 Qz, then,
1 - Ft(x) = ~P2 + O ft(x). (3.6)

Titst, we derive a recurrence relation for ¥ois ().
- i1

From (3.1) and using (3.6), one can see that,

a-23ulby, () = A (t) - (£)] + (t)
n Yrin T T(n-r) Yron-1 Ye-1:n-2 Yr-1im-1'""

n # O 1n(t). (3.7)
Using (3.3) in (3.7), we get,
o 1u(l)

(- : Yo, (8) = = Bow o () 4 Qo (B), nE e In(t). (3.8)
Next, we obtain a recurrence relation for v v'n(tl'tz)'
Frum (3.6), we have,
1- }-‘t(y) = P, + O ft(y) and substituting with it in (3.2), one can see that,
© 1n(t2) an
0 - n—sil ]wr,s:n(tl’tz) = )’ur,s-l:n(tl’tz) - n-s+1 [Wr,s:n—l(tl't?.)
¥ s-1in-1 8y )1 @ In(ky) = nmstL

12 r<s=<nl. (3.9

Exumple (3.2):Doubly truncated logistic distribution.

The p.d.f of doubly truncated logistic distribution is

( () /B
£, (x) = O , Q. Sx<P,, o <a (® (>0, (3.10)
¢ Br-Q) (1 e CTR/F 2T !
. Y I =(Q -a) /13
1 B g D= T .
where, - -1 =e Q
- r - Q
IjeL P,= ) and Qz_ Fog
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from (3.10), we have
» = - (x-a)/? =
1 FL(X) = 1’2 #e ft(x) n ft(x).
First, we obtain a recurrence relation for wr_"(t).
Using (3.11) and (3.3) in (3.1), one can see that,

(1 [} :n(t))

y Yein(®) = By Veon g () 7 Q) viiq

-a/p
- _E_E_Tr__lﬂﬁﬁl wr.n(telln), 1<r s n-l.

Next, we obtain the recurrence relation for l,z'r:-s_n(tl,l:z).

From (3.11), we get
- - - (ye)/2 -

1-F(y)=P,-fe £ (Y) - B £.(),
Frum (3.2) and (3.13), one can see that.

Itd lu(t?) nP2
ey wETL ) ¥r,s:nltie b)) T marr [ ¥ sinea (et v

e Pin(e,) 178
LA S r=s<n-
TS wr,s:n(tl'tze ) 1 r s = n-1,

Example (3.3): Doubly truncated extreme-value distribution.

The p.d.f of doubly truncated extreme-value distribution is,

_ EXP(-x-e )

ft(x) S —— . le X =P,
-py -0,

whoece, P= EXP(-e ") and Q= EXP(-e 7).

Let Py= ?fg and Q,= then by (3.15), ve have

2
P-Q '

1- Fe(x) =P, - exft(x).

2
Fi;st, ve obtain a recurrence relation for wr_"(t).
Using (3.16) and (3.3) in (3.1), yields,

) Ju(t) o SOLE .
¥, (W) + o Pran(t®) = Po¥p (V) Qv ().

m(toty)

Next, we obtain a recurrence relation for v g
,

¥rom (3.16) we have, 1 - F () - P, - eyft(y).

It follous from (3.18) and (3.2), that

r,s-l:in-

{3.11)

(3.12)

(3.13)

RO

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)



THE EGYPTAIN STATISTICAL JOURNAL

- 343 -
ny
Pr,s:n(tl’tz) = wr,s—l:n(tl’t2) + n-s+1 [wr,s:n—l(tl‘tz)
ln(L?)
T TheEL wr,s:n(tl’tze)'

Example (3.4): Doubly truncated Laplace distribution.

The p.d.f of doubly truncated Laplace distribution is,

| > a
e R
OO = =prrmgy . = xR
L (eyme0/R
wherre, 1 = - e R P1>a
P =
(p-a) /B3
—1 e ¥ , P.<ex
1
y Qe
and 1 - - e , Q1>a
Q e
a1 e(Qfa)/ﬁ o <n
2 R
. _ P _ Q _ P-1 _ Q-1
Lt Py 5o Q™ 30—+ Py= —pog- ad @y < P-0
From (3.20), we have ]
r (x-a) /i3
l e -
I _7FTT:QEY— dx X = a
b
1 - Ft(x) =
r - (x~a) /2
1l e
m— d)'., X > a
x
> - 13 <
12 nft(x) , X< a
P3 +/sft(x) 7 X > «.,
First, we derive a recurrence relation for wr,"(t),
Using (3.21) and (3.3) in (3.1), one can see that,
Blnl) , _ _ <
a-+ n )Vr:n(t) - Pzwr:n-l(t) Q2wr—1,n—1(t)' x=
and

= ¥r,s-1:n-1 (0 t)

(3.19)

(3.20)

(3.21)

}(3.22)

_ 3In{L) _ _
1 W (t) = Pa¥iin (V) Q¥p-1,n-1(V) P # Bla(t), x> a.

Hext, we obtain a

recurrence relation for yw

r,s:n(tl'tz)’

From (3.21), we can urite,
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¥, - pE (V) X=sa
1-F @)=
P, + nft(y) ' x> a. (3.29)
From (3.23) and (3.2), one can see that,
Rln(tz)
OF ~ Ty gen(tyet) ™ ¥p g nltet) # W
np,
re wr,s:n-l“l'tz) - wl-',s-l.:n-!.(‘b':l'tzn' x‘:'. @
und (3.24)
Aln(t,) )
O =T %, 0t t2) = ¥r g nltrta) ¢
np,
Tl LRI VDV Ll S rreiL o
ﬁlu-(tz) “n-s¢l., x d.a, =
4- Application (II): Recurrence relations in life testing.
Theorea (4.1)
For any arbitrary continuous distribution, the 'reliability function
R'_:’"(x), satiafies,
s(2 - F . _—(n-r+l) .
B, G0 - ER ) n B 0sxs 1, 25rs
Proof:
Putting g(x)=R(x)= 1- l't(x) ,91-0 and Plnl in.theorem (2.1), we have,
_cr:n 1 -1 n-r+l
Bl (0) = By 1y (0) = = (001 T 0-F 0017 4Q-F ()
-cr' -
- = =t fr,ner 2, (4.1)
from (1.2) and (4.1), the proof is complote.
Theorea (4.5)
For any arbitrary continuous distribution, the failure rate function
hr: "(x), 1 satisfies,
" - n{n-1 .
O 1IEh; ()} = RECh.y .y 0O = "‘ﬁ'—ﬁr)‘(“&"‘r:mx” “Elf %oy 2n-2))
Oer'SllndZS rsa. (4.2)
Proof: '

£.(x)
Pulling  g(x) = h(x) = T':TG)' . Q =0and P =1 in theoren (2.1),

we have,
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(o} 1
_ r:n : r-1., - n-r+l .
Eth () - E(h _,, _ (0)) = Jo[rt(x)] (-F G anco,
but, dh(x) = (1 = F (x))™" dr (x) + b0, 60 - rt(x))"1 di bhew L °
EQl (x)) = Crin 1[1-‘ ) H-F (*;)]"‘rdr (x)
E(hr:n(x)) = Lo ds g KIE & — Jo g (x e eop
Cr-n 1 r-1 n-r
+ 0 [ hGotr, 01T -F G017 Goax.
Hence, Q

n(n-1)

(n-1)E(h_  (x)) - pE(h__, (x)) = W[E[ft(xr:ml)l TGP B
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