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DOUBLE f£-CLASS PREDICTORS

IN LINEAR REGRESSION MODELS*

By: G.A. GHAZAL

This article develops a family of biased predictors,
namely the double f-Class, in the linear regression model.
Employing the small disturbance approach, I study_the bias

and mean square error.of the double f-Class predictor.

1. INTROUDUCTION

The standard econometric analysis of the linear re-
gression model is concerned with the properties of the:linear
unbiased estimator ( and predictor ) that has the smallest

variance'[ see Chow k1983) and Theil (l961),v(l962) ].

In that approach, therefore, attention is restrict-
ed at the outset to linear and unbiased estimators and
predictors, even though "better" estimators and ptedictors
might be available. Lineafity is desirable because such
estimators and predictors are usually easy to compute and

because their statistical properties can gften be analyzed

* The author is grateful to the anonymous refrees for their

most helpful comments.
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without the need for rather édVanced mathematic;. The *
criterioh of unbiasedness is attractive both because it
seems intuitively desirable that the mathematical ex-.
pectation of an estimator (or predictor) Ee equal to

what” is being estimated (or predicted).

But the price to be paid, in terms of variance , by
.concentrating on linear unbiased estimators and*bredmhmﬁ
may be unacceptably'ﬁigh. For example, many empirical in-
vestigators deal with a form of this problem by dropping
a nonsignificant variable from a regression when a ﬁigh
correlation between it and another variable causes a large
standard error for both variablés,thﬂsjs theApxoblém of
multicollinearity. Of course, if the oriéinal model is

"correct'", estimates. based on the reduced model will be biased

To analyze a wider class of estimators and predic-
tors, therefore, we need a criterion that is not cénfihed
to linear unbiased estimation and pradiction .. An attractive
choice is ?he "mean squared error" or "quadratié loss

function".
L(o, oh = [(6- 0)'(e - 0)] (1.1)

where 8 is an estimater (ér..predictor) of 6. , which may be

a scalar or a vector. It is easy to see that
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E[L(8,0)]

(E(8) - o]'[E(8) - ] + cov(8)
= B2(8) + cov(e) (1.2)

where BZ(;) is the squared bias of o . Under this criter-
ion a biased estimator and p;edictor will perform better
tha; an unbiased estimator if the resulting reduction in
variance is sufficient to offset the incéease in squared

bias.

The loss function (1-1) may be expressed as ;(Ei- ei)2
and in this form it is clear t@at L(s,e) depends on units
of measuremgnt of the individual e i+ To avoid this pro-
biem, the loss function may be modified by introducing
explicit wej:ghts a; - for example, Fai(ﬁi.- _ei)z' ai) 0; more
generally, a positive semidefinitelﬁhtri% A may be includ-

ed to weight the losses:
L(8, 8 A) = [(0- 8)' A( - 6] : (L -3)

In the usual regression, Y = X B + U, we can, for instance,

consider the risk function
R(b,8 , X'X) = E[(b ~ B)' X'X(b - B)]
= E[(Xb - XB )' (Xb - X8) (1- 4)
It may be interpreted as a function of the differences

between the predicted values and the expected values of

the sample Y. This risk function has been termed
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a "prediction goal" by Bibby and Toutenburg (1977). Need-

less to say it.is .6f. importance.. consider - the, pre-

formance of various estimators under a "forecast goal".

In fact, Stein (l956),_and James and Stein (1961)
suggested a biased estimator (and hence a biased predictor)
for the orthonormal linear statistical médel which domina-
tes the least squares estimator (predictor) in the sense \
that tﬁe sum of its component mean squéred errors is smaller
than that of the former, provided at least three parameters
are to be estimated. Extension of the James and Stein est-
imator and predictor forrnonorthogonal regressors have
been discussed by Sclove (1968), Bock (1975) and Zeliner

and Vandaele (1975).

To compare the performance of various estimators
under a " forecast go;l", we consider, in this paper, the
prediction of the dependent variable of the general linear
model with the usual nonorthogonal regressors. We develop
a family of biased predictors, namely double f-class, by
using an operational variant of the minimum predictive
mean squared error [see: Vinod and Ullah, 1981, P. 33]
which depends on unknown parameters. We present the model
and the double f-class predictor in section 2. The £, and

L
f2 in double f-class are taken as arbitrary scalars which
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could be stochastic or non-stochastic. For f2= 1 we note
that [James and Stein (1961)] Stein-rule estimator::(predictor)
in the regression context is a member of the double f-class.
In section 3 we analyze the approximate bhias : and :mean
square error (MSE) of the double f-class predictor for
thé:case in which flis an arbitrary constant andd 52 is
a nohnegative constant less than or equal ta one. These
approximations are true in “"small sigma asymptotic sgnsez

discussed by Kadane#(1970 - 1971). Next, in section 4 we

give proofs of the ﬁﬁeorems, stated in section 3.

2. The Model and Predictors

(2-1) The Méael and Unbiased Predictor

Let us consider the regression model

Yy = x B + u
ees (2=1)
(Tx1) (Txk) (kx1l) (Tx1)

where
y is a Txl Vector of obsrvations on the'depend-
" ent- variable,
b is a Txk matrix of observations on k explana-
tory variagle,
g is a kxl parameter vector, and

u is a Txl distrubance vector.
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Consider the problem of predicting a single draw-
ing of the dependent variable given the vector of expls

anatory variables. The actual drawing will be

Yo ~ Xy B + U,

(1x1l) (1xk) (kxl) (1x1) ce.(2-2)

where

Y "is the 1x1 scalar (unknown) value of the dependent
variable.

X, 1is the kxl vector of (known) future values of the
explanatory variables ,

u, is the 1lx1l scalar value of the prediction distruba-

ce .

We state the following conventional assumptions:

Assumption (1)

The matrix x and the vector x, of explanatory variab-

les are nonstochastic, and the rank of x is g.

Assumption (2)

The sample disturbance vector u and the prediction
disturbance u, are distributed indpendently as multivaride

normal,and univariate normal respectively: Tnerefcre, we shall
assume. ) ' ' ’

E(u) = 0 ' E(u,) = 0
(Tx1) . (11)
E(u'a) = o°Iy E(u?) = o2 .. .(2-3)
E(u,u) = 0
(Tx1)

The notmality of the vector u and the scalar u, is requir-

ed for deriving the results in section 3.
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Assumption (3)
The sample size T is greater than the total number
of regressors E in (2-1).
For a point prediction, we caﬁ use the OLS predictor:
P*= x! b e (2-4)
where b is the OLS estimator
b = (x'x)ml X'y eee (2=5)
The predictor in (2-4) is a linear function of y, and
its expected value is given by

* -
E(p ) = x} E(b) = E(y,) -y (2-6)
Hence, initbhe sense that
*
E(p -~ y,) =0 ee. (2-7)

*
p is unbiased predictor for y,. In fact, among all linear,
unbiased predictors, it has the smallest variance for the

prediction error. The prediction variance ( = MSE) is:
2 ) * 2
a§* = MSE (p*) = E(P - y,)
— o2 v ' -1
= 0T [1+tr(x,x)) (x'x) ) -.. (2-8)
In practice a2 is replaced by the OLS unbiased estimator
2.1 =10 -
§=g5 uu=Zy'My eer (2-9)
where .
n = T-K 4 = My, and
-1 . eee (2-10)
M=1I-x(x"x) "x'

(2-2) A Biased Predictor

Consider now a class of linear predictors
P = c' y
(1x1)  (1xT) (Tx1) afw (BELL)
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where C is the arbitrary Txl vector. The predictive mean
squared error of P can be written as: )

MSE(E) = E(E—y*)2

=(C'x ~ x4)8 B(C'x - x;)‘+ 02CﬂC b g2

ee. (2-12)

The matrix C for which (2-12) is minimum is .

Lxs arx,. . (2-13)

substituting this in (2-11) gives "the minimum mean square

C = (x8 B'x' + ozI)_

error predictor" as
P o= xi8 B'x'(xB B'X' +0° 1) y ee. (2-14)

For more details see Bibby and Toutenburg [1977, Ch. 5,
PP. 84-96].

An alternative form of (2-14) is

P = (XY ) x18 ... (2-15)
g+ B'x'x B

where (x B Fx'+ o 2 I)_l — [I-x 8(02+ B 'x'xB) B'x']

2
o4

by using matrix inversion result in Rao [1973, P.33].

A
Further, the predictor P in (2-15) can be written as

P = (XY ) x.8 . (2-16)
o+ (y-u)'(y-u)

where we use xB8 = y-u.

We note that the predictor P depends on unknown va-

lues of B and 02. Thus we propose an operational variant
of (2-16) as

ﬁo = (5 i)y, —j B c.. (2-17)
(Z)u'u + (y-u)'(y-u) ’

* ~ -
where P , n and u are as given in (2-4) and (2-10),respec—
tively.
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e .
Moreover, we can write P0 in an alternative form as

P.= (1 -

a'nw /n ) P ... (2-18)
0 1 :

(2-3) Family of Double f-Class Predictors:

A natural generalization of PO in (2-18) can be
found in the following double f-Class predictors:
Ko

£y u'u *
pf f=(l-—_—_—-—" =) P eee (2-19)
1772 y'y - fzu'u
where fl and f2 arbitrary scalars which may be stochastic
or nonstochastic, P £ in (2-19), represents a family
B ]

of biased predictors. We shall give in the following se-
ction the the moments of the predictor in (2-19) for
fixed f,, when 0 ¢ f,¢ 1. It is interesting to note that

for £.= 0, P £ reduces to the OLS predictor P* in (2-4).
2

1 £

ll
For the value k2=l + (2-19) can be written as

: ~, A .

P ol m fd - g8 5 wsn [2-20)

1 h A '
y'y-u'u
we may regard the predictor.Pf , as the James and Stein-
 ;

rule (1961) Stein-rule predictor for the nonorthogonal
case.

(2-4) Why .a small-Disturbance Approach ?

The sampling error of the predictor (2-19) can be
writteén as

* *
£, " Y« = (P - y,) - £450P ce. (2-21)
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where
1
5§ = Y My - ... ( 2-22 )
y'Ny *

M is as defined in @-10) and N is given by
N=1I,-£f, M e - 2=23 )

As 6 is a ratio of two gquadratic forms, we can
use Lemma (1) in Sawa (1972,P.658) to derive the
exact moments of the double f-class predictors Pft;f
inl2-19).In order to apply this lemma, the gquadratic

form y'Ny appearing in the denominator of (2-22) is
required to be nonnegative. According to Lemma (2)1in
Sawa (1972, P. 658) the TXT matrix N in (2-23) is non-
negative definite if and only if f2 < 1. Therefore we '

restrict our analysis to the case where 0 < f2< 1.

However, in these situations the exact moments
.often- have a complicated . mathematical. structure .
8o that it is difficult to use them in further stud-

ies and comparisons.

On the other hand, it has been shown [see; Sawa (1972},
Ullah and ULlah (1978), Vinod, Ullah and. Kadlyala
(1981)] that the results obtalned from the eéxact mom-

"ents are identical with those obtained from approxim-
ate moments derived by Kadane's (1971) 'small- o expa-
nsion. A. set of rigorous mathematical conditions for
this equality can perhaps be developed following the
work of Berger (1976) and Casella (1980).

Depending upon these findings we shall use Kad-
ane's (1970,1971) principle of small - vexpansion to
derive the approximate formulae for the bias and the

MSE of the double f-class predictors P. (2-19) for
1772
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(13 £, < 1.

- §3, Statement of Results

In this section we shall analyze the approximate
bias, and the approximate MSE of the double f-class

predictors Pf f (2-19) for the case in which f1 is

I
arb;trary constant and les nonnegatlve constant less

than« or ‘equal: to one. Thése approxlmatlons -are rtfrue in

*small = ‘asymptoﬁlcP

The following two theorems can now be stated.

Theorem (1) -

Using the small-disturbance asymptotic distrib-
ution of the double f-class predictors (2-13), the
bias, to order 0(0'4), is given by

Bias (B ) = E (Pe .o = y, )
£1:%;. TEypeEy T

5

2 -4
==-nfl{——“——— +[(n + 2)f2—T] —°——}(x B )

( B'x'x B) {B'x"xB)

when 0 < f,< 1. eee (3-1)

Theorem (2)

According to Small—ﬁisturbance asymptotic: dis -~
tribution of the double f-class. predictors (2-19), the
mean squared erroe, to order 0(«06 ). is given by

MSE (B, ) = ¢ L+ tr (x*x;)(x‘x)—lj
1'%2 T
4 _NE
e -—__1[4+f (n+2)] (B'x;3x4 8)-2(8 "%’ xg)[tr(agx*) x'x)”
S (B'x! xB)

D



THE EGYPTIAN STATISTICAL JOURNAL

- 262 -

6 .an
- g [{4[’1‘ £ (n+2)]+f (n+2) [T+2-E (n+4)]}(8 "% X218 )

(8 X'x®8)

(n+2)

+ [£,(n+2)-T-£, ] (8'x'xB) [Er (xex}) (x' %) T}
(3-2)
wheny 02 £, < 1.

Next, the two corpllaries below may be proved

Corollary(l)

The following results regarding the bias of the
double f-class predictor in (2-21) are true for

0.¢ £, <1and £, > 0.

a) P is unbiased only for fl=0 and in that case it

flf2

is the OLS predictor.

b) The direction of the bias is opposite to the sign of.
(X, B).

c) As o+ 0 , the bias terms vanishes.

Corolilary (2)

The double f-class predictor Pf £ in (2-21) do-
7

: *
minates OLS predictor P in (2-4), inl 2the sense that
MSE (P ) - MSE(P ) < O cer  [23
S .
1772
for
£ - —2 (3-4)
1Y "n+2 R
and for any f2 in
0 « f, 5 1 (3-5)
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Proof (of corollary (2))
Up to order & we have, from (3-2), .

*
MSE(%Q}fz) - MSE(P )

£i- [

o nf (Brx,x18) i ) BRI,
(n+2) (B'x'xB)° {n +2) g'%'xe
vy (B=E)

wherein (2-8) has been utilized.:’

It is clear that the kxk matrix (x4%;)1is positive
semi~-definite with k.~-1l)zero eigenvalues and 1 possitive

eigenvalue. i.e.,
Ay =A, = ..., = @ =0 and N #0

hence K .
Bty () Th e poa ey e (3-7)
8 & '

Mdreover[ according to a result in Giri (1977,
Theorem 1.7.2, p.17) 058 "x,%x;8 / g'%x"x BgA K - Thus

(BIR XL B
L o< 7L

< L]
’ D o & (3~-8)
'Kk B'x'xp

Using (3-7) and(3-8) in (3-6) the result in the
above corollary (2) follows by looking into the condi-
tion under which MSE( p ) - MSE (p*) < 0.

f'lf2

gk (x,x)) (x7%) J-2) }
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4. Proof of-Theorems

(4-1) Preliminary
First, let us write

1

A ( x'x )  — x! .o (421)

D B'x'x B ee. (3-2)

then, using (2-10),(2-23) and (4-1), it is easy to
verify that

AM = 0 and_ Mx = 0 (4-3)
MN = (1zf,)M (4-4)
AN = A ... (4-5)
ANx = Ax = I, ... (4-6)
AA': = (x'x) T eev (4-7)

Next, the following unotation is useful in the

proofs of Theorems 1 and 2

tr M = T-K = n . s (4-8)

tr N = T-f, n cee (4-9)
tr MN = (1-f,) n ce. (4-10)

Finally, the following lemma will be used repea-

tedly in the proofs of Theorems l.and 2.
Lemma (1)

Let £, G and H be symmetric matrices with non-

stochastic elements, then
: .2 '
E (u'Hu) = 0o (tr H) - . e (4-11)

E(u'Gu.u'Hu) = 04[(££ G) (tr H)+2(tr GH)] ... (4-12)
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E(u'Fu.u'Gu.u'Hu)=c® [ (tr F) (tr G) (tr H)+2(Lr F) (tr GH)

+2(tr G) (tr EH)+2(tr H) (tr FG)+8(tr FGH)] ... (4-13)
The results in (4-11) and (4-12) can be obtained from
Kadane (1971), whereas the result in (4-13) can be

obtained from.srivastava (1970).

(4-2) Proof of Theorem (1)

Let_us write the regression model as

y=x 8+ ou where(l) uu;vN ((J,ﬂ2 I) or u ~N(0,I).

The sampling error of the double f-class predictors
(2-19) can, then, be written as

e Ey - Y moxi Au-ou, - £ 0% LM (xim4ax) AW
' .o (8-14)
where

h =D+ 208'x'u + azu'Nu ee. (4-15)

Now, for suﬁgiciently gmall-o we write h_l and h—2 in

terms of the following Binomial expansions:

(143)7 1= 1 - 22 - a3 L. and (1-2)72= 1 - 2% & 322

- 4A3 + .

Thus we have 5
. L] 1
1 _ % (1-( 20 B'x'u_+ o"u Nu)

1 20 g'x'u + ozu'Nu)Z
h D

D

+ (

20 g'x'u + czu'Nu 3
( ) )

+ oeeveeee ) ... (4-16)

*1¥ similarly, we can write y,=Xx}g + u, as y,= x}g + éu*

where ¢ u, ~ N (0 , 02) or u, ~ N (0,1). .
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and similarly

1 _1

s ==3 [ 1- Y+ 3¢

h D D D
20 B'X'u + azu'Nu)
D

5 (ZUB'X'U + 02 u'Nu 2gg'x'u + ozu'Nu )2

-4 A ]

(4-17)
Now using (4-16) in the expression for (pf £ ~VYa)s
1772

and collecting terms up to 04 we obtain

2 3 4
Pfl,fz = yu= oHy + o“H, + o7Hy + o Hy ... (4-18)
where
Hy= %, °Au + u, ... (4-19)
£y
Hy="g5= (u'Mu)(x, 8) R (4-20)
_fl 2f
Hy== 4= (u'Mu) (x3Au) + S§— (u'Mu) (B'x'"u) (x;8)
' (4-21)
2fl fl
H,= —= (u'Mu) (8'x'u) (x Au) + —5(u'Mu) (u'Nu) (x,8)
4 2 2
D D
4f,
- —3 (u'Mu) (B'x'u)(x}8) ce. (4-22)
D

under the normality assumption of the disturbahces we find

.E(Hl) = 0 . (4-23)
E(H,) = 0 | ce. (4-24)
Moreover, we have
nfl
E(Hz) =~ 5 (x; ) - (4-25)
Zfln fln E 4fl
E(H,) = —5— (x.8) + 5 [T—fz(nf2)+2](X;B) -3 nD(x,8 )
D D D
nfl _ .
= - —= [(n+2)f, - T] (xy8) _ ... (4-26)
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wherein the results in (4-11) and (4-12) have been
utilized.
Combining (4-18), (4-24), (4-25) and (4-26), the re-

sult in Theorem (19 is obtained.

(4-3) Proof of Theorem (2}

Using (4-16) and (4-17) in the expression for

(Pfl,fz = y*)2 and collecting only those terms which

contribute up to order 06, we obtain

(P 2 2.2 3 4 2
£1.£2 - Ye) = ¢ Hl + 2 0 HlHZ + 0 (2H1H3 + HZ)
S 6 2
+ ¢ (ZHlH4 + 2H2H3) 4+ o (2H1H5+ 2H2H4 + H3)
cee (4-27)

where H, to H, are as defined in (4-19) to (4-22), and H

1 4 5

is given by.

Ey 4£5 2
Hg= —5 (u'Mu) (u'Nu) (x4 Au) - —5= (u'Mu) (8'x"u) " (x1Au)

D D

45 8ty 3
- DT (u'Mu) (u'Nu) (g'x'u) (x.8) + — (u'Mu) (e'x"u) " (x; 8)
D

eee (4-28)

Now, using the normality of disturbances, it is easy
to see that

E(HH)) = 0. .- 14-29)
E(HH,) = 0 .. (4-30)
E(HyH;) = 0 cee (4-31)
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Next, using the results in (4-11) to (4-13) the other
six expectations on the right-hand side of (4-27) can be

evaluated as follows:
1

(1) BED) = [ tr (exiix'z~"] + 1 oss {432
wherein»(4-19), (4-11) and (4-7) have been used.
£q A oy 2f
(ii) E(H{H3) = - 5= nltr (x, %) (x'x) 7] + —= n(8'x,x,8)
D
e (4-33)

wherein (4-12),(4-3), (456), (4-7) and (4-8) have been

utilized.
2 £
(iii) E(H;) = n(n¥2) (8 "X X, 8) ee. o (4-34)
D

Y

N

wherein (4-12) and (4-8) have been used.
£

(iv) E(HH,) = B% E( (u'Mu) (u'Nu) (u'A'x,xL50) ]
4f
= 53— E{ (u'Mu) (u'xgg'x'u) (u'A'x,x Au)]
4fl :
= ;3— E[(u'Mu) (u'Nu) fu'A'x,g'x'u)}(x,8 )
Sfl
+ —7= E[(u'Mu) (u'xBp 'x'u) (u'A'x, B'x'u)(x48 )

w)

(4-35)

Herein the terms with expectation zero have beem diopp-
ed. The expectations of the four terms on the right-hand
side of (4-35) are equal to

E{u'Mu.u'Nu.u'Alx,x,Au] = n[T-f,(n+2) + 4](tr (x,\,x;)(x'x)_l

]

(4-36)
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wherein (4-3),(4-5),(4-7),(4-8),(4-9)and (4-10) have.
been utilized. Similarly- for the expectations of the
second, third, and fourth terms in (4-35) we have

E{u'Mu.u'x Bg'x'u.u'A'x,x, "Au]
= nD[EE(x*x;)(x'x)_1]+2n(8'x*x; 8) ce. (4-37)
E[u'Mu.u’'Nu.u'A'x,B'x"'u] (x; B)

= n[ T-T,(n+2)+4] (B'x,x; B8) ... (4-38)

ETu'Mu.u'x gg'x'u.u'A X, B'x"u) (x4 B )=3nD(B'x,X,"'B)

eee  (4-39)
Using (4-36) to (4-39) in (4-35) we get.’
nfl -1
E{HH.) = 5—7—[ T-£,(n+2)] [Er(x,x5) (x'x) 7]
nfl
= e [ 4T—4f2(n+2)](8'x*x; 8) cee (4-40Y
D . 2
£
(V) E(H.,H ) = - —= E[u'Mu.u'Mu.u'A'x,8"'x"'u] (x} 8)
2 4 b3
fz’
- ;3 E{u'Mu.u'Mu.u'Nu] (8'x,x} 8)
ag?
+ BK— E{u'Mu.u’'Mu.u'x gg'x'u} (B'x,x} B?

(4-41)

The three expectations on the right-hand side of
(4~41) can be evaluated on the same lines of (4-36).
Thus, we have

Efu'Mu.u'Mu.u'A'R, 8'x'u) (x; B)=n{n+2) (B'x, X! B)

vee (4-42)
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E{u'Ma.u'Mu.u'Nu] (8'X,X,B)=n.(n+2) (T-nf,—4£,+4) (B'X,X;B)

NP (4-43)

E{u'Mu.u'Mu.u'X88'X'u] (B'X,X}:B)=n(n+2)D (BX,X}P)

- (4-44)
using (4-42) to(4-44)in(4-41) we get
2
£, S
EMH Hy) = - 53- n (n+2) (T-nf ~4£,+2) (B'X,X;8)
ot (4-45)
2
g _ %y
(vi) E(H3) = —5-E[u'Mu.u‘Mu.u'A'X*X;Au]
D
43
- 55—- E[u'Mu.u'Mu.u'A'X, 8'X'u] X18)
43
+ Bz—-E[u'Mu.u'Mu.u'xse'x'u](s'x*x;a)
(4-46)

The third term on the right-hand side of (4-46) is

equal to (4-44) and the other two terms are equal to

E[u'Mu.u'Mu.u'A'x*x;Au]=n(n+2)[g;(x*x;)(x'X)"l]
cee (4-47)
Efu'Mu.u'Mu.u'A'X,8'X'u]=n(n+2) (8'X,X,8)
(4-48)

using (4-47), (4-48) and (4-44) in (4-46) we get

Hh

2
2 1

B = 3 nn+2) [tr (X,x1 (x'0"Y ... (4-49)
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From (4-27),(4-29),(4-30),(4-31), (4-32),(4-33),

(4-34) ,(4-40) ,{4-45) and (4-49), we get the result

stated in Theorem (2).
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