Exact Test for Diagonals-Parameter Symmetry Model in a 3×3 Table with Ordered Categories

the state of the state of the

Sadao Tomizawa

Department of Information Sciences, Faculty of Science & Technology, Science University of Tokyo, Noda City, Chiba 278 Japan

Summary

This short note gives an exact test for Goodman's (1979) diagonals-parameter symmetry model in a 3×3 table with ordered categories, which can be easily conducted applying Fisher's exact test of independence for a 2×2 table. An example is given.

Key words: Conditional distribution; Fisher's exact test.

1. Introduction

Fisher's exact test of independence in a 2x2 table is widely known (e.g., Plackett, 1981, p.47). For the analysis of square contingency tables with ordered categories, Goodman (1979) proposed the diagonals-parameter symmetry (DPS) model. The purpose of this short note is to give an exact test for the DPS model in a 3x3 table, which can be easily conducted applying Fisher's exact test.

2. Exact test for diagonals-parameter symmetry model Consider a 3×3 table with cell probabilities $\{p_{ij}\}$. The DPS model is defined by

$$p_{ij} = \begin{cases} \tau_{j-i}\omega_{ij} & \text{for } i < j, \\ \omega_{ij} & \text{for } i \ge j, \end{cases}$$

where ω_{ij} = ω_{ji} . This model is equivalent to

$$\psi = 1$$
,

where $\psi=(p_{12}p_{32})/(p_{21}p_{23})$. Suppose the cell counts $\{n_{ij}\}$ have a multinomial distribution with $n=\Sigma \Sigma n_{ij}$ fixed. The probability function of $\{n_{ij}\}$ is

$$\begin{split} \mathbb{P}(\{n_{ij}\} \mid n) &= \frac{n!}{\pi \pi n_{ij}!} \pi \pi p_{ij}^{n_{ij}} \\ &= \frac{n!}{3} \frac{n!}{(\pi_{kk}!) n_{13}! n_{31}! n_{1}^{*} .! n_{2}^{*} .!} \\ &\times (\pi_{s=1}^{2} \phi_{s}^{*} ... \lambda_{s}^{*}) h(n_{12}; \{n_{i}^{*}.\}, \{n_{i}^{*}\}, \psi), \\ &\times (\pi_{s=1}^{2} \phi_{s}^{*} ... \lambda_{s}^{*}) h(n_{12}; \{n_{i}^{*}.\}, \{n_{i}^{*}\}, \psi), \\ &\text{where } n_{1}^{*} ... = n_{12} + n_{23}, \quad n_{2}^{*} ... = n_{21} + n_{32}, \quad n_{1}^{*} = n_{12} + n_{21}, \quad n_{2}^{*} = n_{23} + n_{32}, \\ &\gamma = p_{32}, \quad \theta_{k} = p_{kk}/p_{32}, \quad \delta_{1} = p_{13}/p_{32}, \quad \delta_{2} = p_{31}/p_{32}, \end{split}$$

$$\phi_1 = p_{23}/p_{32}, \quad \phi_2 = 1, \quad \lambda_1 = p_{21}/p_{32}, \quad \lambda_2 = 1,$$

and

$$h(n_{12};\cdot\,,\psi) \ = \ \left(\begin{array}{c} n_1^*\,,\\ n_{12} \end{array}\right) \left(\begin{array}{c} n_2^*\,,\\ n^*\,,1^{-n}12 \end{array}\right) \psi^{n_{12}}\,.$$

[Note that γ is a function of $\{\theta_k\}$, $\{\delta_s\}$, $\{\phi_s\}$, $\{\lambda_s\}$ and ψ .] The sufficient statistics for the nuisance parameters are $\{n_{kk}\}$, n_{13} , n_{31} , $\{n_s^*\}$ and $\{n_{t}^*\}$. Given them (then n_{12} determines all other cell counts), the conditional probability function of n_{12} is

$$P(n_{12} | \{n_{kk}\}, n_{13}, n_{31}, \{n_{s}^{*}, \}, \{n_{t}^{*}\}) = h(n_{12}; \cdot, \psi) / \sum_{u=\Lambda}^{B} h(u; \cdot, \psi),$$
(2.1)

where n_{12} =A,A+1,...,B; A=max(0, $n_{.1}^*$ - $n_{.2}^*$.) and B=min(n_{1}^* , $n_{.1}^*$). The exact test for the DPS model could be conducted using this conditional distribution. When ψ =1, (2.1) may be expressed as

$$P(n_{12}|\bullet) = \binom{n_{1}^*}{n_{12}} \binom{n_{2}^*}{n_{11}^* - n_{12}} / \binom{n_{1}^* \cdot n_{2}^*}{n_{11}^*}.$$

Denote the 2×2 table with the first row (p_{12}, p_{23}) and the second row (p_{21}, p_{32}) by Δ , and the 2×2 table with the first row (n_{12}, n_{23}) and the second row (n_{21}, n_{32}) by Δ^* . We note that (i) the DPS model applied to the original table is equivalent to the independence model applied to the Δ table, and (ii) the method of the exact test for the DPS model based on (2.1) is identical to the method of Fisher's exact test of independence applied to the Δ^* table.

An example

The data in Table 1 is taken from Bishop et al. (1975, p. 288).

Table 1. Cross-Classification of Ewes According to Number of Lambs Born in Consecutive Years

North and a R	Number of Lambs 1952			
Number of Lambs 1953	0	1	2	Totals
0	58	52	1	111
1	26	58	3	87
2	8	12	9	29
Totals	92	122	13	227

An exact test of H_0 : ψ =1 against H_1 : ψ ≠1 is conducted. We get $h(u;\cdot,\psi) = \binom{55}{u}\binom{38}{78-u}\psi^u \qquad \text{for } u$ =40,41,...,55.

Next, we can form the following table.

Table 2. Values of $P(n_{12} | \{n_{kk}\}, n_{13}, n_{31}, \{n_s^*, \}, \{n_t^*\})$ with ψ =1, given $\{n_{kk}\}, n_{13}, n_{31}, \{n_s^*, \}, \{n_t^*\}\}$ in Table 1

n_{12}	P(n ₁₂ [0)
40	0.0001523
41	0.0021178
42	0.0130599
43	0.0473801
44	0.1130661
45 .	0.1879411
46	0.2247121
47	0.1967085
48	0.1270409
49	0.0604957
50	0.0210525
51	0.0052538
52	0.0009093
53	0.0001029
54	0.0000068
55	0.0000002

From Table 2, for the usual two-sided test at 5% level of significance (whose critical region is determined such that each tail area is at most 0.025), the critical region consists of the values 40,41,42,51,52,53,54,55 of n_{12} (the actual significance level is less than 0.05.) Since n_{12} for the observed table is 52, we now reject H_0 (twice the minimum of the exact upper and lower p-values is 0.0020384). Therefore, the odds that the number of lambs born to a ewe in 1953 is more, instead of less, than the number in 1952 when a pair of numbers in 1952 and 1953 is (0,1), is not equal to the odds when a pair of numbers in 1952 and 1953 is (1,2).

Acknowledgements

The author is grateful to the referees for valuable suggestions on improving this paper.

References

- Bishop, Y.M.M., Fienberg, S.E., and Holland, P.W. (1975).

 Discrete Hultivariate Analysis: Theory and Practice.

 Cambridge, Mass: MIT Press.
- Goodman, L.A. (1979). Multiplicative models for square contingency tables with ordered categories. Biometrika, 66, 413-418.
- Plackett, R.L. (1981). The Analysis of Categorical Data (2nd ed.). London: Griffin.