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ESTIMATION PROCEDURES IN LINEAR MIXED
EFFECTS MODELS FOR REPEATED-MEASURES DATA

H.F, EL-LAITHY"

ABSTRACT

The purpose of this paper is to derive estimation procedures;
namely Miximum Likelihood (ML), Residual Maximum Likelihood
(RML) and Minimum Norm Quadratic Unbiased estimates (MINQUE),
for estimating the parameters and variance components in linear
models with repeated measurements data. In these models
individual’'s regression coefficients are subject to both fixed and
random effects over different individuals. An iterative procedure is
proposed for solving the ML and RML equations and the MINQUE
estimates are also obtained. A closed form solutions for these
methods are derived for growth curve models when»the design matrices

are + the =~ same for each individual.

1. INTRODUCTION

Many longtudinal studies are designed to investigate
changes over time in some characteristics which are measured
" repeatedly for each experimental unit. Multiple measurements
are obtained for each individual, at different times and
possibly under changing experimental conditions. Often, we
cannot fully control circumstances under which the measurements
are taken and there may be considerable variation among

individuals in the number and timing of observations.

In this paper, the model that characterized the common

structure of repeated measures, growth curve or serial measurements
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data is considered. The analysis and estimation of this model
were considered by several authors such as Reinsel (1982) and
Laird et al (1987). 1In section 3, we have considered several
methods of estimating variance components and fixed effects in
the model. These methods are the ML, RML and MINQUE appro#
aches. We derived the equations required for each estimation
procedure and proposed iterative procedure for solving them.
For certain class of multivariate growth curve mixed models, we
have derived closed form solutions for ML, RML and MINQUE
estimales. Laird et al (1987) derived closed form solutions for
a special case of our class of models and for the ML and RML
approaches only. These resulls are shown in section 4. Seclion
5 was designed to illusirate the estimation procedures given

above by an example.

11. THE MODEL

The general model thal we use to characterize the common
struclure of repeated measures, growth curve or serial measurements
data is that described by Laird and Ware (1982). Specifically; let
¥i denote nixl veclor of n, measurements observed on the i-th experi-

mental unit. We assume that the model has the form

i i=l,...,m (2.1)

yi = Xia + Zibi + e,
where o denote the pxl vector of unknown population parameters and
Xi is a known n,Xp, design matrix linking to Yy bi denote a qxl1
vector of individual effects which are assumed to be random varia-
bles distributed as N(0,D) independent of e; and Zi is a known
n;xq design matrix linking bi to y;» e; represents the error ierm
which is assumed to be independent vandom variable distributed

2 : L AP
as N(0,07), D is a positive semidefinite gxq matrix of unknown

paramelers {o be estimated.

Thus  Ely;) = X o Vly) = V=% +2 D2

and Cov(yi'yj) =0 for i=j
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Also, if we let y=

then, E(y) = X a and V(y) = diag (Vis VooV ) =V (2.2)

However, when the number of observations on each
unit is not large, one may prefer to assume that V(yi) is
unstructured. This may be achieved by taking 02 = 0 and
Zi = I if a’unit is measured at all n occasions,or the iden-
tity matrix after deleting rows corresponding to the missing

measurements when n; < n.

If D is diagonal and each Z; consists of zercsand
ones, pur model reduces to a special case of the general
ANOVA mixed model.

Model (2.1) can be reparameterized to characterize
growth curve models which have the form:
Yi = X; By + e i=1,2,0..0m (2.3),

where the coeficients si‘s are composed of both fixed effects
that incorporate concomitant information and individual random
effects. That is

B, = Ba + b.. (2.4)

where A = (al.....am) is an rxm "across individual” design
matrix of known elements, whose i~th column a; represents the

values of "background" regressor variables associated with the
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i-th individual and B is a sxr matrix of unknown parameters.

In this case 8; = (a| ® I)a, X; = a; @® x;, where

rs = p and @ denotes kronecker product.

Using the identily vec(ABC) = (c¢' x A) vec (B), it
follows that vec(Ba ) = (a/ ® 1) vec B. Hence Vec (B)= «.
k
Model (2.4) may have more general form; Bi = Bai + wibi’
for some known matirix w; of order sxq. Therefore Z; of (2.1)

is x,w,, that is Z, lies in thecolumn space of X

An important special case of (2.3) that we consider in
detail occurs when the individual design matrix x; is equal to an

nxs malrix x. Hence X = A'@ x and Zi = XW.

I11. ESTIMATION PROCEDURES FOR ESTIMATING
' 2

a, D AND o

There has been two main approaches for estimating unknown
parameters in linear models. One is to estimate variance com-
ponents by quadratic functions of the vector of observations
using ANOVA techniques and then estimate the fixed parameters
using generalized least squares (GLS) procedure. Another
approach is to estimate the unknown parameters by maximizing
the likelihood function of the vector of observations or the
vector of all error contrasts assuming normality. Rao (1971)
introduced the MINQUE theory for estimating variance components
in mixed linear models when the random effectsare independent.
This approach is considered a distribution free approach,
Abdel-Wahed (1989) derived the MINQUE of variance components
when the random effects are correlated with dispersion matrix

of unknown elements.
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(3.1) The ML Approach
The log-likelihood function corresponding to the marginal
density of y for.a ,02 and ¢ (the vector 9 contains the unique

elements of D), is given by:

L =con-st -3 log V] - 3 (y -~ Xa)’ V-1 (y-Xa). (3.1)

Let —= = C.., where BJ. is the j-th element of 6.

The derivations of the log-likelihood function with

respect to a, 6, 02 are:

Lo - -
Ba iil VX - f XY vy
et ot b vy,
tl 1 1
and .
_& 1 -1 A i 1 -1
el BVYCy -y izhi Vit ey vithy,

where hi =y. - Xa

Equating these derivatives 1o zero, we have the following set of
equations:
a 1

1 1

“wp = XV X XYy v (3.2

-1 -1

) = !
EoAr VT =1 hi A hi s (3.3)
1 1
and
-1 -1 -1

L > s = !

tr V3 ClJ zl hi V§ Cij Vi hy- (3.4)
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(3.3) and (3.4) can not be solved analytically except for some
special cases. Lindstrom and Bates (1988) described Newton

Raphson and EM Algorithms for solving them. We propose to
use Anderson's Iterative Algrithm for solving (3.3) and (3.4)
as V. = o & zl:( Cik 6, - Therefore, (3.3) and (3.4)'may be

writien as

—2 2 "2 ] “].
Eoir V.7 6" + 1 3 tr vy Cik 6, =2V, hi (3.5)
i k i i
and
strviic. v Passwevic. vlc, o -
; i ij i » i i ik 'k
i ki
R | -1
if. hi Vi ij Vi hi' (3.6)
_ a1 12 el oy, 2
Note that V" = [1 - Z;,(D°" o + Z; Zi) Zi] /a”.

We may use initial values for 02, D; o%o) and D(o)'
These initial values can be calculated from OLS estimates as
suggested by Laird et al (1987). Evaluate V'i_l and solve (3.2)
and (3.6) to give new estimales; 6%1) and D[l)' These
procedures may be repealed untill the differences of two succe-

ssive itleration do not exceed a certain value (10, say).

(3.2) The RML Approach:-

A criticism of ML estimates for the variance components
is that they take no account of the loss of degrees of freedom
resulting from the estimation of 4. To overcome this problem,
Patterson and Thompson (1971) and (1974) suggested to maximize
the likelihood function of all error contrasts (transformations of

the vector of observations with zero expectations). The resulting
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1,

estimates are the residual maximum likelihood (RML) estimators.

The log likelihood of all error contrasts is given by
L, =const-  log VS| -  y' (sVS)y , (3.7

where S=1 - X(X'X)_1 X' and A" is the g-inverse of A.

The RML equations are given by:

tr(svs)” = y'(SVS)y - Ihy Vi—1 (3.8)
and !
lr(SVS)—Cj = y'(svy” Cj svs)y (3.9)
s vilce, viln,
P SR SRS § B S
1
where Cj = diag (Clj’ ch""ij)'
Note that  (svs)” = v'! - vl xx'viix~l x vl -or

The block diagonal matrices of order n; x n; in (5vs )™ are
1 1 ¢yl -1, -1 _
X (i X3 vy X;) X{ VT o= Ry,

and the. n; X on block off diagonal matrices are given by

given by Vi :,Vi

-1 N NS D
- VDX, (§ Xp VD X7 XLV = R,

Equations (3.8) and (3.9) have no analytic solution in general

and they may be solved using Anderson's iterative procedure.

Its sel of equations are given by:

-1 2 -1 v oyl
ItV oo +1f LRy Vo Cikek = th{ Vi"h,, (3.10)
i i
and ptrR,. C. Vvl 24 pR.cC.vlic. e
i ii 7ij i@ lﬁ FER S ik "k
=t vt vl h.

for all j. (3.11)

1993
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Setiing initial values for o, D;o %o) and D{o), say
Evaluate Vi-l and Solve (3.10) and (3.11}) to gel new eslimates

2 p

9 (1) These procedures are stopped when convergence is reached.-.

(1)°

(3.3) The MINQUE Estimalors
Abdel-Wahed (1989) derived minimum norm quadratic

unbiased estimates for variance components in linear models
when the random effects are correlated with dispersion matrix

% such that, the variance covariance matrix of y can be

writt I v = . g 6. et
ritten as 2 rs  9rs §;UJ e where Js are the

s im I. He derived the MINQUE estimate of

different O g
tr N2 , for any matrix N, in the form y'Ay such that the
resulting estimates are invariant to a translation of «, unbia-

sed and has minimum norm. The fundamental equations are
Fge= L; (3.12)

where the rs-th element of F is tr RU, RUS and the r-th
element of L is y'RU Ry and 6 is the vector of variance

components @Jf S.

In our model, the vector g = (02, el,...) and Uk = G

. 2 _ , vyl
That is = Ig +;: Cj 65 As tr R Uy RU, = tr R U, v Ugs
and y'R U Ry = f TS V;l Cik Vi_1 r;; the first equation in (3.12)
is given by
. -1 2 -1 P
2Ry Vit o by xRy VT Cyoey =2 by Vi by
i k i i
(3.13)
and the other equations in (3.12) are given by
-1 2 -1
PR Vi Gyt v DR Gy Vi G %
— -1
= b Vi Gy Yiony
for all j (3.14)

This is one of the coniribution in this paper, 1 have
derived these closed forms.
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Note that the elements of Rii and Vi involve the elements
of D and 02 that are to be estimated. Rao (1971) argued to
use priori values of them if they are available or we may
solve the previous equations iteratively, but the property of
unbiasedness is usually lost.” Note that equations
(3.13) and (3.14) are identical to (3.10) and (3.11) therefore, a
similar procedure for solving them may be suggested, however ,
MINQUE estimates may be derived withoul any assumption concerning the
distribution of random effects.

1V. CLOSED FORMS FOR THE ESTIMATION OF
2
a , o AND D.

In- this section, we prove that, for the growlh curve model (2.3)

1993

when, ng=n for all i, all xi's and wi's are equal to x and w respectively,
there exists closed forms for M., RM. and MINQUE estimates for both fixed

and variance components parameters. When X=X and w;=w, for all i thus,

X=A" & x, and z;=z = xw and V; = v

Viy) =V=1 (®.v and letY = (yl,yz.-.-.ym) iv.e vec (Y)=y.

Then xV!1-a @ xvl, xvlix-m ® xvik
But vl. (1 - z(qzﬁl + z'zj_1 z') /o 2
= [1 - x(az(wa')_l + x0t x'] / g
ol (wa')_1 [uz(wa')_1 + x'x]'_1 x*

and
xv o (whw )L [ Z(WDw')_1 + x'x]_l,
(4.1)
(x'v'-lx)-1 = (x'x)—1 [112(wa')_1 + x'x] (wbw')
All the previous methods of estimation use GLS to estimate q.
Hence; a= vec(d) = (X'v1x)! X‘V_ly
= [(AA')-1 A ® (x'x)7} x']y
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Therefore, the closed form of B is given by

1 v \7

g= (x'x) i Y /x‘(AA')'—l.

(4.2)

Equation (4.2) is the ordinary least squares estimale of B .

Evaluating the estimates of D and 02, we use the following

ideatities: -
Let MA = Im - A'(AA')blA , Mx = ln - x(x'x)_lx‘
-1-¢, =1 - Cy
and
MZ = 1 - z(z'z) z' = 1 - CZ
Hence
M.‘V_1 =M and M_ x = 0.
e X X
R - 1@V @ v iotaan Tt A ® o™
S I®@YT -, ® vile
S I@OM, /e e M@V (4.3)
2 -1
(R)(I@ z) = (I®Mx /o o+ MA® v Cx) (I@z)
= MA X v_lz (4.4)
and
1®z") R(I® z) = MA®Z'V_12, (4.5)
where
v_lz = (z—z(o'zD_l + z'z)‘l z2'2) /o BN 2(021 + Dz'z)—l
and (4.6)
z'v-lz =z'z (021 + Dz’z)_l. (4.7)

(4.1) The ML Estimates

The ML Equations for estimaling D and o 2 are given
Equations (3.3) aad (3.4).
A azhz' . S
s -3 = z;2,
T j

by
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where z, is the i-th column of z, the ML equations are
k 2 (4.8)

mtc Vv - =y'R%Y,

and
-1 , ,
mtr v zizj' =y R(I@ zizj) Ry

= (l®zj') Ryy' R(I(® z;)

for all j. (4.9)

The set of equations (4.8) may be written in matrix form

as
m z,"v_lz = (MA@z"v"l) yy' (M, ®v 1)
(4.10)

-

gvl M, Yvlz .

Using (4.5) and (4.6),Equation (4.10) becomes

1993

m z"z(azl + Dz'z)'l) = (‘,,zl«tD'z'z)"1 z'YM, Y'Z(021+DZIZ)-1‘
Hence
m z'z(ozl + Dz'z) = 2'YM,T'z. (4.11)
This is
BML =% (z'2)! z'YMAY'z'(z‘z)—l,‘u:ﬂ‘(z‘z)‘l (4.12)
The right hand side of (4.8) is given by
_r_xz tr(l - 2(02D-1+z'z)_lz') = {mn-m trlzy z']} /02
’ (4.13)
where T= (@2 D7! 4+ 202)7L,

while the left hand side of (4.8) is given by

w2, . f 4 -1 vy 1
y'R%Y = tr(Mx, YY'™M)) /7 o' «+ tz-(fZx v M, Y'YV C)

~1 )
But v C* = Cx/az- z rz'/‘,z. \and Cx z=z

Thus YRY = tr(M, YY'M /o brir(c, YMYIC ) / o
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o 12 =
-2 tr(C_ YM, Y'zp z')+ 1 tr{zrz' YM,Y'zrz")
o4 x A r 5 & A
(4.14)
From (4.11), equation (4.14) becomes
' 2 . T [-"1 ' ‘ 4
y'R7y = tr(M_ Y'YM ) /o™+ te(C YM, Y C) /o
- 2l tr(zDz') + —o [tr(zDz') - 02 tr zr z'].
7 o4
As tr(zD,, z') = C.YM,Y'C. -52 ¢C
mrizlime oM MAY My oy
therefore (4.8) is
M0 e (M_YY'M_) /o 4 tr(CYMy 'C ) /. %
;? - X X X A X o
LB L (4.15)
Y

substituting D of (4.12) in (4.15) results

o2 : >
m(n-q) o = tr(MXYY MX) + tr(CXYMAY CX)—Tr(CZ YMAYCZ)

(4.16)
Ecuations (4.12) and (4.16) are the closed form esiimates of D and oZ.

(4.2) The RML Estimates

The right hand side of RML equations are equivelant to
(4.8) and (4.9) while the left hand sidesare
tr R and tr R(I @ Zizj) respectively. That is, the set

of equations (3.11) may be putl in matrix form as

(m-r) z‘v_lz = z'Y'MAYz . (4.17)

Hence DRML = m%r (z'z)-lz’YMAY'z (z'z)

2

-1 -
9RML

-1
(z'2) ", 18)

L .
and  ir R =3 UM, FMC, - M, ®zr z')

= -1—7 (m(n-s) + (m=-r)s - (m-r) tr(zrz")
g
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Thus equation (3.10) is

1—2- [m{n-s) + (m-r)s - (m-r) tr{z T 2')]
a

1 .
= 7 {[tr Mx YY'Mx] + tr[Cx YMAY Cx]

- 2(m-r) tr(zDz') + (m-r) tr(zDz')
- {m-r) tr(zDz') + (m-r) tr(zDz')

- (m-r) tr(zl‘z')uz)
(4.19)
Therefore equation (4.19) becomes

[m(n-s)+(m-r)(s-1)] 82 = tr(M YY'M )+tr(G YM;Y'C )
- tr(C, ™M,Y'C,) (4.20)

: Doty = i ~2
Since (m-r) lt(zDR;L) = CYM,Y'C, - oppy C,.

Equations: (4.18) and (4.20) are the closed form estimates

of D and &2. It should be noted that Laird et al (1987) derived
a similar formula for ML but for special case where X = z(® A',

that is when w = 1.

(4.3) The MINQUE Estimates

The fundamental equations for MINQUE estimates may be
written in the form

2

tr R = y'R%y
and
tr R“®zi2j) =tr y'R(1 ® zizj) Ry for all i & j
-1 2 -1
as Vv I+ ¢ V I z:) d.. = 1.
‘ o & 1 zlzj) i

These are the same equations as the RML. Therefore, the
MINQUE estimates are given by

1993
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- 1 I, -l a2 i
Dyin = 7op (2'2) z'YM, Y z(z'z) "~ - OMIN(Z -3 i
82 = L [tr(M_ YY'M_) + tr(C_ YM,Y'C.)
MIN (m-r){s-q)+m{n-s) % X x A Tx
- tr(CZ YMAY’(CZ)]

(x'x)"1 X' YA'(AA' )‘1.

>
"

and

Nole that MINQUE estimales may be derived whatever the disiri-
bution of the random effects is while ML and RML are based

on the assumption of normally distributed random effects.

5. 1LLUSTRATION

To illustrate the estimation procedures discussed in the
previous sections, a numerical example using bicassay data
from Volund (1980) is considered, following Reinsel (1985),
these data consists of blood-suger concentrations measured on
each 36 experimental subject al t=1,2,3,4 and 5 hours afler
adminstration of an insulin does , together with an initial
blood sugar measurement al time t=o. The experimenial subjects
were assigned in a 22 factorial design with two insulin treatme-
nts (standard and test) and two dose levels (low and high).
The response wvariable Yik 1s 100 times the lagarithm of the
ratio of blood sugar at time t to the initial blood sugar, for
t=1,2,3,4,5. This is similar to the percentage change in blood

sugar analysed by volund.

For each subject the variable Yix was assumed to follow

a linear response over time Yie = B * Box (t-1) + €

(t=1,2,...5, k=2,...,36). The first individual was ignored as
it represents an odd value. Therefore m=35. The parameter
Blk corresponds to the response value at time i=1, where as Bok

represents the subsequent rale of change per hour. We have



[

IS'SR, Cairo Univ., Vol.37, No.l,

- 15 -
assumed two models concerning Bl; = (elk'°2k)’ First Bk was
assumed to follow the model

By = Ba, + by, (5.1)

where B is a 2x4 matrix of unknown elements to be estimated
and a. is a 4x1 vector with elements zero or one depending on
treatments (4 treatments) assignment to individuals. The vector
of random variables bk's are independent random variables
distributed as N(0,D) [Note that MINQUE estimates do not

depend on normality assumption].
The other model concerning 8, 1is

Bk ='Bak + W, (5.2)
where w' = (0,1) and ny s are independent random wmariables
distributed as N(O.oS).

For both models x = and A = diag(ls'.lé.lg'.lé)

‘where 112 is a row vector of ones of order (1 x k).

The estimation of the fixed parameters' matrix B is the
same for both models and it is the OLS estimate which is given
by:

= |-54.088 -64.703 -51.305 -55.096
| - 16.303 12.782 15.510 13.899]| .

Fczar the first modél as x=z, the sum of squares used in estimating
o © reduces to tr (Mx YY'Mx)

1993
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_16_

= tr(Y'Y) - tr(Y'x(x' 07 %'Y) = 220344.31 — 212630.52= 7713.79

~2 "2 ~ 2
As - s=a . oyp = opML T oy = 73-465
{2’ 2™ 2.7 MYz (z2)7h - l5552.34 -1153.56
_1153.56 485.39
Therefore:
. |114.559 ~18.266’
D =
ML ™ 1 _18.266 6.522 |
and
135.029 ~22.518 |
Prmr = Pmin = |
|-22.518 8.311 ,

For the second model: z = xw = (0,1,2,3 )'.
The sum of squares in(4.20)is given by

tr(Y'y) - tr((x'x)~1

1

+ tr((z'z)” z'YA'(AA')_1 AY'z)

= 220344.31-193378.25-31175.861+21177.489 = 16967.688

Therefore

~2 _ 16967.688 ~2 .2 _ 1696.688

oML T 10— = 121.198 and ORM, CMINT — 13§ =

Also (z'z)'—l z'Y MAY'Z(z'zrl = 333.279.

Hence

~2 ~ 2

2
SpML) = 9482 and oy oy = 5-941.

x'YA'(AA')hlA Y'x) - tr(Y'z(z'z)—lz

Iy)

124.762.
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