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This paper introduces a new algorithm for generating the design matrix X, of a linear
regression model, with prespecified simple correlation coeflicients between each pair of its columns.
Controlling the corrclation coefficients among the regressors makes the proposed algorithm useful for
simulation studies of biased cstimnation techniques under linear regression models where different
degrees of multicollinearity have to be investigated Lo judge their performance. Unlike the existing
algorithms, the new generated matrices have certain desirable features that will be discussed in the
sequel. A small simulation study, reveals some differences between the results obtained fromn applying
the ncw and the McDonald and Galarneau (1975) algorithms. Qur main claim is that, the results

associated with Lthe new algorithm describe the true state of nature more precisely.
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1- Introduction

Biased estimation techniques are among the basic tools to handle the problem of
multinnllinmiiy, which arises from the ill structure of the design matrix X, in the linear regression
model, Y=XfA+0¢. Comparisons among these techniques are aiways done using simulation studies. In
order to draw valid conclusions from such comparisons, thtlsimulatiun studies must cover several
siluations that reflect diffcrent degrees of the severity of the multicollinearity problem. In particular,
when using ridge regression technique, we find that, there are several aiternatives related to the
sclection of the ridge parameters. Comparisons among these sclection rules should be done under
different degrees of multicollinearity, for the sake of determining whether there exists a best rule, or

determining the conditions under which a certain rule is preferred to the others. Thus, it is important

S

'The authors ate on leave from Alex. Univ., Egypt



THE EGYPT IAN STATIST ICAL JOURNAL
-107-

to execute the simulation studies under different scttings of the design matrix X, or some of its

characteristics that reflect different degrees of multicollinearity.

Simulation studies, in the literature of biased estimation techniques, can be classified into two
main groups. Studies that belong to the first group, start with generating the matrix X’X, which we
will always assume that it is written in a correlation form, e.g., Dempster, Schatzoff and Wermuth
(1977), or start with selecting different hypothesized sets of eigenvalues for the matrix X'X, e.g.,

I’l Bassiouni and El Sayed (1986). The studies within this group rely completely on the normality
assumption where, for each simulation run, estimates from the sampling distributions of the sufficient
statistics X’Y, or some linear function of it, and Y’(1-Py)Y, PX=X(X'X)'1X’ , are generated and
used to evaluate the required measurements. There are two limitations associated with starting the
simulation by generating X’X or making certain selections of its eigenvalues. First, they are confined
to the assumption that the error term has a normal distribution. Second, they do not allow a full
analysis of Lhe data. For examp!é, it 18 not -possible to compare beltween variable selection techniques

and biased estimation techniques because the former requires the knowledge of the design matrix X.

Studies that belong to Lhe second group start, naturally, with determining the design matrix
X. In some situations, real data sets, which are known to be suffering from multicollinearity, are chosen
to form the design matrix X in the simulation study. For example, this approach is adopted in the
studies of, HHoerl and Kennard (1970), Lawless (1981) and Nebeb and Smith (1990). However, such
studies arc restricted to the observed state of nature and do not allow for measuring the effect of
gradual changes in the degree of multicollinearity. Most of the studies within this group are based on
the algorithm of McDonald and Galarneau (1975), denoted in this paper as the MG algorithm, which is
used to generale the matrix X. For example, this algorithin is used in the studies of, McDonald and
Galarneau (1975), Wichern and Churchill (1978) and Firinguetti (1989). According to this algorithm,

the matrix X is generated such that, theoretically, the entries of Lthe matrix X' X={w;} will be,

Lol i=j
B 1p i # .

This algorithm has two main drawbacks. First, it assumes the same simple correlation coefficient
among all the regressors. As will be shown, this limitation is relaxed by Wichern and Churchill (1978)
who modified the algorithm to allow for a limiled number of the entries in X'X to vary freely.
Second, when X is generatled, Lhe entries of the matrix X’X will be different from the specified
value of p and lence the results of any subsequent analysis will not reflect the true effect of this
valuc. In the present work we introduce a new algorithm for generating the design matrix X. This

algorithm eliminates the inconveniences associated with the MG algorithm. That is, it allows all the
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entries of X'X to be dilferent and it gives these entrics exactly as they are prespecified. Hence, it can

be said that, the new algorithm reflects the true effects of the specified correlation structure on the
different aspects of the model through the simulation study. |

In Section 2 we introduce Lthe commonly used algorithins for generating the design matrix X .
Seclion 3 introduces the new algorithm. Section 4 gives an example of a matrix generated using the
new algorithm. Seclion 5 presents comparisons among some theoretical and simulation results obtained

from applying the new and the MG algorithms under a lincar regression model.

2- The McDonald and Galarncau Algorithm for Generating X

In this Section we introduce the algorithm of McDonald and Galarneau (1975) [or generating
the design matrix X. Also, we refer Lo the modification of this algorithm suggesied by Wichern and
Churchill (1978). -

According to the MG algorithm, the regressors X, , i=1,2,...,p, in the {n x p) design matrix X

arc gencrated using,

L/2 .
X; = (1-0) Bz, =il (2.1)
where, Z,, Zg ..., Ty » are independent standard normal pseudo random (n x 1) vectors. 1t is easy to
ace that, the simple correlation coefficient between any two regressors generated using this algorithin is,

theoretically p and hence the correlation matrix X'X should be of tbe form,

1 p p
p 1 p

p
p r p 1

h

To enrich the structure of X'X and make it more practical, Whichern and Churchiil (1978)

gencraled a design malrix wilth 5 regressors using,

1/2 .
xﬁ(“‘f’n); 5+ 02, =123

=(1-p2) 224 0, P2 =t (2.2

Thus theorctically, the resulling correlation matrix has thie form,
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1 p 1 P1P2 PP

1 Py P1P2 P1P?2
1 P1P2 P1P2
L Py
1

which provides three different. simple correlations two of which are [ree Lo be preassigned.

In the following we give a generalization of the algorithm in (2.2), which make it usable for all
p>4. Let ?={1,2,...,p} andlet Jy, J,, ..., J., €< !2)- , be any set of mutually exclusive and

exhaustive subsets of P with at least two elements in each subset, 1.e.

C
GJ]ZU Ji" ']i ﬂ']k = @ i#k ﬂl’ld #(Ji)_>_2 .
1=}
Also let, py, poy -y p. e a sct of dilferent preassigned simple corielations then, the p regressors in

the design matrix X can be generaled using

1/2 1/2 _ | 5
X; = (1= ) /2 25 + 0} 2,4, ke, k=1,2, ..,c (2.3)

Two main disadvantages of the algorithms (2.1) and (2.3) are:

I- The structure of the resulling X'X matrix does not allow assigning different simple correlations for
all different pairs of regressors. For example, (2.3) allows at most c+(§) different simple correlations
which is smaller than (g) if all the simple correlations in X’X are dilferent.

2- Although, Zy, 24, ..., 2, arc theoretically independent, their simple correlations will generally
differ from zero when generaled using any random number generator. As a result, the X'X matrix will

not gencrally obey the preassigned sitnple corrclations.

J- The New Algorithin

For a given (pxp) posilive definite correlation matrix R, this algorithm is used to generate
an (nxp) matrix X, whose colurnns may be used as the regressor variables in a lincar regression
model. The advantage of this algorithin is that, when the columns of X are standardized, the

resulting X'X matrix will be identically R. The algorithm is based on the following theorem whose

prool is obvious.

Theorem 3.1

Let. T be any orthogonal (n x p) matrix and write R as, R=GAG’, where A isa (pxp) diagonal

matrix wilh positive entries along its main diagonal and G isa (pxp) orthogonal matrix. Further,
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let A'/2  denote the diasgonal matrix whose elements are the square roots of the corresponding

elements of A . If, X=HA'/2G’ then, X’X=R.

Note that, the assumption of a positive definite correlation matrix Il, suits all the regression
situations in which the design matrix X is assumed to be full column rank, since then, X'X will be
positive definite. Also, it may be noted that the above choice of H is essential to get the dimension of
the matrix X as required.

To generate the matrix X we proceed as follows,
j- Generate a set of p, (nx 1) vectors, arbitrarily or using any random number generator.
2- Apply the Gram-Schimidt process to orthogonalize and normalize the p vectors generated in step 1.
Form the matrix H from the resulting columns.
3- Calculate the eigenvalues and the normalized eigenvectors of the premisigned correlation matrix R.
4- Let A'/? be the diagonal matrix whose diagonal elements are the square roots of the calculated
cigenvalues.
§- Form the columns of the matrix G from the normalized eigenvectors of step J.

6- Set X= HA'%G’.

4-An Example of a Data Set Generated by the New Algorithm

Suppose that we want to run a simulation study including the four covariates, X;, X,, X, and
X,, with ten observations on each variable, such that X,, X; and X; are independent of X, the
correlation between X, and X, is 0.6, the correlation between X, and X3 is 0.95 and that between

X, and X, is 0.8 . The correlation matrix under these relations among the four variables takes the

form,
1 b6 .95 0
6 1 8 0
R=
. 95 .8 1 0
0 0 0 1

We applied the above algorithm using the Gauss software version 2.0, Lo generalc ten observations for
each variable and the resulting data is given in Table 1. If the correlation matrix of this data is
calculated, the result will be exactly the matrix R.

It may be noled that, using different random number gencrators or different seeds Lo start the

generation will give different 11 matrices and hence different columns of the X matrix. llowever, the
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X'X matrix will always have the samc preassigned structure.

Tabie 1 Generated 10 observations on 4 vanables

~__using the new algonthm -

X ) X X X4
-0.66801 -0.41099 -0.66614 0.21183
0.37828 -0.19903 0.16646 -0.15512
0.17111 0.22329 0.12461 0.03049
-0.27398 -0.27065 -0.25767 -0.23349
-0.24068 -0.17335 -0.22877 -0.64816
0.02719 0.58451 0.21612 0.01890
-0.03933 -0.19599 -0.08993 0.07760
0.01315 -0.20119 -0.04220 0.60828
0.16440 0.24823 0.25562 0.23861
0.46787 0.39517 0.52190 -0.14895

T " - il o

S T S e AP E T

5- Comparisons Between the Results of Applying
the New and the MG Algorithms

This Seclion starts with presenting X'X matrices calculated from five X malrices generated
using the new and the MG algorithins with the same correlalion coefficient between each pair of their
columns. Also, it includes comparisons among the cigenvalues, index numnbers and variance inflation
factors calculated from matrices gencrated using each of the two algorithm. Finally, cach of the five
generated matrices was chosen Lo represent the design matrix of the regression model, Y=Xf+a¢,

which is then used to run a small simulation study as described below.

51 X’X matrices

In this part ol the study, we used the random seeds 40619297, 12009857, 75113505 and
19531638 Lo generale, on the Gauss software version 2.0, four (20 x4), X matrices via the MG
algorithm, with simple correlation coefficient p=0.9 among cach pair of the four covariales. The same
seeds were used Lo generate four different Il matrices which in turn, were used to generate different. X
matrices via the new algorithin, using the same valuc of p . Matrix 0 below, represent the X'X
matrix calculated from each of the X inatrices generated by the new algorithim. Matrices 1 through 4
represent. the XX matrices calculated from the matrices gencrated via the MG algorithin using the
previous four sceds respectively. It is evident from Lhe entries that, while the new algorithm gave X
imatrices which completely obey the preassigned correlation structure among the regressors, the
correlations among the regressors generated using the MG algorithm are always different froin the

preassigned one.
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Matrix 0 Matrix |
1 09 09 09 1 .812 .760 .893
1 0.9 0.9 1 .739 .831
1 0.9 1 .742

| 1

Matrix 2 | Matrix 3
1 .977 .9562 .9b2 1 .908 .883 .B65
I .944 .959 1 .805 .81%9
1 .960 i .862

1 1

Matrix 4

1 .933 .944 953

1 .94G6 .954
1 .961
1

5-2 Comparisons Among Non-Stochastic Measurcs

Il we let p denote the number of regressors in the design matrix X generated using the new
algorithim with the same correlution between each pair of Lhe regressors Lhen, the eigenvalues, the index

number and the variance inflation factor of the i rcgressor (VIF); are respectively given by the

relations,
Eigenvalues = 1 —p with multiplicity (p-1),
= 1+(p-1)p with multiplicity one.

Index Number= (1+(p - 1)p) /(p - 1)

I+(p—2)p
(1 = p)(1+(p - 1)p)

(VIF)j — 1=1,2,...,p.
On the other hand, if the corresponding measureinents are calculated from matrices generated from the
MG algorithm, they will dilfer from one seed to another and will differ from those calculated under the

new algoritiun. To illustrate the signilicance of such dilferences, we gencrated 30, (20 x4) X matrices
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using each algorithm with p=0.9, 0.95 and 0.99 . IFor each p, the index numbers, the sorted
cigenvalues and the sorted variance inflation factors were calculated from the 30 design matrices

generated using the MG algorithm. The resuits were then used to report, the averages, the standard

Table 2 Summary Statistics of Indcx Numbers of 30 X
Matriccs Generated Using the MG Algorithin

Standar ConfidenceLimits
Truc  Mcan Error ( Lower Upper
0.9 37 74891 4767 7.948 65.135 84.647
(0.95 77 155.885 10099 7.811 135.232 176.539
0.99 397 802.925 S3.051 7.652 694.436 911.413

Tablc 3 Sununary Statistics of Eigenvalues of 30 X
Matrices Generated Using the MG Algorithm

e —

Standard ConlidenccLimits

P Truc Mecan Error ( Lower Upper
0.9 0.1  0.056 0.0035  -12.795  0.048 0.063
0.1 0.094 0.0051 -1.174 0.083 0.104

0.1 0.153 0.0086 6.177 0.135 0.170

3.7 3.698 0.0142 0.141 3.669 3.727

0.95 005  0.028 0.0020  -10.945  0.024 0.032
0.05 0.047 0.0026  -1.1720  0.047 0.053

005 0077 0.0048 5.684 0.067 0.087

385  3.848 0.0078 0.255 3.832 3.804

0.99 00!  0.0017 0.0004  -10.536  0.0048  0.0056
0.01  0.0095 0.0005 y 0.0083  0.0106

0.01 00155 0.0011 5 00133  0.0177

3.9693 0.0018 3895 39657  3.9728

1.97

m— s —— ——

Table 4 Swmmary Statistics of Variance inflation Factors of 30 X
Matrices Generated Using the MG Algorithm

———

Standar ConfidencelLimits

p | Truc Mcpn Error b qufg_r ~ Upper
(.9 1.567 6.572 0.276 -3.607 6.007 7.136
7.567 8275 0.377 |.877 71.504 9.045

7.567 10.693 0.509 6.137 2.652 11.735

7567 134834 () 84| 7.036 11.764 15.204

0.95 1S065 13111 0015 -3.177 11.853 14.369
15.065 16443 (.7825 1.761 14.843 i8.043

15.065 21.359  1.083 5810 19.144 27.574

15065 27073 1.747 6.876 23.502 30.645

199 75063 65873 31411 -2.G78 58.856 72.890
75063 B81.780 4.092 | .642 73413 90.148

75063 106 298 5. 8KS 5.308 94 2064 118 332
117.290 153.952

75063 135621 8964  6.756
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errors, Lhe t-statistics for tesling the significance of the deviation from the correct values of the new
algorithm and the limits of a 95% confidence intervals. Tables 2,3 and 4 respectively give the results

for, Lthe index numbers, Lhe eigenvalues and the variance inflation factors.

'The averages and t-slatistics in Table 2 show that, the index numbers of Lhe matrices
generaled using the MG algorithm are always much greater than the correct values and vary internally
over a wide range specially for p=0.99. Table 3 indicates that, the smallest and the third largest
eigenvalues are significantly different from the correct values, while Table 4 shows that, variance

inflation factors are significantly different from the correct values, except for the second largest VIF.

53 Simulation Nesults

It is well known that, the cxistence of high collinearity among the regressors in the linear
regression model Y=XA+0¢ , highly infllales the variance of the least squares cstimator of f. In such
situations, Lhe ridge regression lcchnique may be used Lo get biased estimators with smaller mean

square crrors.

In Lhis subscction a simulation study is conducted to examine the elfect of the algorithm used
in generating X on the simulated mean square errors (MSE(0)) of the ordinary least squares estimalor
and the mean square crrors (MSE(k)) of the ridge regression estimator , based on the Hoerl, Kennard
and Baldwin (1975) selection rule of Lhe ridge parameler. The simulation study was execuled as a six-
[actor cross-classified factorial experiment with 4 replicates. The first factor in the study was Lhe
method of generation (Meth.) with two levels, the new and the MG algorithms. The sccond faclor was
the sample size (n) with two levels, n=20 and 50. The third factor was the number of regressors (p) in
the design matrix X, with two levels, p=5 and 10. the fourth faclor was the correlation coefficient
among the regressors (p) with two levels, p=0.90 and 0.99 . The filth factor was Lhe variance of Lhe

2_ 1 and 10 . The last factor (or.) represenled the choice of the

error lerm (o?) with two levels, o
vector 8 where it was one Lime chosen to be the eigenveclor corresponding to the largest eigenvalue of
X'X and the other Lime was chosen Lo be the eigenveclor corresponding to the smallest eigenvalue.
These two choices are known as the favorable and thic lcast favorable orientations respectively. The
replicales are deterinined by Lhe four seeds given in §5-2. For cach replicale and under each
combination of the factors levels, an (n x p) design matrix X was gencraled. The design matrices, thus

obtained, were used Lo generale 500 pseudo (nx 1), N(XB,0%I ) random vectors which simulate the

response veclors Y. For cach of the 500 simulation runs, the point estimates of g are given by,

B(k) = (X'X+kI )XY

. . -2
where, k = 0 for the least square estimator and k = - i

f(0)'B(0)

for the ridge estimator, and
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i? = (Y = Xp©)'(Y - XB©) / (n—p) .
I'he incan square errors for both types of estimators were calculaled as,

500

MSE()= 3 (B() - A)(B() = B).
1=
T'o choose Lhe scale on which we analyze the simulation experiment, we examined several

choices and it was found thal, the percent change (PCh) in the mean square errors between the two

estiinators defined as,

Table 5 Partial analysis of variance results

Source Degrees of Mean Square F-ratio P-value
Freedom

Meth. 1 04813 440 0.00

n 1 00309 29 0.00

p 1 04478 410 0.00

P 1 04397 402 0.00

o’ l 05429 479 0.00

or. 1 01284 117 0.00
Meth. & n i 02056 188 | 0.00
Mcth. &p l 00970 89 0.00
n&p l 00067 60.15 0.014

n& o’ 1 00069 6.31 0.013
p&p 1 00679 62 0.00

p & o’ 1 00806 75 0.00

p & or. 1 00219 20 0.00
p& o’ 1 03554 325 0.00

n & op. 1 00832 76 0.00

o’ & or. 1 01230 113 0.00
Mcth. & n & p 1 00136 12.41 0.001
Meth. & n & p | 00048 4.39 0.037
Meth. & n & o’ l 00048 4.39 0.037
n& p & o’ 1 00045 4.11 0.044
p&p&d’ 1 00522 48 0.00
0.00 | 00139 13 0.00

p& o’ &or. 1 00210 19 0.00
pn& o’ &or. ! 00797 73 0.00
p&p & o’& or. 1 00134 12 0.001

Error 190 0001093
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PCh= (MSE(0) - MSE(k)) / MSE(0) . (5.1)
was a sensible scale and had a distribution which did not depart markedly from normality. In a
preliminary analysis Lwo observations had been detected as oulliers (having standardized residuals

exceeded 2 in magnitude). These two observations were deleted and we analyzed the data as a general

linear model since it became no more balanced.

In reporting Lhe results of the analysis, our comments will mainly be restricted to those
concerning the effects of the methods of generating X and how they interact with the other factors
involved in the experiment. The main and interaction effects of the remaining factors will not be
einphasized since they arc well known in the litcrature of ridge regression, and they are merely

confirmed here in the presence of the new method of generation.

Table 5 gives partial results of the analysis of variance of the simulation experiment. We

— —

Residual Model Diagnostics

- Nomral Plct of Residuals
o =
&
Q01
%um
a0
m-l T
3 2 4 0 1 2 3
Nomrd Soare
Hstogramof Residuals
o - |
70
| 50
Ly
D
-2
10 .
0 L § T T -ﬁfﬂ T — T
0,020 016,014,008 00D 005.010.015 080 06 QM 07
Resid el it

— — — -z

Figure (1)
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excluded from the table all the nonsignificant effects at level 0.05 . As the table shows, the main elfects
of the method of generation factor, as well as the other five factors, arc significant. For the 2-factor
interactions, the method of generation is found to interact significantly only with n and with p . The
significant 3-lactor interactions, involving the method of generation are, (Meth.&n&p), (Meth.&n&p)
and (Meth.&n&o?). No other higher order interactions, including the method of generation, are [ound
to be signilicant.

IFigure (1) includes, the normal probability plot, a control chart, a histogram and a residual plot
(or the residuals of the fitted model. The control chart and the residual plot show that, all the residuals
are within control limits and their variances are homogeneous, which fulfill the basic requirement for
the validity of the given analysis. On Lhe other hand, the shapes of the histogram and the normal
probability plot indicate that the distribution of the residual is symmetric with heavy tails. However,
since the analysis of variance models are robusl under moderate departures from noriality, we proceed
with the analysis using the data as is.

Table (6) and Figure (2), present the means of the PCh corresponding to the significant 3-factor

interactions, including the method of generation. The numbers between parentheses beneath each PCh
mean, give the corresponding MSE(0). Substitution for the mean PCh and MSE(0) in (5.1), gives the

simulated MSE(k). Examination of the table and the figure indicates the following trends,

Table 6 Mean PCh and MSE(0
n 20

MG

New

MG

New
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Figure (2)

1- The positive signs of the PCh means imply that under the present choices of the simulation
paraimeters, MSE(E} is always smaller than MSE(0). However, this may not be the case under other
choices.

j 92- The solid lines in the figure arc always higher than the dashed lines. This implies that the MG
method tends to exaggerate Lhe percent reduction of MSE(k) relative Lo Lhe new method.

3- The dilTerences in the means of PCh between the two methods are smaller under n=50 than what
they are under n=20. This may be the case because, under larger saimnple sizes, we expect the
covariance structure of the design matrix generated via the MG algorithin to be close 1o the

" specified structure which is satisfied by the malrix generated via the new algorithmn.
4- The largest gaps between the means of the PCh of the two methods of gencralion arc observed
- under, the small sample size with large p, the small sample size with small p and under the

sinall sample size with small ol
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5- The mean square errors of the least squares estimator under the MG method are always greater than
those observed under the new method (doubled when n=20).
6- Despite result 2, the mean square errors of the ridge estimalor, if calculated from (5.1), under the

MG method will be found, in most cases, much greater than those calculated under the new

algorithm.
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