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ABSTRACT
In this study the properties of the compound Gompertz distribution have
been studied. Parameters have been estimated for non-censored, for singly
censored and for progressively censored data. The distribution has been applied
to a set of data previously modelled using the Gamma distribution. It was found
that the compound Gompertz gives a better fit.

1. INTRODUCTION

The notion of compound and generalized distributions has been formulated
and studied by Feller (1943), and since then applied by many authors. The most
common way of arriving at a Compound distribution is by taking one of the well
known distributions and assuming that one (or more) of its parameters is (are) a
random variable(s), taking only finite number of possible values, or following a
certain distribution. The objective of this paper is to present new characteristics
of the compound Gompertz distribution that has been suggested by Osman
(1987).

2. REVIEW

Osman (1987) developed the compound Gompertz distribution by assuming
a conditional random variable following the Gompertz distributon with



THE EGYPTIAN STATISTICAL JOURNAL
F —00-

parameters a and & (2.1), where o is gamma distributed with parameters B and p

(2.2). Using the formula (2.3) the resulting unconditional distribution can be
denived (2.4).

f (Vo) = aedt expl-a(ed-1)/8), tad>0 @.1)
= (, otherwise. :
g B, p) = pHadl eBa/F(u), oB,u>0
= (), otherwise. (2.2)
f(t) ==£ﬂw0mwda (2.3)
ot
_ ks e-1 y-u
f(v) = —e‘(1+———) : t>0
B op
i B, 8>0 (2.4)
= 0, otherwise.

when 3f3 = 1 the compound Gompertz distribution reduces to the exponential

distribution with p.d.f.

v
o

f(t) = SpeOHt | t

= (), otherwise.

o, u>0

Osman (1987) derived the survival, the hazard and the median residual
lifetime function (2.5) - (2.7) as well as transformations from the compound
Gompertz to other well known distributions. He also showed that the hazard
function has an interesting property. If the conditional hazard function is
increasing, then the unconditional hazard can be decreasing, constant or

increasing those findings are summarized in Table 1.

St.q ..
S = (e ——)H (2.5)
5B
h(v) = 5 edt (8B +edt - l)'l (2.6)
M(R/T) = éln[zl/“ edt.(1-8) M- 1] 2.7
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TABLE I

BEHAVIOUR OF THE HAZARD FUNCTION OF THE
CONDITIONAL AND COMPOUND GOMPERTZ DISTRIBUTION

Conditional Compound
0=0 constant decreasing
0<d <é increasing decreasing

1 : :
o= E increasing constant
1 : : : :
o> E increasing increasing

NEW PROPERTIES OF THE COMPOUND GOMPERTZ
DISTRIBUTION

The Density Function

The first derivative of f (t) is found to be

£(t) = BH 5M+2 Bt (5B +eBt-1) 12 (3B - 1-pedt) (3.1)
- . . « 1. (0Pl

When 6B > p+1, f(t) increases reaching its maximum at t" = gln (-—-—)
W

and then decreases, and f(t*) = ( o ) [ w+DE &1)] s .
H+1 upo

When 8B < p+1, f(t) is a monotone decreasing function.

Some typical compound Gompertz density functions are shown in
Figure I. The Figure illustrates that 8 is a scale parameter and that the
shape of f(t) depends on the value of 3.
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3.2 The Hazard Function

3.3

34

The hazard function of the compound Gompertz distribution is given

h(t)=6uedt 3B +edt. 1) (3.2)

studying the above equation it is found that

1) h(0) = H/B

(i) lim h (1)

t—roo

O

(iii) Osman (1987) showed that h(t) is increasing if (6 - 1) >0
decreasing if (3 - 1) < 0 and constant if (3 - 1) =0.

Then from (i), (ii) and (iii), it is concluded that the hazard function of
the compound Gompertz distribution starts from the point /P at t =0, then
increases or decreases, depending on the value of 8, to reach some limit
that equal to 3yt as t approaches infinity. In other words, h (0) is larger than
h (e0) if and only if 8 < 1, is equal to h. (o) if and only if 8p = 1, and is
smaller than h (o) if and only if 6 > 1. Figure II indicates that the shape
of h (t) depends on the value of 3B, and that the level of h (t) depends on the

value of .

The Survival Function

The concavity of the survival function of the distribution depends on
the value of 5B and the greater the value of u the more rapid the decline of

S (t) towards the zero point is.
The Moment Generating Function

Let T be ar.v. that follows the compound Gompertz distribution with
parameters §, B, and y, then the moment generating function of t when

OB > 1 and p > /8 takes the foim.
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/8- s s Selip-S
Mi(s) = BB-DTH BBM B (o +l - L) {1 -] g (+lim -] (34)

_}‘ xP-1 (1-x)% Idx k <1
o Bpa Pa>0
is the incomplete beta function ratio, and B (., .) is the beta function.

where. Ik (p.q)

Proof:
M (s)=E () = [ eStf(t) dt (39
= [ e [EE e (BP+L (BB - 1 + ¢Sty H1]dt (3.6)
o B
Letx =eSt/ (8B - 1 +eSY, (3.7)

Substituting x in (3.6),
1

1 (BB (8P - 1)5/0H { xS - x) s gy

5p

1
u B 8B-DYH[B (S 4= ) - P 10058 o
0

My (s)

: S S i 1on.S
= (3P (8 - 1)¥3H B(§+1,u-5)[1-1.,53(gf1,u-6)1,

-
*

provided that 8B > 1 and p > 58-

An explicit expression for Mg (s) can not be derived so the compound

Gompertz distribution is an example of continuous distributions for which
the charactenistic function cannot be used to determine moments and direct
evaluation is needed to compute them.

3.S The Mean

The mean of the compound Gompertz distribution is derived for the
following cases:
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If 8B = 1, then
E(t) = 1/8u = B/u (3.8)
IfOB = l,andpu =i +f

wheniisaninteger2 l,and 0 <f< 1, then

E(r)-B[ p Gl Ul—@m—l] (3.9)
=1 (p-r) (1-8B)  (1- 8B )i-!

In 8, if f=0,

where | =

o OB+ (1-6B)z

dz. if0<f<l,

which can be calculated numerically.

IfoB=1and 0 <y <1, then

E(t) BJ 2 (3.10)
= Z .
0o OB+ (1-6PB) z :

That depends on the value of y, and can be calculated numerically

also.
T iy -1 y-p-l
EM= ] tf@di= [ (& e5l(l+ ) H d (3.11a)
[rwas Jug 1055

using integration by parts, then (3.11a) reduces to

* edt ]
Em=[ 1+ yH di (3.11b)

0

LetZ= 8B/ (5P +edt-1).
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Substituting Z in (3.11b),

1 M-
E@®= d 12
M= 6[ 5B+ (1-90)z z | (3.12)

From (3.12),

(i) whendf = 1, E(t) reduces to

(i1)

E()=B I[ (_D__-(.&ﬁl__ Zi-(r+1) 4 (- 1)' ! (SB)l :

(i)

E(t)=B } Z“'ldz=E=_l_
o ou

and that is the mean of the exponential distribution that the compound
Gompertz reduces to when 6f = 1.

Hence the proof of (3.8).

When 6B # 1,and p =i+ f, whereiisinteger>1,and 0 < f < I, then.

(3.12) can be written as

dz (3.1
=i (apy (1-3B Ji GB+(15[5)z]z( )

which yields
EW =B [

G Al L S NN ]
r=1 (i-r) (1 5[3)' (1- 8B )1
!

f
where, I = I Z dzwhen0<f<1, and

o SB+(1-5p)z

} dz
0 B+(1-6B)z

whenf =0

1
1- 6B

and hence the proof of (3.9)

In B

when 6 # 1, and O <M < 1, directly from (3.12)

ZH-1
OB+ (1- 8[3)7.

E(t)=Bj
0

Hence the proof of (3.10).
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In Table II the mean of the compound Gompertz distribution is

tabulated for 140 sets of parameters.
4. PARAMETRIC ESTIMATION

The method of moments and the method of maximum likelihood are used

for estimating the parameters of the compound Gompertz distribution.

4.1 Method of Moments

For the compound Gompertz distribution, let 8 denote the vector of
parameters 8 = (5, u, B) and let G, (8 ) denotes the rth moment about the

origin

oo 5t
Gr(8)= E(= [t Bedt(q+ Cbynty

' B 5p
ln

and let Qr (@) =~ 2 tir denote the rth sample moment about origin.
i=1
By equating G (@) to Qp (8 ) forr = 1, 2, 3, it is not possible to
obtain the moment estimate 8 explicitly. However, when 8 = 1 and p > 2, it

is possible to get explicit estimates.

Dubey (1968) has shown that the rth moment of the compound
weibull distribution exists for 8y > r and is given by:

m«»=uW@Bm~%;§H) @.1)

where f3 (., .) is the beta function.

Parekh (1972) has used the above formula to derive explicit estimates
for u, Bgivend=1as

26,-26° :
h= -1 (4.2)

A A2
¢2“2¢‘

A2
%)

iy
©>
tJ
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TABLE 11
MEAN OF THE COMPOUND GOMPERTZ DISTRIBUTION
op
d n 0.1 0.5 1 5 10 15 20
1] 258428 | 69.3147 | 100.0000 | 201.1797 | 255.8400 | 290.1482 | 315.3402
2| 82684 | 30.6853| 50.0000| 1264747 | 173.1586 | 203.7302 | 226.6738
5001 3| 46368 | 19.3147| 33.3333| 955933 | 136.8429 | 164.7110 | 185.9724
4| 32057 | 140186 25.0000| 77.8251| 115.0106 | 140.7617 | 160.6728
s| 30408 | 109814 | 20.0000| 66.0313 | 100.0118 | 124.0304 | 133.4150
1| 25843 | 69315] 100000| 20.1180| 25.5840| 29.0148| 31.5340
2| 08268 | 3.0685| s.0000| 126475| 17.3158| 203730 22.6674
501 3| 04637 | 19315| 33333| 9.5593| 13.6843| 164711 18.5972
4| 03206 | 14019| 25000| 7.7825| 115011 14.0762| 16.0673
s | 0.3041 1.0981| 2.0000| 6.6031] 100012 12.4030] 13.3415
1| 02584 | 06932| 10000] 20118] 25584| 29015| 3.1534
2| 00827 | 03069 o0s5000] 12648| 17316] 20373| 22667
&1 3| 00464 | 01992 03333 09559| 13684 1.6171| 18597
4l 00321 | 01401| 02500| 07783] 1.1501]| 1.4076| 1.6067
s| 00304 | o01098] 02000] 06603 1.0001| 1.2403| 1.3342
1| 00258 | 00693] o01000] 02012] 02558 02902 03153
2| oo0083 | omo7| o0o0s00| 01265 01732 02037 02267
510 3| 00046 | 00193| 00333| 00956 0.1368| 0.1647| 0.1860
al| 00032 | o0o0140| o00250| o00778| o0.1150| 0.1408] 0.1607
s| 00030 | o00110] 00200 00660 0.1000 0.1240| 0.1334
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$,-8?
B=8/nB(n12) 4.3)

when $ (@) is the rth sample moment about the origin and Osman (1987)

has shown that:

If the r.v.t. follows the compound Gompertz distribution with parameters

i, B and d, then the r.v.c. where ¢ = ( (1&--81-1—)‘/8 follows the compound

Weibull distribution with parameters 8, B and p with p.'d.f.

g@=%5&4ﬂﬁ;ﬂ4 4.4)

Hence from the above results, for the compound Gompertz
distribution given 8 = 1.

Letc =et - 1, then ¢ follows the compound weibull distribution with
parameters 1, B and p and hence (4.2), (4.3) can be used as an estimate for
W, P given d =1 and p > 2 where,

n n
$|=% ZCi=% Y (et-1),

i=1 i=1

2 2
C. =

noo.
; 2 (el-1)".

1 =1

o>
(%]
H
M=
3

=3 | —

When the sample standard deviation of c is greater than its sample

mean, {1 is larger than 2. Then, any permissible estimator for p will be

greater than 2.

From equauon (4.3) it is also seen that

B=8,/[nB(h-1.2)]
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S r(uen/[Ar(-nre]

WD &/ =@-1 8, (4.5)

chccﬁ >0 for ;fl\ > 1. Therefore, wherever ﬁis permissible, ﬁwill be

permissible.
Maximum Likelihood Estimation

The method of maximum likelithood remains one of the most
important methods of estimation due to several reasons. The method is
intuitively appealing and the likelihood equations can be written quite
easily. In most cases, it may not be possible to obtain explicit estimates
from the equations, but their numerical solution can always be computed.
Therefore, the application of the method of maximum likelihood will be
investigated for estimating the parameters of the compound Gompertz
distribution.

Letty, t. ..., tg denote a random sample of size n from the compound

Gompertz distribution, the likelihood equations can be written as

1 | o
: anSL=n(u+l)/8+Zti‘(u+l)Z(B+‘i i) (B pei- 1! . 4o
., n .
aln[‘=5+nln|3+nln5-§:ln(5ﬁ*"’-8tl'l) 4.7
dlnL nu : Ot 1y
S e £ Baedion 8
B g Lo

equating these expressions to zero, it is not possible to obtain explicit
expressions for §, p and B simultaneously. Hence, numerical iterative

techniques have to be applied.
MLE under Various Types of Censoring

The likelihood equations under type I, type Il and progressive
censoring are considered.
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4.3.1 Singly Censored Samples

In this case N items are placed on test and at each failure the time of
failure is noted, at some pre-determined fixed time tg or after some pre-

determined fixed number of sample specimen fail, the test is terminated. In
both these cases the data collected consists of observations ty, ty, .., ty and

the information that (N - n) items survived beyond the time of termination
to in the former case and t;, in the latter.

When ty is fixed and n is thus a random variable, censoring is said to
be of tvpe I. When n is fixed and time of termination t, is a random

variable, censoring is said to be of type II. The likelihood function may be

written as,

n .
L= [rt 0] [1-FD]® 49)
1=1

!
(N-n)
where T =ty in type I censoring, and T =t in type II censoring.

Therefore, for a censored sample from the compound Gompertz distribution

the likelihood equations can be written as

dinL
n- . n+Nu+Ztl (u+1) Z(BH,C l-l)(8[3+c t‘ l)
a5 )
HN-n)(B+T e5T) O + em- 1).l . (4.10)
n
dlnL = 9-+NlnB+Nln8- Zln(8B+e5ti-l) -
oy I i=l
-(N-n) In (SB+c8T- 1). (4.11)
dinlL
;B = B“ 8(u+l)2(8[3+c ll) - Opt(N- )(Sﬂe -1 (4 12)

4.3.2 Progressively Censores Samples

Suppose the censoring occurs in k stages at times T; where T; >
Ti.1.i=1,2 .. k and that at the ith stage of censoring r; sample
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specimens selected randomly from the survivors at time T; are removed
(censored) from further observations. Let N be the total sample size and n
the number of specimens which fail and therefore provide completely

determined life spans, it follows that

For type 1 censoring, where the T; are fixed the likelihood function may be

written as
n k )
£ = [1-FTp]t (4.13)

where c 1s a constant.

Hence, for the compound Gompertz distribution, the likelihood

equations under the above mentioned type of progressive censoring is given
by,

n . . Y
-aa—lg = (n(;,1+l)+|.12ri)/8~(u+1)'):.l B+t es‘l)(5l3+c5t1-l) :
1=

k ) A - n
W@ TS Ep Ty @i
i=1 i=1
oL k L ot
— = nfu+(n+ Z ) InB+(n+Z ) Ind- Zin (BP+e 1 -1)
au i=1 i=1
. " |
-3 £ In (8B Ti -1) (4.15)
i=1
n ..
2~ e T/ Guend £ @pe ey
i=1

1

k ..
-0u X (8B+c5T'-I) (4.16)
1=

5. APPLICATION

In a study by Bimbaum and Saunders (1958) seventeen sets of six stnps
were placed in a specially designed machine. Penodic loading was apphed to the
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strips with a frequency of 18 cycles per second, and a maximum stress of 21,000
psi. The 102 strips were run until all of them failed. One of the 102 strips were
run until all of them failed. One of the 102 strips tested had to be discarded for
an extraneous reason, yielding 101 observations. Bimbaum and Saunders (1958)
used the Gamma distribution to model strips failure time and estimated its two
parameters. The goodness of fit test yielded a Chi-square value of 4.46 (d.f. = 6).

The compound Gompertz distribution has been used to model the same
data.  The goodness of fit test indicates that the compound Gompertz
distribution provides a good fit (x*=4.31, d.f=5), i.e. both theoretical
distnibutions can fit the data.

6. DISCUSSION

When compared to the Gamma distribution, the compound Gompertz
distribution provided a slightly better fit in modelling lifetime of aluminum
coupons. The compound Gompertz distribution has two advantages over the
Gamma distribution. First, its hazard function has explicit solution. Moreover, it
can be seen as an infinite mixture of lifetimes following a Gompertz distribution
reflecting the one-hit model described by Elandt-Johnson and Johnson (1980).
The one-hit model assumes that it is sufficient to change one type of cell or a
single site in a cell to initiate the disease. The model assumes that during the
course of the interaction between the carcinogenic agent and cell constituents,

the following events can occur: the defense mechanisms eliminate part of the
agent (at rate d¢), or some cells adapt the agent (at rate §,) but some others

undergo multiplication (at rate Sg). To initiate the disease we must have 8g >
OS¢ + O, and the rate of cancer growth is h (1) = A exp(3t), where 8 = Og - de - 8y,
and 2 15 a constant depending on concentrations of various cell constituents and

ety of the agent.

The art of modeling is not only to find a mathematical formula that
provades the best fit. Finding the mathematical formulation that possesses a
meanngful explanation of the process at hand and provides a good fit to the
observed data is certainly a goal that should be fulfilled in modeling. By using a
conceptually meaningful underlying distnbution and allowing for heterogenity to
exist, the compound Gon'pertz distribution is a modcl that can help in achieving

that goal.
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FIGURE I .
Density function of the compound Gompertz distribution.
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FIGURE II

PP. 89-105

Hazard function of the compound Gompertz distribution.
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