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INTRODUCTION

A major limitation of applying multitrait mixed model analysis is the increased number of equations to be
solved. The technique of canonical transformation has been used to reduce computing costs when all traits
are recorded for each animal with equal design matrices and one random classification in the model.
Basically canonical transformation mvolves transformation of all correlated traits into uncorrelated canonical
traits. such that single trait analysis can be performed on thesc canonical traits. The use of canonical
transformation as presented by Thompson (1977). Mever (1984). and Jenscn and Mao (1988) is applicable
only to the model with one random factor.

Lin and Smith (1990) applied F-G algorithm to transform a multitrait into a unitrait mixed model that
equal design matrices for all traits and contains more than one random eflect. The class of models was
restricted Lo those in which the covariance matrices {or all random effects. including residual. can be
diagonalized simultaneously. Another application of F-G algorithm was used by Al (1993) to restrict
maximum likelihood estimation of variance components. where both algorithms. F-G of Flury and Gautschi
(1984) and modified F-G of Clarkson (1987) were applied to three sets of mixed model coefficient matrices
in animal breeding. Close cstimate to exact REML solutions were obtained for traits with low heritability.
The objective of this study is to use the maximum likelihood and least square versions of F-G algorithm to
simultaneously diajtonalize variance-covariance matrices which are generated using different multiple trait
parameters.

The diagonalization process runs as {ollows:

1) In one step diagonalization (diagonal case): diagonal herd and non-diagonal sire and error variance-

covariance matrices were diagonalized simultaneously.

2) In one step diagonalization (nondiagonal case): nondiagonal herd. sirc and error variance-covariance
matrices were diagonalized simultancously. :
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3) Intwodiagonalization: diagonal herd and nondiagonal sire and error variance-covariance
matrices diagonalized simultaneously.
F-G algorithm:
F-G algorithm was developed by Flury (1984). Flury (1988). and Flury and Gautschi (1984). The
algorithm diagonalizes A, ........ Ay p-d. matrices by finding an orthogonal matrix B, such that:
o (B) - ‘;1 {Det [diag (B* A, B)l/Det (A)}™ is minimum M
F-G algorithm minin;i;ss & by iteration on two levels. The F level. F algorithm consists of rotation of all

p(p-1)/2 pairs of vectors of B, so F algorithm yields a converging sequence of orthogonal matrices B,, B,. B,

... such that $(B*") s &(B). However. G level. G algorithm finds an orthogonal matrix Q,,, by solving the

: [ & ;
equation. alE ,,"’U "ﬂr‘ 0 @
il dydp
where T uy . PAB BB 120k
4 bI’A‘b, bl’A,bj 1 s I<jsp
dij - ¢/T,q, [ T kij-1,2)

The b, and bj are the 1 and j columns of B and q, and q, are the columns of Q.

The iteration of G algorithm viclds the sequence of orthogonal matrix Q. Q,....... converging to solution
of (2). The matrix Q is an orthogonal matrix which rotates cach pair of B by an angle 8.

Flury and Constantine (1985) applied F-G algorithm on two sets of p. d. matrices and obtained for each
sct an orthogonal matrix B which simultaneously diagonalize the two matrices to a ncar diagonal form.
Clarkson (1987) modified the F-level of F-G algorithm and improved its performance by reducing the

number of operation required for computing each pair of orthogonal vectors B,=(b,. b)) in B. An orthogonal

matrix P is found such that p [‘ -‘l where s and c are sine and cosine of the rotation angle (¢* +s° = 1).
L c

The updated versions of vectors b, b, are computed as B, = B,P. That is. b = Cb, + Sb, and if=-Sb; + Cb,.
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Clarkson (1988) used a least squares algorithm for diagonalizing symmctric and not necessarily positive

. . . 4 k p P
definite matrices. The function to be minimized by least squares is: $-T ¥ ¥ a dy, where
il jel I

d; is j1" element of the matrix A = B’ A; B and n; is a matrix of weights.

MATERIALS AND METHODS
A) Consider a linear model for t variatcs:
Y =Xb+Wh+Zs+e where Y = data vector of t variates (or traits). b = vector of fixed cffects (year),
h = vector of random herd cffect, s = vector of random sire effcct. e = vector of random residual effects. and
X. W. Z. = known incidencc matrices associated with vectors b. h. and s. respectively.

The expectations and variance-covariance matrices of random vectors are:

h| lo h| {pH O o
E |s]| - andV - 0 Aq'S o
e] o ] 0 o IyR

where H. S and R are herd. sire and residual variance-covariance matrices. respectively. N, q and p arc
the number of records. sires and herds. respectively. A is the numerator relationship matrix among sires
and * indicates direct product between two matrices. It is assumed that h. s and e are mutually
uncorrelated and R is positive definite (p.d.).

B) Given H. S and R matrices. the effects of herd. sire and residual can be simulated from a multivariate
normal distribution. It should be noted that variances and covariances of S and R can be easily |
computed based on the assumed values of h’. genetic and phenotypic correlations (r, and r,) and sire
variances (07). Different seeds were used as starting values in simulation.‘

C) Ten sires were mated randomly with 250 dams and each dam had one daughter. The daughters were
distributed randomly over herds. Herd and ycar variances were estimated as follows:

Head variance (o) = herd proportion* (o7 + 07) / (1 - herd proportion).

Year ariance (0y) = year proportion* (0;; + 0; + 07) / (1 - year proportion).
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D) Year effect was gencrated as a random variable but was treated as fixed. First generation was computed

E)

F

G

-~

=

such as each dam was mated randomly with sire from the base population. Each dsughter received the

same herd cffect but different year effect. Therefore: Daughter record = year effect + herd offect + 4

(sire effect + dam effect) + Mendelian sampling effect.

Maximum likelihood {ML) and least squares (LS) versions of F-G algorithm (one-step diagonalization)

were used to:

1. estimate orthogonal matrices B,, and B, respectively to diagonalize simultansously herd, sire and
error variance-covariance matrices where herd variance-covariance matrix is diagonal (diagonal case)
and sire and error variance-covariance matrices are non-diagonal.

2. estimate two orthogonal matrices B, and B to diagonalize simultaneously nondiagonal herd, sire
and error variance-covariance matriccs (non-diagonal case).

ML and LS versions of F-G algorithm (two-step diagonalization were used to estimate two orthogonal

matrices B,, and By to diagonalize simultaneously L"'SL"* and L"'RL". Cholesky decomposition can be

used to factorize herd variance-covariance matrix such that H=L’L. where L is an upper triangular

matrix In two-step diagonalization as described by Lin and Smith (1990). since L"" SL" and L"'RL"' are

pos tiv¢ definite and symmctric matrices. an orthogonal matrix B can be found to diagonalize (or nearly
diagonalize) simultancously these two p.d. matrices and if U=B’L. then the matrix U would
simultaneously diagonlize H.S and R such that:

U'RU=B'L"RL'B=D: U'SU=B'L'SL'B=C. UHU=BL'(L'L)L'B=1

Testing for Closeness to Diagonality:
Det [diag (B'A B))

I. Computing the function: o) -
¢ Det(4)

k
MQ= mQ, ifB=B,,whereB, is based on ML version of F-G
i-1
k
LQ= 1o, ifB=B whercB, is based on LS version of F-G
i1
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Note that if A, is diagonal. Q(A)) =1. Ifall A, matrices are diagonal. MQ=LQ=1.
2. Computing the values of SS,,. SS,,; and SS, ; where

SS, = ratio of sum of squares (SS) of the off-diagonal elements in A, to SS of the diagonal
elements in A, '

SSyr = ratio of SS of the off-diagonal elements in B’A;B to SS of the diagonal elements in B'A;B,
where the matrix B was estimated by ML version of F-G algorithm,

SS. ;= ratio of SS of the off-diagonal elements in B’AB to SS of the diagonal elements in B'AB,
where the B matrix was estimated by LS version of F-G algorithm.

3. Computer the function E; such that Ep = 100 [e; -d;] /d; where d; = the values of the diagonal
<‘.!ements of B’AB. and ¢, = the corresponding eigenvalues of the diagonal elements of B’A;B, where

the matrix B =B, or B =B,.

RESULTS AND DISCUSSION

Table 1 shows different herd proportions and different combinations of . r, and r, used to compute
herd. sire and crror variance-covariance matriceé. Ten combiﬁations were chosen to represent. 1) Low,
medium and high herd proportions. and 2) Low. medium and high genetic and phenotypic parameters (h’, r,.
r,). Combination 2 represents milk traits (milk. fat and protcin yiclds). Combination 4 is an example of
fitness or reproduction traits. High heritability estimates (h > .4) were given in combination 3 and 5 for
traits likc fat. protein and solids percentages as given by Schmidt and Van Vleck (1974). Combinations 1
and 6 represent parameters for some type traits, Hypothctical situations. like high herd proportion (.9), were
given (o clarify the behaviour of MQ and LQ. Combinations (1.6). (2.7). (4.11) and (3.5.12) have the same
parameters. but combinations within each set differ in herd proportion. -

Table 2 shows the values of MQ and LQ for different genetic combinations. In the diagonal case,
combinations 1.4.6.8 and 11 had values of MQ 1.101. 1.041, 1.100, 1.044 and 1.041. respectively. The
correpsonding values of LQ were 1.141, 1.114, 1.102. 1.049 and 1.049. respectively. The values of MQ and

LQ werc close to one. These combinations were characterized by low h® and low phenotypic and genetic
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able 1. Combinations of b’ r, and r, with different herd proportions

Herd

LY LPY
Combination Proportions | 5 3 h 5 3 | 3 5

1 A .050 070 030 200 250 150 220 270 200
2 A 250 220 200 .800 900 920 900 920 950
3 1 400 420 450 800 900 920 900 920 950
4 3 .001 .008 .005 100 .080  .050 120 100 .080
5 3 400 420 450 800 900 920 900 920 950
6 S5 050 .070  .030 200 250 .150 220 270 200
7 5 250 220 200 800 900 920 900 920 950
3 7 .050 .080 .100 100 -200 -.150 150 2250 200
9 2 400 420 450 100  .080 .050 120 (100 .080
10 3 400 420 450 800 -900 -920 900 -920 -950
nl 9 001 008 005 100 080 .050 Jd20 100 080
12 9 400 420 450 .800 900 920 900 920 950

corrclations. As a conscquence. herd. sirc and residual variance-covariance matrices have large diagonal

clements relative to the off-diagonal elements and both versions of F-G algorithm produced nearly diagonal

matrices.

Combination 9 with high h* and low r, and r, gave values of MQ and LQ close to one (1.015 and 1.036).

so genetic and phenotypic corrclations arc determining factors in this combination. On the other hand. the

rest of the combinations have valucs of MQ and LQ larger than one. Thesc combinations were characterized

by high values of b, r, and r,. Conscquently. herd. sire and residual variance-covariance matrices are far

from being simultaneously diagonlized by F-G algorithm.

In non-diagonal herd variance-covariance matrices (i.¢. some correlations exist between traits which may
be due to common cnvironmental conditions). the values of LQ were higher than those of MQ for all

combinaticns. As expected. the values of both MQ and LQ in non-diagonal herd variance-covariance matrix
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Table 2. Values of MQ' and LQ? for one and two step diagonalizations by different parameter combinations

MQ LQ
Combinations One step One step
DiggH’  NDiaght 0% Diag H NDiag H Twosstep

1 1.101 1.246 1.062 141 .  3.683 1161
2 1.430 1.837 1059 - 1.531 9.538 1223
3 1.279 1.658 1.094 1.446 8.906 1.228
4 1.041 1.228 1.029 1114 2.529 1.029
5 1.276 1.650 1033 1.434 8.898 1037
6 1.100 1.263 1.062 1102 4.094 1.161
7 1423 - 1.838 1.056 1.627 130.417 115.016
8 1.044 1.222 1.045 1.049 1.332 1131
9 1.015 1.166 1.001 1.036 1.579 1.002
10 1.276 1629 170881 2244 711.674 19.036
1 1.041 1.228 1.566 1.049 3.957 2432
12 1.276 1651 1.094 1369 935.209 1230

3
'MQ= I Liag84B)| /| A, where B-B,,
i1

. 3
LQ= iag (B'A )| / | A, where B-B,.
1

¥

3 Diag H = dliigonal herd variance-covariance matrix.

*Ndiag H + non-diagonal herd variance-covariancc matrix.

were higher than the corresponding values computed from diagonal herd variance-covariance matrix.
Valuesranged from 1.332 to 4.094. High parameter combinations showed some large values. As defined
previously, the function of MQ or LQ is the product of ratios. and each ratio was computed as the
determinant of the diagonal transformed matrix B'A, B to the determinant of the untransformed matrix A;.
for MQ for low parameter combinations (1.4,6.8 and 1) were 1.246, 1.2228. 1.263.1.222 and 1.228,

respectively. However, high parameter combinations (2.3.5.7.10 and 12) gave values of MQ 1.837, 1.658.
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Valucs of SS,.. SS,4r. and S, ; for diagonal herd, sire. and crror variance-covariance matrices by parameter
combinations.'

Combination SS, SSyur SS,+
(8) (R) (H) (S) (R) (H) S) (R)
1 17.491 020 020 019 .006 .045 014 43814
2 797 154 154 001 001 109 .002 1.793E-6
3 797 107 108 001 001 068 .004 9.073E-7
4 008 0ls 001 005 002 010 .039 027E-2
8 797 1.450 107 001 001 068 025 027¢-2
6 17.392 19523 021 001 001 013 024 011
7 1.255 1256 154 001 002 107 006 .001
8 039 083 007 004 017 006 .001 .024
9 129158 63367 005 001 003 001 005 012
10 800 689 107 001 001 053 013 020
1 008 01§ 001 005 014 000 008 014
12 .800 690 107 001 001 .000 1161 1.355

'SS,. = Ratio of SS of the off-diagonal (o diagonal clements of untransformed matrix

SSyr = Ratio of SS of the off-diagonal to diagonal clements of transformed matrix by ML version of F-G algorithm.

SS,, = Ratio of SS of the off-diagonal to diagonal clements of transformed matrix by LS version of F-G algorithm.

$S.(S). SS.{R) = SS,. of sirc and crror variance-covariance matrices. respectively

SSy(H). §5,,)(8). SSy1(R) = SS,; of herd. stre and crror variance-covariance matrices. respectively.

S8, ((H). S, ((S). SS,+(R) = S, ; of herd. sire and error variance-covariance matrices. respectively.

1.650. 1.838.1.629 and 1.651. respectively. on the other hand. values of LQ for low parameter combinations

ranged from 1 332 to 4. 094 High parameter combinations showed some large valucs  As defined

previously. the function of MQ or LQ is the product of ratios. and each ratio was computed as the

determinant of the diagonal transformed matrix B’A, B to the determmant of the untransformed matrix A,
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Therefore. one can expect targe values of MQ or LQ under the following situations: 1) one or more of the
untransformed matrix has a small determinant (close to singularity): 2) the ratio of the largest to the smallest
eigenvalue is large for any of the untransformed matrix: for cxample. this ratio is 54:1 and 71:1 for sire and
error variance-covariance matrices in combination 7 (has large value of LQ): or 3) large determinants of the
diagonal matrix B‘AB (e.g.. the large values of LQ in combinations 10 and 12 in non-diagonal case is due
mainly to large determinants of the transformed herd. sire and error variance-covariance matrices. Large
values of LQ were observed because LQ is for positive and non-positive definite matrices. So. large values
of LQ were noticed for combination with near singularity m;xtriccs: for cxample L'SL™ and L"'RL" of
combination 7 (LQ = 155.016) have determinants 4.935*10° and .011: so two step diagonalization works
better in transforming variance-covariance matrices to near diagonal form. The difference between MQ and
LQ values for combinations within each set (1.5). (2.7). (4,11). and (3.5.12) is due to the difference in herd
proportion.

Table 3 shows the values of SS,.. SS, and SS, ; for herd. sirc and crror variance-covariance matrices for
the diagonal case. SS,,; was comupted using the transformation matrix B,;. and SS, ; was computed using B,.
The values of SS,, for diagonal herd variance-covariance matrix are zero for all combinations. However,
SS,r and SS, ; get larger than zero after transformation. On the other hand. SS,; and SS,; for sire and error
variance-covariance matrices have smaller values than SS,, for the same effects. This reduction in sums of
squares is due mainly to the effect of orthogonal transformation of B matrix on reducing the sum of squares
of off-diagonal elements (Ali. 1993).

Table 4 shows the values of $S,,. SS,; and SS, ; for herd. sire and error variance-covariance matrices in
non-diagonal case. A considerable reduction in sum of squares of the off-diagonal elements of herd. sire and

error variance-covariance matrices was observed. Greater reduction in sum of squares was observed for error

variance-covariance matrices.
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Tabled.  Values of SS,,'. SS,q. and SS, ; for non-diagonal herd. sire and error variance-covariance matrices by parameter

combinations

Combi- SSu SS,; SS.; 1'

@ ) ®) @ e ® W ©
1 32610 11.564 22934 012 051 013 052 035 000 '[
2 22134 807 773 316 003 001 214 006 000
3 16.995 807 677 216 004 002 159 .001 001
4 13.532 41,699 81.751 055 025 028 076 048 003
5 16.679 807 676 214 004 002 157 ot 000
6 15.388 73521 22934 0186 576 013 . 017 087 016
7 221132 807 773 317 003 1000 206 o1l 001
8 11.494 98 597 10.358 638 404 410 1.347 A1 04
9 16.670 41.891 82.113 028 o4 021 007 035 064
10 16670 774 696 231 001 001 126 208 19
1 13.532 41.699 81.751 055 025 028 .000 112 086
12 16.662 807 677 214 004 002 1000 1.137 1.64

SS,. = Ratio of sums of squares(SS) of the off-diagonal to diagonal clements of untransformed matrix
$Sur = Ratio of §S of the off-diagonal to diagonal clements of transformed matrix by ML version of F-G algorithm.

3S, 1 = Ratio of SS of the off-d I to di lel of transf{ d matrix by LS version of F-G algorithm.

3S,(S). SS,{R) = S8, of sirc and error variance-covariance matrices. respectively
38y r(H). S54(S). SSyir(R) = S8, 7 of herd. sire and error variance-covariance matrices. respectively.

38 3(H). 85,+(S). 8S_«(R) = S, ; of herd. sirc and error variance-covariance matrices. respectively.

Testing ncar diagonality by sums of squares 1s based on the criteria of minimizing the sum of squarcs of
off-dingonal clements of weighted function of B’A B (Clarkson. 1988). An alternative approach is to include
the diagonal elements in computing sum of squares of each matrix of B'A B or one might give different

weights to the off-diagonal clements. Reduction in sum of squares gets larger with two step diagonalization.
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Table 5.  Values of SS,,'. SS,;* and SS, ;* for two-step diagonalization by different parameter combinations

Combination SS,! SS,/* 55" 55w §S,,* SS..°
L'sL L'RL QINSL'Q  QISRL'Q  QISSL'Q  QIURL'Q
1 4.951 9.258 016 025 007 373%10°
2 672 579 .150%10 422*10° 374*10 113*10°%
3 652 579 .108*10°* 715*10° 369*10 938*10°%
4 215%10° 48649 623*10* 201*10° 488 300*10"°
5 692 553 177*10" 798*10° 232*10* 302+10°%
6 14.953 9.258 160*10° 248*10° 871*10° 492*107°
7 667 196*10" 150*10* 848 379 1.158
8 22.194 11.884 719*10" 212*10° .699*107 118*10°
9 86.527 46.399 63810 271%10° J3*i0* 214*10°
10 653 579 811 750 161 117
1 204.085 48.649 104 166*10? 337 726*107°
12 653 579 110*10* 715.10° 372410 938+10°

'SS,, = Ratlo of sums of squares (SS) of the off-diagonal to diagonal elements of untransformed variance-covariance matrix

*$Syr = Ratio of SS of the off-diagonal to diagonal elements of transformed matrix by ML version of F-G algorithm.

3SS,; = Ratio of SS of the off-diagonal to diagonal elements of transformed matrix by LS version of F-G algorithm,

SS,, =88S, of sire variance-covariancc matrix transformed with triangular matrix L™
L*'sSL!

'S, =SS, of error variance-covariance matrix transformed with triangular matrix L'
LtsL

*SSaer = 88,y of sire variance-covariance matrix transformed by L"'Q

Q'L'SL'Q

"SSyer = 8§, of error variance-covariance matrix transformed by L'Q
Q'L'SL'Q

*$S,; =SS, ; of sirc variance-covariance matrix transformed by L"'Q

’$8,; = SS,; of error variance-covariance matrix transformed by L'Q
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Table 6. Values of E, for sirc and error variance-covariance matrices in two-step diagonalization.

Combi- L*SL? B'L'SL'B B'LYSL'B L'RL" B'L'RL'B B'L*RL'B
nation ML) Ls) ML) Ls)

1 144.471 61.132 14.968 184.067 4.201 0.001

-78.002 -38.660 -8.991 90.671 =731 0.020

94 204 -1.001 -17.843 -95.162 -8.802 0.002

3 160.016 052 162 182.242 033 0.000

-88.000 221 6423 -72.601 3.651 0.024

-94.378 -3.500 1.143 -95.412 -8.804 0.064

5 154 201 088 118 188.488 011 0.000

-79.774 571 382 -91.003 -.109 -.004

-89.739 -3.579 329 -99.129 001 178

8 10.791 1.304 85.821 39519 3.968 0.001

-8.478 -1.103 -14.949 -14.269 2271 0.001

-8.039 -1.399 -30.400 -25.682 -8.955 0.003

12 158.872 .00} 25899 183.989 .002 003

-80.357 002 .002 -90.349 3568 003

-94 345 019 91.099 -95.439 -8.902 005

Table 5 shows the values of sums of squares SS,, for L' SL* and L"'RL"'. and the values of SS,;. and
SS,; after applving F-G diagonalization algorithm. Sums of squares of B'(L"'SL"')B and B'(L"'RL")B of
both maximum likelihood and least squares versions get smaller after transformation by F-G algorithm.
Moreover. these sums of squarcs get closc to zero for combinations (3. 5 and 12) characterized by high
heritability and high genetic correlations.

In this study H was decomposed first such that H=L'L where L is an upper triangular matrix, followed by
simultaneous diagonalization of L""SL"' and L"RL". Alternativcly, one can find L such that L'L =S (or L'L

= R) and simultaneously diagonalize L' HL" and L"'RL" (or L"*'SL"). In practice. B'L"""SL"'B and
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B’L"'R"'L"'B are not exactly diagonal but are diagonally dominant. i.e. each off-diagonal. element is very
small relative to its diagonal element in that row.

The function E, measures the deviation of each cigenvalue from the corresponding diagonal element of
the transformed matrix. In complete diagonality all values of E, are zero and all diagonal elements of the
matrix are identical with the respective eigenvalues. As shawn in Table 6, the two-step diagonalization
reduced the values of E,. The matrices B'(L""'SL")B and B'(L"'RL")B are close to diagonality because their
eigenvalues are very close to their respective diagonal elements than L"'SL™' and L''RL;". Furthermore,
B’(L"'RL")B are closer to diagonality than B'(L"''SL*)B because the function E, for the former is close to
zero in most combinations(Table 6).

Using different initial mntricés for running a Fortran program of F-G algorithm to computc the
transformation matrix B may result in a different orthogonal matrix B since each orthogonal matrix B
represents a local minimum for minimizing both functions of MQ and LQ of F-G algorithm. This is due
mainly to the structure of the function Q which is the product of k functions each involving a different
untransformed matrix. On the other hand. using different initial matrix B might result in a unique
transformation matrix B which is a global minimum for minimizing both functions of MQ and LQ of F-G
algorithm. An identity matrix or the matrix of eigenvectors of different untransformed matrix could be used

as initial matrices for computing the transformation matrix B (B,, or B,).

CONCLUSIONS
Both ML and LS versions of F-G algorithm will not achieve completc diagonalization for all different
combinations. However. simultancous diagonalization of three matrices is closer to diagonality in diagonal
case than in non-diagonal case. In one step diagonalization. F-G algorithm can achieve near diagonality with
low parameter combinations. Matrices with small detcrminant (i.e. near singularity). give large values of Q

measurcs of deviation from diagonality. Diagonalization based on F-G algorithm works better on matrices
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with large diagonals relative to the off-diagonal clements. Using equal or unequal weights showed no effect
on the orthogonal matrix B computed by both versions of F-G algorithm. Simultaneous diagonalization by
F-G algorithm has an important application in animal breeding, mainly in transforming a multitrait mixed
model with more than one random classification into a unitrait analysis. The only class of models applicable
is that in which variance-covariance matrices for all random cffects can be diagonalized simultancousiy.
Based on the results of this study. the maximum likelihood version of F-G algorithm was found to be more
cffective in achicving simultaneous diagonalization than the least squares version and thus was preferable for

transforming multitrait into unitrait mixed model analysis.
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