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abstract

Many formulae have been sugessted to estimate the
ridge parameters. Most of these formulae ignore the features of
the model such as number of the explanatory variables, deqgree of
illconditioning and the significancy of the model. In this
article two formulae are proposed for selecting the ridge
parameter K ; for ridge regression . A Monte Carlo study is
conducted to compare the mean square errors of ridge regression
under the new formulae and some other formulae. The numerical
results of the simulation indicate that the performance of the
new formulas does produce the smaller mean square errors.
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1. Introduction

The regression model is
Y = X8 + u ens (1)

Y 1s an (nx1) vector of observetion on a respons varaible, X 1is
én (nxp) matrix of observations on p explanatory varaibles, 8 is

he (px1) vector of regression coefficients and u is an (mx1)

€ctor of unobservable errors satisfying E(u)=0 , E(uu )= a 1. It

[
& assumed that X and Y have been scaled so that (X X) is the

-
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matrix and (X Y) is a vector of correlation coefficients. Usip,

the following canonical form

Let Q = [ql,qz,qj, .8 ,qp] and A = diq[11;1 0 A

2 3r - & . '1

r r
be such that (X X)=0AQ where q, is the eigenvector associatey

J

with the eigenvalue lj . Without loss of generality, we can

assume that 112 122 132 e+« 2 A ., Further let Z = X Q and a =:
p —

So that X8 = Za. Model (1) can be rewriten as

Y = E a + u

'

Then the least squares estimate for a is given by

i

e _1 rFr

a(0) = A QXY ies [3)
Further ,

Cov {E(ﬂ}) I ce. (4)

and the mean square errors (MSE(0)) becomes

A e
MSE(0) = 0° > ), cve (5)
y=1
when lj is small, for some j (1 < j < p), both the estimates and

their variances are inflated ; see [(3) and (4)). This is known
as the multicollinearity problem. Section 1 is an intrnductioni
the regression model and least squares estimate. Section 2 jg at
introduction to the ridge regression, while section 13 Presentd
some formulae for selecting the ridge parameter | Section 4
contains the proposed formulae. The simulation dllﬂriptiun $a
given in section 5 . The results and the conclusjg, are
presented in section 6 and 7.
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2. Ridge Regression Model

To overcome the problem of multicollinearity in regression,
Hoerl and Kennard (1970) suggested a class of estimators
indexed by a parameter k kK >0. Under this class, the estimator
of model (2 ) is given by

a(K) = (A + EIJ-l Q' Xy ... (6)
with
E(a(K)) = A(A + KI]nlm «ee (7)
and
” - -2 2
Cuv{g(k}) = A(A + KI) a .-+ (8)
Let
P
T (k) = SR WIS (e
P A |
1=1
and
-2

Il

2 & 2
r_ (k) K™ D] a,(r, + k)
2 il s
=1
Horel and kennard (1970) showed that Tl{kj is a continuous
monotonically decreasing function of k, while Tz{k} is continuous
monotonically increasing function ofk {rsz) is shown to approach

r
£ B as an upper limit). These properties show that is may be
Possible to allow a little bias and subtantially improve the MSE

where the mean square errors is definde as

HSE{E{K]} = 7,(k) + v, (k)

T

4 e p -
MSE(a(K)) = 0° 3. A Oy + K) et 3 Ejtxj v k)2 ... (9)
j=1 j=1
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ror X > 0 4() is biased and the bias increase witny

[ see equation (7)]- The idea of the ridge regression is tg
select a value for K such that the reduction in mean square
errors is increasing by increasing the bias. Hoert and Kennarg
(1970) proved that there exists a value of K such that

P
P = 2 & 2 -2 z 71
- K + K s (A HK) gt 2 «es» (10)
’ E: lj{1j+ } %El 373 j=1 3

j=1

3. Some Formulae For Selecting The Ridge Parameter k

In this section we discuss some formulae for computing the
value k which lead to improvement methods. McDonald and Galarneay
(1975) ; noted that:

A A F ~ ;.2 p _1
L=a (0)a(0) - ¢“(0)>] M I % § &
j=1

F

is an unbiased estimator of ¢« a. They suggested and studied the
performance of the mean square errors to the following selectior

rule:

L F

choose K such that a (k)a(k) = L if i >0;
(12)
i otherwise

which lead to a(0) and 0, respectively:

Hﬂn.-rl Ken“ard and
! Baldwin (1975) : (HKB) ; s a
reasenable choise of K is )i ) ; suggested that

= >

“ 2 s f A
ukg P ¢ (0) /Ja (0)a(0) oss (13)

Ho p -
erl and ®nnard (1970) developed an jteration scheme
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for calculating Ky vsing a (K )a(k, ) instead of értuléiﬂl

where;

-~ -~ -

K (8) = P 07 (0) / ' (R)a(k,)

Lowless and Wang (1976) used a Bayesion argument to motivate
the estimator, they suggested :

]

HLW (0)

an alternative method to overcome the difficulty that
i~ f

a (0)x(0) is an overestime to aa , El-Bassiouni and El-Sayed

=2 »

=pa’(0) /a (0)2 2

1986) introduced i X i ; :
( ) ngy and Kogy * which are defined as follow
i = ;E{D] i if E >0
Bsy P /
choose { «ss (14)
K = 0 0
BS1 if L <

formula (14) means, we use the least square estimator if L < 0

s

. s "
= 0 >
HBSE po (0) /] L 1f L >0

choose { voas (15)

# o "~

Kes2 = Xuks if LSO

formula (15) means,we use the HKB estimator if L < 0.
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4. The Improvement Belection Rﬁll of K
Since formula (13) does not depend on the value of £ dmﬂ%

in (11) ; we propose the new estimator denoted by kl a

combination between the selection rule defined in (12) and th

-~

i i 13) where :

estimator KHKB defined in (13)
e .-.2 & F il
Kl =po (0)/ a (0)a(0) if L > 0

choose { +s+ (16)
Kl = 0 if L £0

Let K, = k___d . K k. depend
5 kBSl efined in (14). Both of KI and kz depend o

the value of L defined in (11). The two estimators Kl and Kz,dﬂ

not consider the properties of the model under investigation as
(1) The number of explanatory variables in the model p ;

F

(2) The degree of illconditioning in (X X) matrix ;

2
(3) The value of o .
The new selection rule for k ceveloped in such a way that
previous points are taken in consideration to determine the

critical value of L . If I, >0 , this implies that the range nfih

and k2 is ;

0 < ﬁ and Kk ﬂ"jL
1 2 F_.]_
il
&~
=1

% » y short or narr
so that the ranges of k, and k, becone OW when ¢ne
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or more of the eigen values are small. In such case the upper

pound value P : * 0 as "j* 0 (1 <J < p). It is possible to

M Ve
j=1

this range not contain the apprnpriate value of K which can
reduce the mean square errors in (9). The new selection rule

allows the values of K to have a wide range ; say 0< K <c where c

is positive constant value greater than S S + In this case the
pAEE
=1

critical value of L ,say Lc, becomes as follows:
p
F .ﬂ.z ‘1 _1
Lc=‘t‘l’ (D)[Z :i._pc ] - s om @ (1?)
j=1 7

Put ¢ = 1 in (17) then 0< K <1 and the critical point value of Lt

will be reduced to
P
i~ nz _1
L1=—u{{])[21.-—p] . oes (18)
j=1

Notation (18) is a function at uzfﬂ) J lj and p . The value of

P

[ 2: I; - p ] may also be used as an index of illconditioning
J=1

factor (ICF). After the previous discsussion , we can introduce

the following estimators denoted by ﬁj and id which depend on the

new selection rule as follow
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&j)-
AT ~ ~ "‘
n A >
I{3 b nﬂin} / o ({}}E(ﬂ} oy L Ll
choose { ‘v (1
while
E4=p§2(m / L if L >0
~ A F -~ "~
choose { E4 = p 0 {u: / o {{}}-:1({1} it Ll <L <D0 eos (N
Kq = 0 if L < L

1
The advantage behind the improvement selection rule is on makins

the range of k larger than it was, and bounded by unity. Also w

-,

can compute k even if L less than zero up to L

5. The simulation study

In this section we describe

the simulation tEEhnique which
was used to examine the performan

ce of the modifieq ridge astl'd

tores uninq,{k and k ] in contrast to the least

Square and the

unmodified estomat ' ’ K
o ores UE]nq,(kl and kzj through Msg criteria -

S.1. Models Considered

[
We consider three basic models

Lee and Compbell (1985);
(1) Four factor model (Hald , (1952)) : p = 4,
eigenvalues

N = 13 with
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A = dig( 2.2357, 1.5761, 0.1866, 0.0016 )

and ICF = 618.3 .

(ii) Ten factor model (Gorman and Toman (1966)):p= 10, n= 36
with eigenvalues

A = dig| 3.6923, 1.5418, 1.2927, 1.0457, 0.9719, 0.6587,

0.3574, 0.2197, 0.1513, 0.0681 |

and ICF = 23.8 .

(1ii) Fifteen factor model (McDonald and Schwing (1973):
p= 15, n = 60 with

A = dig| 4.5272, 2.7547, 2.0545, 1.3487, 1.2277,
0.9605, 0.6124, 0.4729, 0.3708, 0.2163,

0.1665, 0.1275, 0.1142, 0.0460, 0.00495 ]

and ICF = 248.2 . The above three sets of eigenvalues are taken
from Lawless (1978).

5.2. Regression Coefficients and Orientations

The simulation methodologies of Hoerl, Kennard and Baldwin
(1975) and Lawless and Wang (1976) were subject to strong
criticizms [ see Pagel (1981)] who showed that such methodologies
are strongly biased in favor of ridge regression. To avoid the
pitfalls in such methodologies we decided to follow the same
pattern as those reported by Newhouse and Oman (1971), McDonald
and Galarneau (1975), Gunst and Mason (1977), Wichern and
Churchill (1978) and El-Bassiouni and El-Sayed(1986) who used

different orientations of f# to the eigen vectores of {x'x)

matrix. Five differents orientations associated with the eigen
¥

vectores of (X X) have been used. Let vector qp is the eigen
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vector corresponding to the smsallest eigen value and the “‘k‘t\
q. is the eigen vector corresponding to the 1"'"“_*’1: eigen val,
1 |

P P
T e . s Al Pl A
ibugibinas £ Ik Lt ! ? jer+1 12-1q1 |
|
and EE q.we obtaine the following five orientaions:
j=1 )
(1) a = [0, 0, 0,..., 1] (21.a)
(2] e % 11,78, 0T Y (21.b)
[3} E - Iul ul inrl Il ¥ 1|' {ll'cl
(4) a = '1, L s s 130,00 1.1 o ' (21.4d) |
(5) &= 11, 1, 1, .o 1, 1, 1 ' (21.@)

It i®s known (Bee Gibbons (1981) that the choice p = q in (21.9
» P

is unfavorable to ridge while 2= q, is favorable {n (21.b).

other orientations in ((21.c) - (21.e) descr {bed different
orientation situations . six diffe '8 from (0 0001) to

(2.5) were used for Fz

5.3. Replications

For each of the three models, for each of the gjyx values
¢ and for each of the five orientations cnnnidur‘d;

{31515-90
combinations); 1000 samples were generated. In each samp]e ; (0

j

# 2 e
was generated via "j ~ H{nj.i flj] and ¢ (0) was 9enerateqg via

i FUPEY - x 102 -8 :
(n-p)e (v)/e =~ X (n-p). Each of the estimators Rl'“z'“; A l”
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wer® computed an comparmentwise by using the estimate of MSE(a (k)
formula (9) also compared with least squares by formula (5).

5.4. Bummary gtatistics

For each of the 90 combinations,we kept track,over all 1000

i replications, of:
2
(1) The average and the expected values of F and R

statistics;

(2) The minimum ,maximum, mean and CV of i;
(3) The mean of MSE(k) and MSE(0);

(4) % of runs for which L <0 ;

(5) % of runs for which L « il ;

(6) % of runs nsz:ii; < MES(0) , i=1,2,3,4.

6. The Results

The main numerical results of the simulation are summarized
in Tables (1) to (3). These tables just In case of orlentation
five which considere the common case wvhere all the explanatory
‘variables to includ in the model. We begin by establishing the
|\u11dity of our simulation, then we discuss the MSE'’s.

lhi. The Validity of Our Simulation

Table (1) containes the average values of F and R°. For each

]
- .ﬁz

"odel, a and ¢ combination, the values of F and R° were computed

- !2
“nd the averages over 1000 runs of F and R were computed. Recall

Ithnt

C -

| reg (O)A a(0) / p :ztﬂ}
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(0)4 «(0) / (Y-¥1) (¥-Y1).
the F statistje

N

~2

R = o
An examination of this table will reveal that
ranges from highly significant to insignificant levels, where ,,

-

“2 ranges from 0.999 to below 0.40.
To check an simulation values,the expected values of F (p

were computed using

- "i

z{;j - (n=p=1)/(n-p=3) [(a (0) A a(0))/P El + 1)
and are presented in the same table. They are closs to the
simulated values. Further evidence of the validity of the
simulations is given in Table (2). It contains the values of
the simulated MES of least squares and the other estimates. One
can notice the closes agreament between the simulated and
theoretical values. These calculations indicate the accuracy of
the MSE resultes to be presented in the =equal and testify to
the validity of our simulation.

6.2. Mean Bguared Error

Ridge eatimators are constructed with the aim of having
smaller MSE than least squares., We use the ‘'« sntages of the
number of times that H5!1h1! <« MSE( a8 a measure of the

improvement obtained by using nt!ij: 1 =1,2,3,4. Table (3) shows

these percentages denoted by F[ki,nj. Also the table presents the

percentages of number of times L < 0 and L < i denotes in the
1

table by P{ Ln] and F[Ll} respectivelly . The following

observations are made upon examination the tahble.

(1) From Table (2) we can notice that the average values
of the MSE(k, ) and HSE[k‘}are less than that of the average of
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MsE(0) . This means that by applaying ridge regression using {E]nr

k‘ ) we have reduced the MSE values. Comparing the average

values of HEE{kI} and HE![kzj with the corresponding HEE{kJ} and

ugg{k‘],-w- notice cl::rly'thm-adv:ntagis of E 3 and ;‘.

(2) From Table (3) the wvalue of P{LI} is less than the value
of F{Lﬂ] for all lz, this means that The percentages number of
times we can compute ;:] or l;. and then applay the ridge method is
greater than we compute Iil::I or I'::und-r the new selction rule.

|
(3) For very small ¢ (= 0,0001); the values ptkl.n], p{h:,ﬂ),
P[kl,ﬂ] and p[k‘,ﬂl have the same valuea. That means all the

estimetors are presented the same results where all of them
made about 100% {mprovement [see table (1)). In fact we can

eXpact this result from relation (18) that Ll- 0 as ;2- 0, in

this manner f s L .
| o

(4) With small ll[ﬂ] (= 0.01) and the high multicolinearity

(the lj'. are widely spread range) the new estimators E; and

¢ ™ade good improvemets than the old k1 and iz. For not less

an 84% and 74% the HSE{EJJ and HSE{E4} are found to be less
&n MSE(0) respectivelly. Referring to table(2) we notice that
€ average values of simulated HSE(EJJ and HEE[;‘] are less

MSE(0) where the values are 2.7623, and 3.2878 and 6.2849
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respectivelly .

(5) The comparison between the two new estimates K3 ﬂnd;
}

it appears that EB is better than k4 where P{kj.ﬂ} is alway,

greater or equal to P(kq,n}. It means that the percentage of

- ]

improvements made using k3 is greater than the improvemept

under k‘. Also, the average values of HSE(ka} are always leg

than the average values of HSE{kdj.

7. Conclusion

Two ridge parameters estimates, denoted by k_ and ﬁ , were
3

suggested depend on new selection rule. This new rule dependstJ

the number of observations (n), number of variables (p) and the

-
variance of the error term (¢ )in the model "~ determine certain
critical value. The advantage behind chis imprnvement selection

rule is on making the range of k larger than it was, and bounded
by unity. The simulation technique and MSE criteria Were used to
compare between the different ridge estimates. The regults show |

that the MSE values using both K3 and k4 are smaller than Msg |

not only when using the least squares but also when uUsing ﬁ an+
1

- 2 "
k,- By large ¢ ,the values of MSE using k, is smaller thap MSE

using k4. In cases where the multicollinearity is severe, ve

s

recommend to uce kj.
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Table (1) The Average and Expected Values of F and R? Statistiecs.

- J —

Model H o EF £ ERZ R2
3 0.0001 13334, 78 12924, 586 0.69085 0.90980
0.0100 134,67 132.03 0.98537 0.98028
1.0000 2.67 2.70 0.57143 0.488089
1.5000 2.22 2.37 0.52632 0.44902
2.0000 2.00 2.06 0.50000 0.42260
| 2.5000 1.87 1.89 0.48276 0.40256
ii 0.0001 10870.22 11018.04 0.99977 0.99975
0.0100 109.78 110.78 0.97773 0.97604
1.0000 2.17 2.20 0.46511 0.44197
1.5000 1.81 1.82 0.42016 0.39486
2.0000 1.63 1.66 0.39473 0.37400
5. 5000 1.52 i.5] 0.37838 0.35117

i 2 9 0

o 0001 10480.59 10423.30 0.99972 .99971
S w Mwnc 105.84 107.15 0.97303 0.97207
1.0000 2.10 2.08 0.41671 0.39980
Y 5060 1.75 §. g 0.37316 0.36207
2.0000 1.57 1.53  0.34886  0.33105%
2. 5000 1.47 1.48 0.33335 0.32471
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Table (2) Theoretical and Averages of the Simulated MSE Values of the Estimators.
Model .u.M _H_H-.ﬂ.ﬂ_h..ﬂ.ﬂu.n-.u. .H..HE.._..IH.H_.

MSE (D) MSE (D) MSE (X ) MSE (K» ) MSE [K4) MSE (Kg)

i 0.0001 0.0822 0.0837 21 0.0551 0.0591 0.0591
c.0100 6.2228 6.2649 142 6.1387 2.7623 3.2878

i1.0000 622.279% 641.7007 E42.3825 697.7755 305.5692 360.7623

1.5000 933.419% 907.3860 910. 44867 986.314% 437.9143 513.7825

Z2.0000 1244.5598 1256.1572 237.7043 1364.1293 626.6008 732.8257

2.5000 1555.6998 1574.3633 157C.“306 1705.4192 751.1047 885.5932

& | 0.0001 0.0034 C.0033 0.00. 3 0.0033 0.0033 0.0033
0.0100 0.3384 C.3344 0.30e7 0.3088e 0.3087 0.3088

1.0000 33,8397 43.2058 28.7452 31.0111 18.1582 21.4241

1.5000 50.759% 49.9612 44.2613 47.2889 29.3165 32.3441

2.0000 67.6792 67.2670 61.1504 65.1163 40.0083 43.9741

2.5000 B4.5992 85.0027 77.6511 82.7211 51.9322 57.0023

114 0.0001 0.0263 0.0264 0.0260 0.02860 0.0260 0.0280
0.0100 2.6316 2.6047 1.8013 l1.8629 1.8013 1.862%

1.0000 263.1618 262.522 299.0328 3l14.8259 178.8157 194. 6078

1.5000 I94.T7428 391.3706 441.7546 464.4032 259.8177 282.4683

2.0000 526.321)7 $31.5898 293.6357 622.3979 142.3381 371.1003

2.5000 657.904¢ 657.2157 154.5502 T793.9130 460.08518 500.2146
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Table (3) & of

Times Estimators Are Better than Least Squares.

u,w Model P(Lp) P(K,y,0) Plks,0) P(Ly) P (K4, 0) P(K4,0)
0.0001 i 0.00 99.90 99.80 0.00 99.90 99.80
ii 0.00 100.00 100.00 0.00 100.00 100.00

iii 0.00 100.00 100.00 0.00 100.00 100.00

0.0100 i 43.50 41.40 30.80 0.00 84.90 74.30
i1 0.00 87.40 96.80 0.00 97.40 96.80

iii 0.00 77.50 75.00 0.00 77.50 75.00

1.0000 i 63.90 16. 60 0.60 1.00 79.50 63.50
ii 42.30 47.30 18, 40 1.20 86.40 79.50

iii 66.10 .10 4.50 0.00 75.20 70.60

1.5000 i 64 .60 14.60 0.90 1.70 77.50 63.80
ii 47.60 43.20 35.00 3.10 B7.80 79.50

| {id €5.30 9.70 4.80 0.00 75.00 70.10
2.0000 i 65.10 15.00 0.40 2.10 76.00 63.40
ii 50,70 15.80 29.70 3.90 B6.60 76.50

iid 66.40 §.30 3.60 0.10 76.60  71.90

2.5000 i 66.50 15.50 0.40 1.60 e0.40 65.30
ii 2.30 38.70 29.00 5.50 85.50 75.80

iii | 86.10 §.00 4.20 0.10 74.00 70.20




