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Abstract
The new exponential better than renewal in convex (NEXBRC) class of
life distributions, which 1s an intermediate class between HNBUE and GHN-
BUE, end its dual class NEXWRC are studied. Relationships with other
classes of life distributions are presented. A shock model in which shocks are

arriving according to a nonhomogeneous Potsson process, 15 also studied.
A shock model for NEXBRC (NEXWRC) based on probability generating
function is also established. The Laplace transform characterization for this

class 15 given.
1 INTODUCTION

In many reliability applications, various classes of life distributions and their
duals have been introduced to describe several types of deterioration or im-
provement that accompany ageing. It has been found very useful to r,:lnsaiﬁr
life distribution using the concept of stochastic ordering. For definitions of
several calsses of life distributions e.g. IFR, IFRA, NBU, DC’F:St NBUC,
FHUAB, NBUFR, NBUE, HNBUE, GHNBUE, DMRL and their duals, see
1-7].

Let X be & non-negative random variable representing a device life with
distribution F(t) and survival function F(t)=1- F{‘” and let Xy () b“ithﬂ
Slationary renewal of the equipment with distribution W(t) and survival
mﬁtliﬂn

W{t]:p"/ﬂmﬁ'[ujdu t>0,u>0 (1.1)
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where p = [;° F(u)du
Let Xgx be exponantial life of the equipment with distribution function

Fgx(X) and survival function

FE_]'[X)=E-II! p>0X2>0 {1.2}

We define Fgx a new exponential better than renewal W (t) in convex or-
dering (NEXBRC) ifand only if(iff) Xw() 18 smaller than Xgx in convex

ordring.

Deshpande, et al. [5] introduced another set of classes in terms of
stochastic dominance. Their motivation was to relate the use of stochastic
dominance in applied economics to notions of ageing in reliability theory.
One of their interesting class is harmonic new better than used of thrid order
HNBUE(3). However, they did not consider closure of these classes under
reliability operations, or shock models. Abouammoh and Ahmed (1] studied
HNBUET (HNBUE(2)) closure properties under some reliability operations
such as convolutions, mixtures, coherent systems and homogeneous Poisson

shock models.

The main theme of this paper is to investigate further this class NEXBRC

(HNBUE(3)). In section 2 definitions and relationships are considered.
Shock models for nonhomogeneous Poisson process are studied in section
3. In section 4 the Laplace transforms characterization for this class is es-

tablished.

2 DEFINITION and RELATIONSHIPS

Definition 2.1 (Stoyan [8]): Let X and Y be two random variables with
distributions F and G, respectively. If

- #*

L ” F(u)du < L 2 G(u)du ;nrnﬂz >0

then X is smaller than Y in convex ordering (X <, Y).

Definition 2.2 A non-negative random variable X with distribution F is
said to be new exponential better than renewal in convex ordering (N EXBRC)
if Xwq) <c Xex denoted by X € NEXBRC (or Fe NEXWRC). Its dual
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class i1s new exponential worge than r fi ' *
which is defined by Xwi) 20 Xuy etiewal in convex ordering (NEXWRC)

00 l 00 _ -
/; ;/: F{u)dudt < (E)[, e_"f"dy, z,t > 0. (2.1)

Theorem 2.1 X € NEXBRC(NEXWRC) iff

oo m__
./:. fg Fv)dvdt < (2)p’e™/*,  wt>0. (2.2)

Proof. It is obvious from (1.1), (1.2), and (2.1) O.
Theorem 2.2 If X € HNBUE then X € NEXBRC.
Proof. Since X € HNBUE,

_£ TP (v)dv < (2)ue™/*,  t>0. (2.3)

then integrating (2.3) with respect to t over (u,00),u > 0 gives (2.2) which
is NEXBRC condition. [

Theorem 2.3 If X € NEXBRC then X € GHNBUE.
Proof. Since X € NEXBRC,

o0 oo
] f F(v)dvdt < p’e™/*,  u,t>0. (2.4)
u !
by letting u tend to zero in (2,4), we have
f ” [ " Plo)dvdt < p?, >0, (2.5)
o Jt

which (2.5) is the GHNBUE conditions (1.

Then we have the following implications.

HNBUE =+ NEXBRC = GHNBUE

A similar chain of implications hold for the corresponding dual classes.
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3 NONHOMOGENEOUS POISSON SHOCK Moy,
ELS

Let A(t) be the survival function of a daﬂc-:e fhich is subject to a sequence
of independent shocks occuring randomly in time. Let N = {N(":)ft > 0)
be a general counting process during [0, t] and {Pl}r;ﬂ the probability that
the device survives the first k shocks. Py is assumed to be decreasing in &
and P = 1. Then the survival probability that the device survives beyond
time t can be expressed in the form

A() =3 P(N() = K} A (3.1)
k=0

For P{N(t) = k} = 3¢~ this shock model was considered by Essary et
al.[10]. A-Hameed and Proschan [11] and [12] have studied this model for
cases when N is a nonhomogeneous Poisson process and N is a birth process
respectively. These authors have considered the cases where Py, k =0, 1,...
has the following discrete properties IFR, IFRA, NBU and DMRL.

In this section we consider the shock model given by (3.1) such that
shocks occur according to a non-homogeneous Poisson process with mean
value function A(t) and event rate A(t) = A’(t) both defined on [0,00),A'(0)
1s taken as right derivative of A(t) at t=0. Thus the shock model (3.1) is
reduced to the form

o0 k
a0 =3 O SHA (3.2

Now we prove that the discrete NEXBRC property of Py, k = 0,1.2.... i
preserved for H(t) under the model (3.2). P

Definition 3.1 A discrete distribution or its survival

, A =1- .
0,1,2,..., is called discrete NEXBRC (NEXWRC) if Pk

’Eg Pe<s P -1/w)b k=013, (3.3)

Theorem 3.1 The survival function f(u) in (3.2) is NEXBRC ;
has the discrete NEXBRC property (3.3), A'(w) > 0 for u > 0 “: {H}I‘.'.u

e Mu)/m ¢ A(u)e™* uw>o
(3.4)
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Proof. Using definition (3.1) (B} is NEXBRC. then (3.8) can be written

P*+2P§+|+3Pk+l‘+‘“E#!“"]h‘)i' k=0,1,2,... (3.5)

mulhpirms both sides of (3.5) by kernel ¢~A(u) (A(u)* :
20 1.10.... 4w € L(nn-undmmnungum

H(u) < ple A _ (5 4 1), (u) (3.6)
j=1
where o A
Hi(u) =Y ca-.uu]i"_k(ﬂpﬂj, §=1,9,... (3.7)
k=0 !

In fact H(u) is NEXBRC if

[ fl H(v)dvdt < p?ev/P, u,t > 0. (3.8)

therefore

oo OO
f / "“"}A (v ]P;dudt < plev/®
k_n k!

Le

j:m i Pi( f, o (AE:?) i?((;’)) )dt < ple /¥, (3.9)

By using the second mean value theorem (see Gradshtein, and Ryzhik [11]]
and noting that the funciton A’'(u) is bounded and monotonic increasing
function for u € [t, 00), we get

j;m n(y(t] 0 ]Ak[;q“*(v))dt < ule /%,

f Eﬂ{m(tlz A 1Y [t]}d!"i.u oo N",

ZP.E{/ 200 L) < e

k=0 j=0



THE EGYPTIAN STATISTICAL JOURNA}

i

Using the second mean value theorem once again we get

© A 4 0 .. A(t ia

oo i o0 00
A e T L L B s s,

=0 j=i k=j

1
A'(u)?

o0 e A‘
St ip oy b < pe s,

=0

H(u) +2H:(u) + 3H3(u) + - - < A'(u)?ue"/n

H(u) < A(u)p?ev/m _ i H;(5 + 1)(u). (3.10)
)=1

where H;(u) is defined above by

that /7(u) satisfies the assumptio (3.1). From (3.6) and (3.10) we conclude

n of NEXBRC property if
ple=v/m _ FEI B(5+1)(u) < A (u)ple=v/n _ f: B;(5+ 1)(w).
1=1

Therefore (3.4) is satisfied and the Proof is completed.
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4 EE:ERATING FUNCTIONS SHOCK MOD-

Lﬂ!}u-ﬂfl)‘fh and py = Py~ Pi,i = 1,2,... be the probability mess fanc.
tion (pmi) of & nonnegative random variable X. Th probabili :
function of X 1s Y ’ iy ¢ g
o0
¥(0) = Elﬂ‘tl = E ﬂPj.
. §y=0
Observe that

(o) =1- i‘u - 0)¥ P;. (4.1)
j=0

For a geometric random variable X with parameter #, i.e., with pmf as
follows:

[i=P(X=j)=(1-0)¢ (4.2)
Relation (4.1) may be written in the form
(@) =1-) P(X=j)P;, k=0,1,2,... (4.3)
§=0

Let X,,7 =1,2,...,n be iid random variables with common pmf givea by
(4.2). The variable V = Z X; has the negative binomial distribution,

=1
P(v ¥n+j)=(“+;‘1)of(1—i)". 7=01,... (449
Next define
B,.(l]r={ ?;ﬂ(n-l_;_l)'j(l-—l)“ﬂr, forn=1,13,...
| 1 for n =0,

(4.5)
The furm- (4.5) has the following interesting physical meaning. Suppose that
a davicu.u subjected to two different types of shocks I and II say. At every
time unit a shock of type I occurs with probability 1 — #. If X; denote the
“:mb“ of type I shocks between the (j — 1)% and jth, j € N of type II
shocks, then X; has geometric distribution with pmf given by (4.2) and V
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has a negative binomial distribution given by (4.4). Hence B,(f),n ¢ N,

represents the probabilities that the device survives n shocks of t._r;.m I, where

P; represents the probability that the device survives the first 7 shocks of
j

type I1.

Using the form (4.5) Abouammoh and Hendi [16] found wrnditinm for
discrete life distributions, namely, NBURFR and NBARF!'?'. in terms of
B, (f). Next, we translate the NEXBRC (NEXWRC) properties in terms of

Ba(6).
Theorem 4.1: Let B, (f) be given by (4.5), {H};:.n is NEXBRC iff

Ba(0) < 3(1 - 1/u)" ( & ) (10 = 35+ 1)Bay(0),
3=0

k=0
where
— k-1 y ,
B.i(0) =" ( "+;.- )s"u —0)"Peyj, nji=1,2,..,.
k=0
Proof: Since Py is NEXBRC,
o0 o0
2.0 P <pi(1-1/p) (4.6)
i=ki=j
e,
Pi+2Ppy1 + 3Py + - <u(l-1/p)k k= O PIaNeY (4.7)

Multiplying both sides of(4.7) by the kernel [ " +: -1 ) #*(1 - #)™ and
taking summation over k — 0,1,... we get

B, (0) + 2Bn1(0) + ... < u’i(l ~ 1/u)* ( " +: -1 ) "'{1 - )"
k=0

o B £
Bn.[#} E ﬂlgﬂ(l"]fﬂ}i( n+k 1 )Fi(l'—'J"‘—Z{J‘FI}HuJ[') nlj= 1,2,“¢

j=0

For the dual -~
t:; ¢ dual property we present the following theorem whose proof is omit-

Theorem 4.2: |t B,,(0) be give

with inequality sign of (48) o n by (4.5), {P;}%2, is NEXBRC is satisfied

rsed,
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5 LAPLACE TRANSFORMS FOR NEXBRC

Here we establish necessary and sufficient conditions for a life distribution
to have the NEXBRC property by using the Laplace transform. These

conditions may be used to investigate the closure under some reliability
operations.

Now let F be a distribution function such that F(0-) =0 and
=)
$(s) = fu e"dF(u), &> 0
be the Laplace transform of F(z). Define
(=1)" & 1- 4(s)
nl d‘a"[ 8 Ja 3 20,020 (51)

let apyy(s) = 8"*1a,(s) forn > 0 and s > 0 and ag(s) = 1. The transforms
@, (8) can be written in the forms

auls) = % [_-, " whe=* F(u)du (5.2)

an(s) =

and { fos
ani1(8) = = [ s(su)"e " F(u)du, n>0,8>0 (5.3)
' Jo o \

In fact Vinogradov [13] has characterized the IFR property in terms of an(s)
while Block and Savits [14] have obtained similar characterizations for IFRA,
DMRL, NBU and NBUE properties. Abouammoh et al. [15] have charac-
terized the NBUFR and NBAFR properties similarly.

Theorem 5.1: Let F be a life distribution with F(0—) = 0, then F has the
NEXBRC property if and only if

®© uls?

L Z: ai41(0) £ =T, n>0,8>0 (5.4)
il i (14 )"
j=n4li=j5+1 u

Proof, First, we prove the necessary condition. Let F € NEXBRC then
(5.3) is satisfied, form which we deduce that

33 m"“-{'—“}:F d >0,8>0
Z Zﬂ'ﬂl('): E Z'fn € q (uJ u, n20s

J=nili=j41 j=ntli=j+l
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since F € NEXBRC, i.e. (2.2) is satisfied, then

oD oo a0 N t n
Z: Z ﬂi+l(£)£l='/; e H_(.E,_)_HEE e

j=n+li=j5+1 n!

.! 2 wilet)® o |
<ol | *-—(n!} e 1+ 30) gy

which gives

the condition i '
- ition in (5.4). This completes the necessary condition

To prove that the condition (5.4) is sufficient
¥

o R we may rewrite (5.4) in

Z Z ILME_'"HF(H}:{H < ue?

- i il ~ 1
j=n+li=j+1 (1 T '"}IH-I

w3 .f: ( 3 e ,::].-) P(v)dy < 407

j=n+1 i=j+1 (14 ;}.—)"-ﬁ
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"l (.E "'(?:I) du [* Po)do < 10"

y=n41 [1 + ;i_}n+]
which gives
00 - F’
j; Gn(“)/; F(v)dv < (1+ Lywi” (5.5)
where
- Gn(u) = E Eﬁe"“.
j=n+1 7!
It is obvious that
u n n+l
G“(u] - 5/; (":!J E—-luduzp(zﬁ < 'l.l]

i=1

where Y1,Y,,...,V,,, are mutually independent random variables and ex-
ponentiall distributed with rate s. Hence Gn(u) represents a gamma distri-
bution function with parameters (n+1,s) and its characteristic function is

gi‘ll'EII b]"' ‘;é'ﬂ.-_l—'[(w) - (1 — f;‘-'.)_{ﬂ+lll

Letting (n+1) — 1, 1t can be shown that
lim ény1(w) = exp(fwt).
n—og
that is . i ;
or u <
Gn(w) — G(u) = { { i o (5.6)

Taking the limit for both sides in (5.6) as n — co.

00 0o . ‘\!.ll!l
lim /ﬂ Gn(“}[' F(v)dudv < ulﬂﬂu ﬁ'+ EIr'-‘ﬂ]]"“ '

L e )

which gives

fmfm F(v)dvdu < plu_”‘", u,t 20,
] u
which completes the proof of the sufficient condition part.

The corresponding Laplace transforms of the dual properties HNRWUE
i8 given in the following theorem whose proof is omitted.
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Theorem 5.2: Let F be a life distribution with F(0—) = 0. Then F is
NEXWRC iff (5.4) is satisfied with inequality sign reversed.
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