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Mostafa and Mazloum (1995) have presented geometric and analyti-
cal characteristics of the complete even power exponential distribution.
[n this paper, the problem of estimating the parameters of this distribu-

tion using both methods of moments and maximum 1ikelihood is considered.

1. Introduction

The general form of the complete even power exponential density is

given by:

(B (x4

m
£ -
b,m,u.a(x} ahuf'"r{h’-?[m]

Where o < x ¢ w; - <y < »; o >0, mis a positive integer; b > 0

and m and b are chosen arbitrarily.

The form (1-1) produces families of distributions depending upon
the values of m and b chosen. For example, m = 1.and b = 2 yield
~ the normal distribution. Also, m =2 and b = 1 give the special form
of the 4th power exponential distribution termed complete fourth

PoWer exponential distribution. The problem of estimating u and o

for this Jater distribution has been conéidered by Ibrahim, A.R. (1993).

(.) given by (1-1) is unimodal and

The density function fb.m,u,u

SYmetric about its mean wu, 1.e.

E(X) = u (1-2)
and

2r+l _ ' (1-3)
= - = ﬂ r = T’Z'3|lli
Mopyy = E(XW)
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The even central moments are:

o' "/ Mp((2re1)/2m) . 1,2,3,...

Uy (M) = E{K-ulgr S ) {]E“
i ticular,
n particu 52 b]fm r(3/2m) (1-8
up(m) = ——(172m) |
and
2/m
u4{m} y " hr[ r ﬁgsz (1-6)

The class of densities {f (.): b>0and m is a positive

btmlulﬂ
integer} has been studied geometrically and analytically by Mostafa

and Mazloum (1995).

In section 2, the method of moment's estimators, for the loca-
tion and scale parameters of such distributions, as well as their

associated properties are obtained.

In section 3, the maximum Tikelihood estimators of those para-

meters along with some of their properties are discussed.

In section 4, an iterative method for solving a 1ikelihood

equation for estimating the location parameter y is suggested.

2. Moment's Estimators of u and g’ (o)

Let IT, IE‘ TR xn be a random sample from the density
fﬁ,n.u.u{‘} defined in (1-1). The method of moments estimators ﬁ

and 02 of y and .2 are the solutions of the equations:
n

(X" = 1 X re1,2 (2-1)

i=]
Now, substituting from (1-2) and (1-5) into (2-1), we get the

moments estimators:
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1.
w =K, (2-2)
and
el r:ﬁvmm} S§ where s2 - 1 E] (X;-%)2 (2-3)
Als0,
/T o (@4

properties of the Moments Estimators ; and 53{5}

i) u 1is an unbiased and consistent estimator of u. Moreover, ; is

asymptotically normally distributed (AN), i.e.

. 1/m
o AN, ST/ (2-5)

i) EE[Q} is biased, consistent and asymptotically normally

distributed, i.e.

02  AN(o2, & [ L1/Z0LLC/ZM) _ 4y (2-6)
_{F{3!2m)}

and

i [r{lfzm} r(s5/2m) _ 1) (2-7)
(r(3/2m))

| 111) y and o2 are uncorrelated.

o~ AN(o, 3

Proof of part (i) is easy and therefore is omitted.

Proof of part (ii):

" r(1/2 2 -

It is well known [1] that

e(s2) = =L upm (2-9)
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Hence, (1-5), (2-8) and (2-9) give:

-, -1
E(c?) = Eﬁ_ o [Eqﬂ

Iﬂ

§i€es o2 is negatively biased. However, it is asymptotically Unbis

Now, to show that 5 is biased, we proceed as follows:
Since o is a nondegenerate random variable, then v(o) > 0,
5(52] > EE{SJ. Substituting from (2-10), we get:
(1) 52 5 g2(c)
Hence,

E(c) <o
i.e., o is negatively biased.

b) To prove the asymptotic normality of o2 and o s given by

(2-6) and (2-7), we need the following theorem cited in [6]:

Theorem

Let X Dbe AH{u.uﬁ] with o+ 0 and g(.) be a real valued
function. If g(.) is differentiable at X = , with () # 0, then

9(x,) 15 AN(g(u),{a' (u))? o2).

It is well known [1] that:

2 Ha
S, AH{uz, (2-11)

copeaacs)

From (1-5), (1-6) and (2-11), we notice that #f{u4— u3)/n) » 0 as m.

Now, to prove the asymptotic normality of ;2, we take

TR . W _
on) = o =T ) P =

Note that

i - r(1/2m - £ 0 2—13}
g (UEJ ;1fm r(3/2m) (
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Hence, by the previous theorem, we get:
02 n AN(9(,) (9" (up))? 02) (2-14)
where
(1) = L(1/20) (2-15)
g “2] E1fm r(jj?m] Ha
and
r(1/m) 20~ % (2-16)

{9'[U2112 ﬂ: = | bem r(3/2m)

Substituting for u, and u, from (1-5) and (1-6) into (2-15) and (2-16),
we get:
g(u,) = o (2-17)

and

i

(g'( ]}2 o2 =2 [ r(1/2m) r(5/2m) - 1] {2“]3}
2% Tn T {rIJIZmJlé

Hence, (2-14), (2-17) and (2-18) give:

o2 n AN(oZ, g“ [ r(1/2m) r(s/zm) 1] (2-19)
(r(3/2m))

To prove the asymptotic normality of c;, we take:

2 & 1 r(1/2m)
S = g = 5 Z'Eﬂ
9 n} / b 2 Ff:iﬂ'"? j | |

Note that: . .
: i} r(1/2m r
g I /t?"" r(3/2m) 2112!

™

Substituting for up from (1-5) we get:

ri/am) 1 4o 2-21
bI/™ r(3/2m) %0 (el

QI{HEJ -

Hence, by the previous theorem, we get:

o ~ AN(9(u,) (9" (uy))? B2) (2-22)

where
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/ Fi!ZEﬁﬂi {E~23]
= _"u
Heg) b'/™ r(3/2m) ;

24 ui) (2-24)

and
. 2 . r(1/2m) . ],} (———"

Substituting for My and Vg from (1-5) and (1-6) into (2-23) and

(2-24), we get:
9(uy) =0 (2-25)
and
) o2 1/2m) 2-26
¢ j2 g2 » 92 (_I(5/2m) r( 1] (2-26)
A L (r(3/2m))%
Consequently, (2-22), (2-25) and (2-26) imply
; ~ AN(o, a: [Pfﬁfzmj r(l/2m) _ 11 (2-27)
(r(3/2m))

c) The mean squared error consisténcy of o2 and that of o follow |
part (b) since (2-19) and (2-27) show that both o2 and o are asympto-

tically unbiased and both v{&fj and v(;] tend to 0 as n tends to =.

Proof of part (iii)

To show that ; and ;I are uncorrelated, we appeal to the followin

well known re;ult [2]:
“For a random sample of n from any symmetric parent distribution,

an odd location statistic and an even location free statistic are un-

correlated where:
"A statistic Tl[xl'IZ""'Hn) is an odd location statistic if for

all xp,%ps..-,% , and every h, T]{x|+h,xz+h....,xn+h}-T](x1.nz.....IHV

and TI "“I} :"HE- ' a8 i'ln]F'T}{H] .Hz. . : ' ,In}"
Likewise " a statistic Tz[x].xz....,x“] is an even location free

statistic if for all :I.xz....,xn and every h,
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+h, x,+h, ... -
Tz{!] 2 ’ Kn‘"h] Tz(xlt!zi---'ln}

and
[P R SRR VAL P C T PR L
Now, it is easy to show that u is an odd Tocation statistic, o2

is an even location statistic and the parent distribution is symmetric.

Hence, by the above result, u and o2 are uncorrelated,

3. Maximum Likelihood (ML) Estimators of uand g

For a random sample of size n from the density fo m ; nr[.] given
pitip i p

by (1-1), the likelihood function is:

-1 (xwre)
L(wso) = (k)" Lo By T
a

(3-1)

where K' = =
b172M 11 /2m)

The logarithm of the likelihood function is:
: xi"'}ZM

in L(p,o) = n 2n K’ -ninu-g- 1-‘11 ( o

Now, differentiating &n L(u,o) with respect to u and o:and setting
the partial derivatives equal to 0 yield the 1ikelihood equations:

2m n 2m-1 (3-2)
E(xs- -0
b o2 a) S
and
n
58 2n P (xgew)" =0 (=
o’ b u2m41-'1_1 !

Note that for any simultaneous solution (u,0) of the equations (3-2)

and (3-3) we have:

2 L -Zn(2n-1) : (k-n) 22 < 0, (3-4)
i=1

aui b o
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al tn L . g EI'II(EI'H'H 2 [li_u}ZM

202 o2 bo i=1
= - 2mn < 0 {3'5}

o2

and

2 n
2L __ (2m yyem=1 .

bo {=]

Hence,

32 en L, 32 en L, 32 gnL,2
( ) ) {ﬁu o >0

Consequently, any simultaneous solution of the equations (3-2) and
(3-3) maximizes the 1ikelihood function L(u,o).

It is clear that equation (3-2) 1; of degree 2m-1 and hence,
it has at most (2m-1) solutions. Consequently, the 1ikelihood
equations (3-2) and (3-3) have at most (2m-1) solutions. However,
as we have seen, all these solutions maximize the 1ikelihood func-
tion which is impossible unless they are all e u41, Hence, the
1ikelihood equations have only a unique solution.:

In section 4, a suggested iterative method for solving equation
(3-2) 1s presented. Suppose the solution of this equation is y,
then substituting in (3-3), we get the estimator for o, namely,

- n

o= [%E- 131 {Ii'ﬁ}zm]]fzm (3-7)
or, alternatively,

- n .

o Gy L (xgu)2M)/m (3-8)
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Properties of the Maximum Likelihood Estimators ﬂ and o

i) w and o are joint asymptotically efficient and having asymptoti-

cally bivariate normal distribution with dispersion matrix whose

inverse is given by:
i

_ELEE in L} -E( 32 gn L}
v“] - u? o do (3-9)
22 an L e 92 e L
(Eu 30 E( » )
e g o
Now, IT-4}. (3-4), (3-5), (3-6) and (3-9) give:
. Em{Zm }Jn r((2m-1)/2m) 2
N r (1/2m)
0 2mn
so that = |
62 /™ r(1/2m) | A
2m(2m-1)nr((2m-1)/2m)
V= (3-10)
2
0 T
L

This property follows from the properties of the ML estimators (4].

1) yu and o are asymptotically independent: This property is an

immediate consequence of property (1).

4. A Suggested Iterative Method to Solve a Likelihood Equation

In this section, the following iterative method is suggested to
solve the 1ikelihood equation given by (3-2): Letting

m, = 2m-1, (4-1)

the 1ikelihood equation given by (3-2) becomes:

n
] {:1-u)"“ =0 (4-2)
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Adding and subtracting x inside the parenthesis, we get:

i R "o
[(x%) + (x = )] 7 = 0
1

il =5 =3

.i

which can be written, using the binomial theorem, as:

n my Mic 2 2 IHD"I"'
g1 (L O)(xw) (xg7x) © =0
i=] r=0
This equation takes the form:
m
om
0,,= I
5 () (x-u) H“'n“" =0 (4-3)
where
'I n _ mu'l‘" (4_4}
M == I (x; - x)
myr noey

i.e., Hmn-r is the (m-r)-th' central sample moment.
Equation (4-3) can be rewritten as:l

mﬂ m

LI S [CR L S

n
o

Mo -m (u-X M (4-5)

o n—] -r

0

Now, neglecting the 3rd term in (4-5) and solving the resulting

equation, we get:

the first approximation ;(]} for p as;

=X+ X (4-6)

where M

0
o TW W (4-7)
0 "m,-1

To get the 2nd approximation ;(2} for u, substitute the 1st
approximation for yu, given by (4-6), into the 3rd term of (4-5),

i.e.,
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m
|l|- - m (; - xX)M + .':u [mnj(-x ]r M = 0
b 0'"(2) "'0" olos T 0 My =F
From which we get:
. - 1 [ "o o r
TGRS i, RS K
Mo " m
0 1 0 r-1
= [n - I -
W W r=2 (%) ”"n'r]

Hence, the 2nd approximation ;(2) for u would be:

A 1 0
H(ZJ = X + xﬂ“ - rfz j’r] (4-8)
where
5 1 Mo -1
Yp = m ﬂm K (y H"xn}r Hmn-r (4-9)
b .

For the 3rd approximation ﬁm "of yu, we substitute the
2nd approximation 5{2) for u given by (4-8) into the 3rd term

of (4-5) to get:
m m
X 0 m 0
N - - RTLI I r - 0
m mn(“[:i} K)HmD—I ¥ r£2 (-1) {r }xn“ r‘fZ yr‘) "Io-r'
From which, we get:
. . "
bias. = B # e £ (") )" 0- £ v
“3) 7" My W -1 ["’"u " r=2 (¢ ) (%) ( rEE v ".u-r]
0
M m m
m o m 0
NP, NS R ' S L e (10 rel (1- ¢ y)"
o H;D-I L, A {p 1) H”n'r r=2 "
Hence, the 3rd approximation ﬂ(” for u would be:
Mo Mo
(4-10)

- - r
"{3] = X + In[T rEZ }"_[1 rfz .vr-] .I
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-

tion u for u can be
Continuing as above, the N-th (N > 2) approxima (N)

written as:

m
N 0
" mﬂ 0 r r.r.r
I R AL AL A S L TR b
"(N) X% r=2 re2 r=2

(4-11)

where the number of parentheses with the exponent r is (N-2), N »:g,

To verify that (4-11) is true for all N, we show that it is true for

(N+1): substituting the N-th approximation for y into the 3rd term of

(4-5), we get:

mu m mﬂ mﬂ
* -X - I 1- ¢
R = Ha[ I'.I{H_I_]} x]HmD" + E { u_r( X } {.' o0 y ( ot -F
o Mo
=z y(..(- 2 y )" )" -0
{ r=2 T r=2 T
From which we get:
: ] ] m m} - - " m, m,
n X = (M + s %) [1- & Yot~ % Y.
(N+1) M Hmn-] Mo r=2 Hm d r=2 h r=2
m m
0 0
- - N S
(1 Ly (e (- rfz Ye) «) ) )10
M m m,
——H—-—qi- ‘—Tr“- L "jﬂm (-x)"'0- &y
u "'I I""z I""E
o mn "o r ryrr,r
(1- rfz y.(1- rfz Yulooi(1- rr,z 0 Y I o N 1
I mﬂ "o mﬂ mu
"Xll- 1 y- ¢ ya- g - g
0 r=2 r re? r pu2 -rr-( g y (
Mo
(M- )N
r=2
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Therefore, the {H+I}:h approximation for y is:
;{H+l} = X + Xo {1~ zu Yoll- :D y (1- :h y.(1- :ﬂ
r=2 pag * T 11 g0 PhP By Yplnes
(1- ?ﬂ y )" ]r}r}r Fy
v 00 0 i

where the number of parentheses with the exponent r is (N-1).
Therefore, the approximation given in (4-11) is true for all N

(N > 2) noting that the 1st approximation is given by (4-6).
Special Case

We have shown that to solve the likelihood equation given by:

(x: - IJJ,'Zm—l -0
£ 3inl

(4-12)

" e 3

i
We may use the iterative method consisting of the 1st and the Nth

(N > 2) approximations given by:

ury = X+ % (4-13)
and
m m m
. 0 m 0 0 r r P
= X "~ - n- - W W - E LI }
Ny = X * X, {1 rEZ y (1 fz y.(1 rfz IfF (1 & Yp) ) ))
"~ (4-M)

where:the number of parentheses with the exponent r is (N-2),
] B - M

m. = 2m-1] wie "= r (x ‘I} r““:]r”-nma "
0 ’ ,%h r R g i

" -1
. and Yo " #Hm_—:'l (rn”“”ujr Hun-r
0
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the case of the 4¢)

We now consider the special case m = 2, 1.e.

power exponential distribution. In this case, the likelihood equatigp

is E [”i'“}g =0, and it is straightforward to show that the 1st
i=1 _
and the Nth (N > 2) approximations given by (4-13) and (4-14) would
be respectively: - ,
i _ i} :
and
N,
e - 2 I o243 3,3,3 _16
ufHJ = X + 3—11{]' 2‘-}'(] ﬁ{] -2-7—(..-{1 '27‘} .--} } } } (4 1 }
where
n
”2 . L (x.—i}z, o is the coefficient of skewness
2 I i :

and the number of parentheses with the exponent 3 in (4-16) is (N-2).
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