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INTRODUCTION

Field data may contain some influential observations that have an effect on fitting the model. An outlier
may be an influential observation with large residual. The presence of the outliers is an indication
of inadequate model, incorrect data or both. Data inadequacies are often caused by gross
measurement or recording errors. As Hamper et al (1986) reported, routine data contained about
1-10% gross errors, and even the highest quality data cannot be guaranteed free from gross
errors. Detection of influential observation as an outlier is important in developing a robust
technique to: 1) estimate parameters insensitive to the influence of this observation, 2) increase
the power of test statistics, 3) narrow the confidence intervals, and 4) keep the integrity of data-
model combination.

Several studies have described outliers diagnostics as the statistics that reveal
observations having a large influence on parameter estimates, which is known to be sensitive to
departures from the assumptions under which it is derived "nonrobust”. Diagnostics measures
have been derived to detect individual or multiple cases that deviate abnormally from the data.

A. Diagnostics of individual outlier

Hoaglin and Welsch (1987) found that, in least square solution of linear model, the hat
matrix H=X(X'X)"X' is a projection of the data vector y into their estimates y =H y and
estimates residuals such that e = (I .- H)y. The diagonal elements of H matrix ‘leverage point’
describes how far away the individual observation is from the centroid of all data in the space of
independent variables. The diagonal elements (0< h, <) of zero indicate a point with no
influence on fit. Some researchers (Cook and Weisberg, 1982; Hocking, 1983; Stevans. 1984)
used the leverage points ( h, ) to determine the cutofT value (CFV) where h,, = 2p /N, where p is
the number of independent variables and N is the total number of observations. If h, is greater
than 2p/N, the total number observation is declared as outlier.
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Kousseuw and Leroy (1987) found a one-to-one relationship between squared
Alahalenobis distance and diagonal elements (h;;) of hat matrix given by:
MD,> = (N -1) ( h;i - 1/N).
The outliers in the y-direction are completely neglected by the hat matrix (or function of h;; )
because 1 matrix is only based on the independent variables. Several studies (Hoaglin and
Welsch, 1978; Draper and John, 1981; Atkinson, 1982; Cook and Weisberg, 1982; Hocking,
1983 Hock:ng and Pendleton, 1983; Paul, 1983; Stevans, 1984; Atkinson, 1985) ust the hat
miatrix in computing the covariance among residuals such that Cov(e) = o? (1-H). Covariance
among residuals was taken into consideration for scaling residuals and deriving other statistics
such as:
1) Standardized residuals t; =e;/s; where s; is an estimate of o and e; is the residual of the
ith  observation.
2) Studentized residuals t; = e; / [s ( 1-hii )'5] .

Observation with the largest absolute value of t; is taken as most likely to be a contaminant.

3) Jackknifed residuals J; =e;/ [sq) (1- hii )°] where s is the estimate of s without including

the  ith observation in the analysis.

4) Cook’s statistic (1977, 1979) is defined as the squared standardized distance overb when
estimated with the ith observation such that:

CDZ=(b-b;) XX (b-b)/ps’ =¥ -y) Go-y)/ps’

where:

b = the least square estimate (LSE) of the regression coefficient.

b; = the LSE of the regression coefficient after deleting the ith observation.
p = the number of independent variables.

s? = an estimate of 6°.

y@ = the data vector after deleting the ith observation.

This statistic is invariant under nonsingular linear transformation. Furthermore, by definition it
measures either the change in the estimate of b relative to its variance or the change in the
fitted value vector.

An equivalent formula that makes use of hy; is:

CDA=(U/p) *t& * hii/ (1-hy)

The ratio hy / (1- hji) measure the influence of the ith observation on estimating the

parameters, since t; is also an outlier measure, combining t; and the ratio h;; / (1- h;; ) results in

a measure of the overall impact of any single observation on the solution.

5) Belsley et al (1980) used a similar function to CD{* with using S(i) as:

DFFITS; = (e / s¢ )* hii °/ (1-hy;)

DFFITS; measures the influence on the prediction when the ith observation is deleted.

Observation with DFFITS; > Z(p/n)” should be scrutinized. Belsley et al (1980) defined a

diagnostic based on the change in the ith regression coefficient, namely

DFBETAS; (i) = b; - bj(i ) = (X'X)" Xi & / (1- hy; )

where X; is the ith column of X matrix, bj(i ) is the least square regression coefficient after

deleting the ith observation, and the cut-off value for DFBETAS is 2/(n) °.

Hocking (1983) pointed out that DFFITS; and DFBETAS; (i) are not invariant under

nonsingular transformation, and Cook's distance is preferable.
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6) Graphing is an effective way of detecting the outlicr. Probability plot or Rankit Plot of
Daniel and Wood(1980) can be used to check if the residuals are approximately normally
distributed. The ordered values of residuals ¢, (the vertical coordinate) could be plotted
against ¢ (e, - 3/8)/ (n +1/4) (horizontal coordinate )..
@' is the inverse of the standard normal distribution function . and n is the
number of non-missing data.
Other diagnostic functions like Studentized residuals, Jackknifed residuals can be plotted against
the predicted value of y. Cook and Weisberg (1982) suggested to plot ordinary, absolute and
Studentized residuals against (1- h,, )s,.
Single-case diagnostics, although they are simple from a computational point of view, often fails
to reveal the impact of small group of cases because the influence of one point could be masked
or obscured by another. In other words. two or several outliers can act togther in a complicated
way to enforce or to offset cach other's influence. Also, swamping problem which statisticaly
defined as a problem arise from including a “non-outlier” in a group of observations judged to be
outliers. Therefore, multiple diagnostics is an urgent solution to the routine detection of outliers.

B. Diagnostics of multipie outliers

An influential subset of outliers is a natural generalization of an influential outlier. Cook
and Weisberg (1980) recommended the use of CD,* where I is an index set corresponding to the
subset cases. Note that CD;? reduces to CDi2 in the single case. Andrews and Pregibon (1978)
proposed the determinantal ratio:
Ri=| @zl |22
where:
R, is a measure of the remoteness of the subset of cases with index [ , If R; =1 then the subset
of outliers is not influential.
Z is the X matrix with the vector of observation y appended, and
Z, is the Z matrix with the rows of Z in the index set I deleted.
Gray and Ling (1984) considered the modified hat matrix H* = YAVA AN A
where H* has the same properties as H, such as symmetry and idempotency. They have shown
that H*=H + ( e’e / sums of squares due to residuals). So H* combines the leverage (h;) and the
residual . information (i.e.. information contained in H and e). Subsets of cases jointly influential
are often associated with submatrices of H* containning several elements with large absolute
values. The jointly influential cases exhibit large values of determinant of h,; and a nearly block
diagonal structure can be observed in H*.

The objective of this study is to detect single or multiple outliers under the analysis of
mixed linear model and to investigate the effects of the outliers on the single or lincar
combination of the parameters estimated by mixed model analysis.

METHODS

The mixed linear model considered s,
y=Xb+Zute (1)
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where:
y is ( n*1) vector of observation.
X is (n*p) incidence matrix.
b is (p*1) vector of a fixed effect.
7 is (n*q) incidence matrix associated with random vector.
u is (q*1) vector of random effects. E(u) =0, V() =G.
e is (n*1) vector of random error. E(e) =0, V(e) = R=1Is%

The mixed model in equivelent form is:

y=Xb+e
where E(e) =0 and V(e) =V =2GZ’ +R

Henderson’s (1963) generalization of the Gauss-Markov theorem states that the best linear

estimates of b and u are obtained by solving the overdetermined system of equations:
R R127 R )

l: G2 G-l/z(}), @)

If C denotes the coefficient matrix of the LHS, then (2) could be rewritten as

T [t

where the last q rows are augmented observations that express the prior information about u.

cc [b]=cC| Ry
. u G-IIZO

which yi€lds the normal equations of the mixed model

X' R'X X'R'z X'Rly (3)
Z'R'X Z'R1'Z +G! Z Ry + G'o
Solution to (3) yields b and u which can be used to find the predlcted value.
An outlier is an observation with a large residual .

Procedure:
1) Set up the mixed model equations as in (3).

2) Compute e =y -3.

3) Compute H matrix such that H= C'( C'C )" C. The leverage points are the diagonal elements

of C'(CC)C.
4) Compute Studentized, Jackknifed, Cook's distance,...etc

5) Co]r/r;pute H* and R; of multiple case diagnostic. If G is not diagonal, it is cumbersome to get
G due to the possibility o f negative covariances. However, H matrix can be computed

because the concern, in single case diagnostic, is the diagonal elements h;;. Moreover, an
estimate of H matrix can be found via the covariance of the predicted value,
Cov (y)= o® H where 6? could be replaced by the estimated variance [s2 =e"e / (N-p)].
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6) The influence of the outliers or influential observations on the estimated parameters can be
found by the following steps:
a) Estimate the standardized difference of the estimated parameters such as:
(b - beiy) / sy * (£i ) * 100
where:
b and b;, are the solution to the mixed model equation (3) before and after deleting
the outliers, sg; is the standard deviation after deleting the ith observation, and fj; is the
diagonal elements of the inverse coefficient matrix (C'C)" .
b) To find the effect of outliers on a linear function of selected subset of the parameters of
fixed or random effects, one has to specify the linear combination by using the matrix L
which is q*q matrix with rank q. The extension to Cook (1977) can be found such that
CDg = (s - si)’ M (s-50) / s’
where
M=L(CC)L
q = the number of unknown parameters to be selected for linear combination.
s? = an estimate of ¢”.

NUMERICAL EXAMPLE

Given the data in Table 1 (adapted from Schaeffer,1975), the sire model used is,
y=m+HYS + Sire + ¢
Number of HYS 6, number of sire = 6 and total number of observatlons 40
V(e)=R=1 s? g
Assumes / s s=15and

A=[1 0 0o o0 o0 o
0 1 172 3/4 3/4 3/4
0 12 1 3/4 3/4 3/4
0 3/4 3/4 S5/4 3/4 1
0 3/4 3/4 3/4 514 1
| 0 3/4 34 1 98 _

X'X Xz [ Xy
XZ ZZ+A's./s, A
The following postulated scinarios were implemented to study the effect of single and multiple
outliers on the solution of mixed model equations:
Single outlier: observation "20" was defiberately set to be 10.
Multiple outliers: observations "4", "20" and "35" were set to be 20, 10 and 30, respectively ..
a) Sol (1) where there is no outliers as given in Table 1.
b) Sol (2) has single outlier (observation “20" =10).
¢) Sol (3) where single outlier is deleted (i.e, observation "20" deleted ).
d) Sol (4) has multiple outliers (obs "4" =20, obs "20" =10, obs "35" =30).
¢) Sol (5) where multiple outliers are deleted (obs "4", “20", and “35" deleted).
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f) Sol (6) is It Br'1 AS, when observation "20" is an outlier.
g) Sol (7) is DFBETAS,; (i) when obs "4", “20", and “35" are outliersn

RESULTS AND DISCUSSION

Table 2 shows different statistics for detecting single outlier (observation "20"). The diagonal
elements (hy) of the Hat matrix have not shown abnormalities because the outliers which ccurred
in y vector are completely ignored by the Hat matrix gH). Functions of residuals and h;; elements
like standardized residuals, Student, Jackknife, CD;” and DFFITS show that outlier observation
"20" has a large distinctive value as compared to the rest of the data. Similar results are observed

in Figures | and 2.

Solulion to mixed model equations by including or excluding the single or multiple outlier(s)
ate shown mn Table 3. In the case of single outlier, observation "20" clearly influenced solutions
HYS:, S, S:. Ssand S, i.e., influenced both fixed and random effects. Solutions HYS; and S;s
are affeced the most because the outlier of Observation 20 belongs to the subclsses of HYS; and
Ss.  Solutions 83, S3 and Sg are affected to a lesser extent through their relationship to Ss. These
results were also supported by the values of DFBETAS (Sol 6). Sol(4) and Sol(5) and FBETAS
(Sol 7) show the joint effect of multiple outliers (observation “4,” “20" and “35") on the solution
vector. Since observations “4", “20" and “35" were set to be outliers in obtaining Sol(4) and
these ouiliers beloug to the subclasses of HYS 1, 3 and 6 and Sires 1, 4 and 5, solutions for the
corresponding levels of factors are highly affected. Comparison of Sol(1) and Sol(5) in Table 3
revealed that deletion of these outliers did not exhibit much impact on the solution vector.

Cook and Weisberg (1982) ratio (CD;? ) was estimated after deletigg the outlier (observation
"20") as an extremely influential observation. The estimate of (CD;" ) was .355. However, the
estimate for multiple outliers, (CD;%) for linear combination of random effects was .003. The las
estimate is important to detect the impact of influential observations as outliers. The value of Dy
is the squared standardized distance over which the parameters move when estimated without
the influential observations . A large value (> 0 ) means a large influence on the parameters.
Andrews and Pregibon (1978) ratio after deleting observations "4", “20" and “35" was 0.086. A
small ratio (<1) is an indication of influential outliers.

It is umportant to note that the effects of deleting a single outlier or multiple o;xtliers become
less as the sample size increases. DFBETAS; decreases in proportion to (n) >. The outliers
produce large 1esiduals when the chosen model is fitted to the data. Outlier does not necessarily
mean that the observation is influential with respect to the fitted equation i.e., does not ecessarily
influence the parameters. Deleting observation with small resigual may greatly influence the
parameters as shown by Andrews and Pregibon (1987). So, if an influential outlier is shown to be
due to eivor. it should be deleted subsequently.

Modifyiug the hat matrix as proposed by Gray and Ling (1984) has shown a block diagonal
structure for the example data (Table 4). The influential observations were isolated in a block on
the diagonal H*. The advantages of H* is to avoid the treatment of all possible outliers as a
stepwise CFrocedures which was described by Swallow and Kianifard (1996). It should be noted
that the diagonal submatrices with large | h;; | elements do not necessarily correspond to the
nfluential subset of outliers. They are merely promising candidates for being influential outliers
and other diagnostic measures should be used.

Mixed linear model has a vast application in animal breeding. The problem of outliers and
the diagnostics of influential observations play an important role in several ways, for example:1)
The outlier can be the most important observation in the data set and their identification
represents the highest priority for animal breeder especially in identifying superior bull for Al
use.

2) Outhier will affect the solution to the mixed-model equations (3) and consequently the
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jrediction of the linear function K'b + M'u provided K'b is an estimable function, so culling
(i.e., delecting observation) has an impact on the linear predictor.
') Robust estimates of variance components could be obtained as a simple modification of
REML. Fellner (1986) estimated variance components for mixed model by using the random
b:f th; 6i;1vcrsc of the coefficient matrix and an odd bounded monotonic function found by
uber (1964).
-) Fellner (1986) found that outliers could occur among the elements of random effects u.
Situations exist in animal breeding in which data have been subjected to prior selection.
Henderson (1975) described this as L'u selection i.e., selection on u.
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Fable 1. Daughter's milk yield (MY) by sires and HYS.
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HYS Sire D MY Obs HYS  SirelD MY
! A 130 21 3 E 170
| A 110 22 3 E 160
I A 150 23 3 E 180
! A 14 24 3 E 210
! B 'S0 25 3 E 203
! B 140 26 4 A 140
1 B3 159 27 4 A loc
1 C 116 28 4 F 186
! C 145 29 4 F ron
I C 155 30 4 F 150
2 B 110 31 5 A 151
2 B 141 32 6 A 170
2 B 160 33 6 A 134
2 D 130 34 6 A 120
2 D 168 35 6 D 190
3 B 124 36 6 D 160
3 B 150 37 6 D 200
3 B 170 38 6 D 196
3 B 180 39 6 F 193
3 E 156 40 6 F 170
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Table 2. Measures for detecting single outlier.

Index hy e/s Studentized Jackknifed  CD? DFFITS
1 0.2175 -0.0963 -0.1088 -0.1679 0.0270 -0.0885
2 0.2175 -0.6288 -0.7109 -1.0970 1.1710 -0.5782
3 0.2175 0.4363 0.4932 0.7608 0.5630 0.4011
4 0.2175 0.1966 0.2222 0.3429 0.1141 0.1808
5 0.2770 0.1561 0.1836 0.2832 0.1078 0.1753
6 0.2770 -0.1102 -0.1295 -0.1999 0.0542 -0.1237
7 0.2770 0.3958 0.4654 0.7180 0.6911 0.4444
8 0.3291 -0.7200 -0.8791 -1.3561 3.1580 -0.9498
9 0.3291 0.5229 0.0637 0.0982 0.0136 0.0688
10 0.3291 0.3184 0.3888 0.6000 0.6180 0.4200
I 0.2779 -0.8246 -0.9704 -1.4971 3.0221 -0.9289
12 0.2779 0.0009 0.0010 0.0015 0.0000 0.0009
13 0.2779 0.5068 0.5964 0.9201 1.1409 0.5709
14 0.3755 -0.3474 -0.4396 -0.6782 0.9678 -0.5259
15 0.3755 0.6644 0.8407 1.2970 3.5411 1.0057
16 0.2487 -0.9524 -1.0988 -1.6950 3.3291 -0.9751
17 0.2487 -0.2601 -0.3001 -0.4629 0.2478 -0.2663
18 0.2487 0.2725 0.3143 0.4849 0.2716 0.2789
19 0.2487 0.5387 0.6215 0.9588 1.0649 0.5516
20 0.1661 -4.0293 -4.4129 -6.8069  -32.3069 3.376

CFV (cut off value) for h; =2p/n =.6 ; CFV for DFFITS = 2(p/n) ° =1.095;
CFV for CDg_2 = |; CFV for Studentized, Jackknifed and e;/ s; = arbitrary value = 2.5
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Index  hj; e/s Studentized Jack'nifed CD%j DFFITS
21 0.1661 0.2311 0.2530 0.3904 0.1062 0.1742
22 0.1661 -0.0352 -0.0385 -0.0595 0.0024 -0.0265
23 0.1661 0.4973 0.5446 0.8402 0.4922 0.3749
24 0.1661 1.2962 1.4194 2.1897 3.3432 0.9772
25 0.1661 1.1098 . 1.2153 1.8748 2.450° -0.6820
26 0.3531 -0.4812 -0.5983 -0.9231 1.6287 0.1482
27 0.3531 0.1046 0.1300 0.2006 0.0769 0.4470
28 0.2681 0.4096 0.4788 0.7386 w0756 -0.5991
29 0.2681 0.5161 0.6033 0.9307 1.1107 0.5632
30 0.2681 -0.5489 0.6417 -0.9899 1.2566 -0.5991
31 0.5000 -0.2529 -0.3577 -0.5519 1.0664 -0.5519
32 0.5000 0.2529 -0.3577 -0.5519 1.0664 0.5519
33 0.2970 -0.7173 -0.8555 -1.3197 2.5762 . -0.8578
34 0.2970 -1.0901 -1.3001 -2.0057 5.9498 -0.1304
35 0.2185 0.4383 0.4958 0.7649 0.5728 0.4045
36 0.2185 -0.3605 -0.4078 -0.6291 0.3875- -0.3327
37 0.2185 0.7046 0.7970 1.2296 1.4802 0.6502
38 0.2185 0.5981 0.6765 1.0437 1.0665 0.5519
39 0.3528 0.5197 0.6460 0.9966 1.8952 0.7357
40 0.3528 -0.0927 -0.1152 -0.1778 0.0603 -0.1313

CFV (cut off value) for h;j =2p/n =.6 ; CFV for DFFITS = 2(p/n) ° =1.095;
CFV for CD? = 1; CFV for Studentized, Jackknifed and e; / s; = arbitrary value =2.5
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Class
HYS;

HYS;

HYS;

HYS,

HYS;s

HYS,

S

S2

S3

Sa
S

Ss

Sol (1) Sol(2) Sol(3) Sol(4) Sol (5) Sol (6) Sol (7)
139.317 139.314 139.317 127.142  138.500 -0.033 -130.072
135.860 136.294 135.808 136.039  135.892 3.915 1.208
165.201 151.272 166.864 149.860 166.814 -159.738  -176.848
163.451 163.940 163.393 163.904 163.371 4.483 3.615
166.160 166.219 166.153 167.657 166.165 360 8.243
166.506 166.706 166.483 147.220 164.189 2.186 -169.788
-5.660 -5.719 -5.653 -7.157 -5.665 -1.166 -26.676
5.306 4.570 5.394 5.597 5.397 -13.967 03.445
3.184 4.009 3.085 5.139 3.100 15.662 35.202
6.889 6.909 6.888 6.007 6.675 316 -10.425
6.377 4.708 6.577 6.307 6.655 -28.278 -5.368
7.355 6.580 7.448 1.765 7.491 -12.782 4.106

Sol(1) : obs(20) =156; Sol(2): obs (20) =10 ; Sol (3): obs(20) deleted;

Sol(4) : obs (4)=20, obs(20) =10; obs (35) =30; Sol(5): obs (4,20,35) deleted.

DFBETAS, [Sol(6)]: obs (20) deleted; DFBETAS;[Sol(7)]: obs (4,20,35) deleted.
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Tar.e t. H matrix for multipie outliers (Entries are rounded values of 100h;; ).
| I T SIS0 IT 2341516 1718192027 2223 242 mmmmo
po02 o2

223
3222324

2825 28
28 28 28
28 28 28
343232
323333
10 323333
1 302827
12 282828
13 272828
14 3837
15 3739
16 262524
17 252524
18 242425
19 49
20 1717171818
21 1717171717
22 1717181918
23 1817192121
24 1817182120
25 272727
26 272726
27 272628
28 3535
29 3536
30 272727
31 272726
32 272628
i3 50 49
34 49 50
35 3030
36 3030
37 45

n

No TN - ‘RS - N

222222
222525
222525
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14 *
S '3 ,
1' » . . v v . s . s
A ] 8 s 4 ¢
z
’N) 0 ) g * . s '
A . ' , . .
R . ' *
) .
] =11 ' 2
b4
E
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FIC 1. DIAGNOSTIC OUTLIER I1Y PLOT'TING STANDARDIZED RESIDUAL VS
PROBABILITY PLOT (RANKIT PLOT )
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PIC 2 .DIACNOSIIC OUTLIER Bi FLOTI!NC DRPFI) VS PREDICTED VALL'L



