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ABSTRACT

The objective of this paper is to present a Bayesian classification technique
that can be used to classify a multivariate time series realization into one of several
multivariate autoregressive sources. The main assumption here is that the sources
share a common unknown order. This is to be closer to the real situations, whereas
the order of a process is usually unknown or at least, has to be estimated. Hence, the
order of the processes will be regarded as a nusiance parameter that has a maximum
known value. The proposed technique is based on deriving the marginal posterior
mass function of a classification vector, then one can assign the multivariate
realization to the r-th multivariate source whenever the posterior mass function of the
classification vector has its largest value at the r-th mass point. A simulation technique
is carried out to study the numerical efficiency of the proposed classification
technique. The simulation studies the behavior of the technique with respect to time
series length, the maximum value assumed to the order of the process, and the

parameter values, on the performance of the proposed technique.
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I-INTRODUCTION

Exact  specifications of population @re ilic bases of clissival sianistiial
mcethods  for estimation and hypotheses testing. In many vractical situations, au
observation may be assigned to one of several populations. For exaimple. a
psychologist classifies candidates for admission to a school, to accept them or -ot, on

the basis of scuics they get in a previously decided examination.

The classification problem of time series is to assign a time :.eries realization
into one of several time series sources. This problem mzv be faced iv inany fields
such as economics, business, demography, and ellvir;nmeutal data. Foi example, if an
economist aims to classify the development stage of a certain country to one of
development stages of several countries, he will take some selectc;d economic
variables as a basis. These variables may be national income, investment rate, and

consumption expenditure. If these variables are available in time series data, a

classification problem of multivariate time series may arise.

Walker (1967) began the work of non-Bayesian classification of time series.
He has established an approximate discrimination method for ARMA sources using
the idea of Cox (1962). Some other non-Bayesian contributions of the classification
problems can be found in Gersch and Brotherton (1979), Gersch (1981), and Kedem
and Slud (1982). The first Bayesian contribution to the classification problem of time
series was presented by Broemeling and Son (1987). They presented a Bayesian
technique to assign a univariate time series realization into one of several

autoregressive sources that have common known order and a common unknown
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precision.  Shaarawy and Haroun (1992) presented an approximate Bayesian
classification technique that can be used with univariate moving average sources that
share common known order and unknown precision. Shaarawy (1992) is the first to
introduce a  Bayesian classification technique of multivariate time series. He
developed a Bayesian classification technique to classify a multivariate time series into
one 6f multivariate autoregressive sources, with unknown coefficients, that share a
common known order and unknown precision matrix. Finally, trying to include more
generalized cases, Shaarawy and Al-Mahmeed (1995) developed a Bayesian
classification technique that can be used with multivariate autoregressi% sources with

different orders and common unknown precision.

2- THE CLASSIFICATION PROBLEM

Consider the problem of assigning the multivariate time series realization

S=[y() y@ ... y() ]  where,

y (t) is a sequence of k x 1 real observable random vectors, into one of m

multivariate autoregressive, ARy (p), sources.

Y = Z ® + U 1+=12,...m
i i i i
(n; xk) (n; xkp) (kp xk) (m; xk)

where

Y = [My@. v @],

(ni xk)

vi) = [yit]) y;i(t, 2) ... yi(t, k)]' t=1,2,...n,

kx1)
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(2, (0) ] [vi(0)  yi(-1) . . yi(1-p) ]
z; (1) yi(l) y;(0) o Yi(2-p)
Zi = . = ' '
(> hp . .
[z] (n; = 1) lyi(n; = 1) yi(n,=2) ... yi(n, -p) ]
(6D (1, 2) L ¢, (LK)~
$; (2, 1 $;(2,2) ... $; (2.k)
» =
(kpxKk) - ]
: -
[¢ikp, 1) ¢ (kp,2) ... by (k pk)
and
U, =[&()e(2) ... &(n,)], where
("i xk)
g(t) = [ei(t. ) &i(t,2) ... gt k)] t= 1,2, ... n,
(kx1)
It is assumed that {e(t),i=1,2,...,m} is a sequence of independent and

normally distributed kx1 unobservable random vectors with zero mean and k x k
positive definite unknown precision matrix T. It is also assumed that the order p is

unknown. The parameters @, , &, , ..., and ® ., are unknown matrices, thus it is

assumed that there is a realization matrix available from each of the m sources, say

Si where,

s, =[v y ... Y;("i)]' .,  i=1,2,...,m

{n xk)

The main problem is to use the Bayesian approach to assign a multivariate

time series realization S to one of the AR (p) sources S, . The proposed Bayesian

technique is based on introducing the classification vector:
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4 m

A= [Ay Ay ... A, ], whered;=0,land T A, =1

im]

This means that the classification vector A has m mass points
[Lo,..., O]’, [0, 1,0,..., 0]', cons |05 05 ua o O l]'. Our proposed technique
is to assign the multivariate time series realization S to the rth ARk (p) source
whenever the marginal posterior mass function of A has its maximum value at the
r-th mass point [0,0,...,1,0,..., 0]’i.e., a vector wlith 1 in position r and 0
elsewhere. In order to obtain the conditional likelihood function, one should combine

the contribution of the multivariate realization S with the contribution of the m

multivariate realizations Sy, S, . . ., Sy

The contribution of the multivariate realization to be classified, S to the likelihood

function is
n-e o-p) 1m n
L(S) ec|T| 2 (211) ? exp'_z—;}\‘i tr{‘;és}’(t)'(bi(P) Z(t-1))y(t) - Di(p)Z(t - 1))’ T}
| 2.1)
Where,
Z-1) = [yt-1) %t-2) ... yt-p)]
nxkp .
The contribution of the m multivariate realizations S,. S, .. ... S, is
gjni—mp Eni-—mp
L . 1m "
LS. S,. ... S,)ec|T| 2 (@) 2 eXP'EZtT[ Z(?ri(t)—CI){(p)Zi(t—l)) X
i=1 t=p+
v;()- D) Z; (t-1))'T] (22)

From (2.1) and (2.2), one may write the conditional likelihood function of the

parameters ® = [P, Py, ..., Py ], T, p, and A as
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p+m ptmp

(D, T, p. A|D) < (21T) 2 |T|a°xp-—[G (D, T.p. )+ Gy(P.T,p.tM)]  (2.3)

m

Where, 2a= >'n, -mp+n-p

n

G, (D, T.p,t) =

M

l [V(ly (t)- Di(p) Z;(t-1))(y, (1) - c1>(p)Z(t-1)) T}

Go(@.T. p.11) =5 4, 1| £60-010)2(t-1)) (v © -1zt Dy T,

-

and

D =S,US U...US US.

3- THE PROPOSED CLASSIFICATION TECHNIQUE

In order to develop the marginal posterior mass function of the classification
vector A, oue should combine the couditional likelihood fuaction (2.3) with the prior
density of the parameters via Bayes theorem. An appropriate choice of the prior mass
function of the classification vector A is

C,(A) o l"J[ aixi Where, a; > 0 and ﬁai =1 (3.1
i=1

1=1
and a; is the prior probability that the realization S is generated from the ith process.

If one has “little” information about the classification vector, one may use the prior

mass function.
C,(A)=1/m (3.2)

The parameters @ and T are assigned a non- informative Jeffreys’ prior .

_(k+l)

Co(T, @) oc |T| 72, @, e R¥P <k i=1,2, ..m (3.3)

The marginal prior mass function of p is assumed to be
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Cap)=1/w ,p=hL2, ., W (3.4)
Where w. is the maximum possible value of p, that is assumed to be known.
Combining (3.1), (3.3) and (3.4), the joint prior density of the parameters &, T, p and
A is

—G4h oom
GO, T, p,A) e [T] T I apw’ (3.5)
Combining the prior density (3 .5) and the conditional likelihood function (2.3), the joint

posterior density of the parameters is

(p *ow)

4@, T, p, A\D)ec2)) 2 |1V fj ail‘ exp-—; [G, (D, T,p, )+ G, (D,T, p, t, M]
‘ (3.6)

Where, v = iljni+n-mp-p-k-l

i=1

The marginal posterior mass function of the classification vector A can be obtained by

integrating (3.6) over @ and T, and then taking summation over p.

Theorem 1

|
Using the conditional likelihood function (2.3) and the prior density (3.5), the

marginal posterior mass function of the classification vector A will be

g(A[D)x X g(p,AID) ()

p=1

Where
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mp+p emph "_“l - S -.n -mp+n-p-mpk+k-
(21 = 2; (i:l'i e “)ﬁa;_“iﬁ("zi i : - ”
&P, A D) : — :
JAQApYE [C - B’ (A, PA™ (L. p)B (A, P) |
(3.8)
where

A (A, p)is a square matrix of order mk p
B (A, p)isamatrix ofordermk pxk

C(A,p)isamatrix oforderk x k.

Furthermore, the matrix
A(A.,p) =Diag(A|,Az, ..... Am)

where A, is a square matrix of order kp and

Ai= ili(t—l)zi’(t—l)+liil(t—l)Z’(t—l) i=1,2,. ..m

t=p+l t=p+1
The mpkx kmatrix B(A ,p)= (B] B;... B;)

where the matrix B; is of order k p x k and

B;= Ezi(ti-l)y;(t)wti SZt-1)y'(t) i=1,2,. :.m

t=p+1 t=p+l

The k x k matrix C is C = 3 C, where the matrix C; is of order k x k and

i=1

Ci= Ty, Oy)+h SyOy'® i=1,2,...m

t=p+1 t=p+1

The scalar v is

2v= ﬁni +n-mp-p-mpk

i=1
the prior probabilitiesa,, a,, , a_ are supplied by the user. If one has no

information about o; * sone may seto; = lI/m. i=1,2,... m.
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Theorem! gives an analytical form to the marginal posterior mass function

of the classification vector that can be easily handled by computers. Denoting the

. . —_ * * )
marginal posterior probabilities by o . a, ... ., and o * respectively, and let

m

m

* * . . . . ; . 5
ap=max o, then our Bayesian procedure is to assign the multivariate time series
=t
realization S to the r th ARk (p) source.

4-NUMERICAL STUDY

Our objective of this simulation study, is to evaluate the adequacy of the
proposed technique in handling classification problems of bivariate autoregressive
sources. The behavior of the rule to the parameter values, the time series length, and
the maximum value assumed to the order of the process will be studied. The main idea
of this simulation is to use the technique to classify a time series realization of length n,
whose source is known , into one of two bivariate autoregréssive time series sources,
that share a common order equalto 1, and one of them is the true source. Then, the
percentage of the correct classification is computed to be taken as an indicator to the
efficiency of the proposed technique. For all the cases considered here, it is assumed

that o) = a,= 0.5, so apriori, the realization has the same chance of being assigned to

each source. For all original sources and realizations the covariance matrix of the noise
: 2 1 : :
term is fixed at i1 .To study the behavior of the proposed procedure with respect

to the closeness of the coefficients of the two original sources, our study involves four

I

simulations. For every simulation, different two parameter matrices (®, and @, ) are

chosen for the two sources. i.e., the first source is bivariate autoregressive of order 1
, ; : 121 :
with parameter matrix @®,; and covariance matrix i1 and the second source 1s

bivariate autoregressive of order 1 with parameter matrix @&, and the same

covariance matrix. To show the effect of the time series length on the efficiency of the

technique, we select n (the time series length) to be 20, 30, 50, 100, 150, 200, 250, and
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300. Whereas the effect of the value of w (the maximum value of the autoregressive

order p) is studied by selecting w to be 1, 2, 3, and 4.

Simulation I, as an illustration, begins with the generation of a pair of 500
data sets of bivariate normal variates, each of size 300, to represent €,(t) and &,(t)

respectively. These data sets are then used, two times. to generate a pair of 500

realizations, each of size 300, from the AR,(1) process, with parameter

05 04

matrixg[)1 = [O & s

] in the first time and to generate a nair of 500 realizations,

each of size 300, from the AR,(1) process with parameter matrix

2

_[-05 04
0.5 -0.4

] in the second, assuming the starting values are zero. Such

realizations are used as the time series to be classified in run 1 and run 2 respectively.
The second step of simulation I involves the generation of two data sets of
bivariate normal variates, each of size 300. The first data set is used to generate a
sample of 300 observations of bivariate autoregressive process of order 1 using the
same above value of @, as its parameter. Such a sample is considered as the first true
known source. The second data is used later for the generation of a sample of 300

observations to the second source using the above value of ®@,. For a given specific

sample size, these two data sets are fixed throughout the classification process.

The third step of simulation I is to carry out the computations required to
classify each of the 500 realizations, which have been generated from the first
source, to one of the two known sources, and to find the percentage of correct
classification. Each of the 500 realizations, which have been generated from the
second source, are also classified and the percentage of correct classification is
calculated. Such classifications are done for a given time series length n using the first
n observations of the two known sources as well as the 1‘ea1izatio;15 to be classified.

The last classification step is repeated for each chosen time series length n
and for each value of w. The results of simulation I are shown in table L.a and Lb.
The first table La (run 1) presents the percentages of correct classification of the 500
realizations generated from the first known source for all chosen time series lengths

and all the values of w, while the second tablc Lb (run 2) gives such percentages of
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the 500 realizations generated from the second source.

The other simulation studies are done in a similar way, but using different
values of the matrix parameter. The results are presented in cases I, 111, and 1V. The
parameter matrices in every case are chosen in such a way to satisfy the stationarity
conditions, see Harvey (1981). The choice of the parameters is made to show the
effect of the closeness of these parameters to that of the true source on the
classification technique. In simulation IV, the parameters are chosen to be close to
the stationarity border, see tables IV.a and IV.b.

The numerical results of the simulation studies are presented in tables La, I.b
ILa, ILb, IlLa, IILb, IV.a and IV.b. It is noticed that, in general, there is an increasing
trend in the efficiency of the proposed technique as the sample size increases. In
sunulations 1, II where the parameter matrices are different , the increasing trend
starts from the beginning. Whereas in simulation 111 where the parameter matrices are
close, this trend starts at time series length 150 in run 1 and at time series length 50 in
run 2. In simulation IV, the parameter matrices are chosen to be close to each other
and also close to the stationarity border, the trend starts from the time series length
100 in run 1 and from the beginning in run 2, see table IV.a and IV.b. For all the
cases, the best work for the classification technique is at w = 1, which introduces
the exact value of p, but the difference in the correct classification percentage as
the value of wincreasing is low. This means that, whatevet the maximum value

of p, the performance of the classification technique is slightly affected.
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Behavior of the Classification Technique for
Bivariate AR (1)

CASE I

_— ,’0_5 0.4 T -05S 04
= 27 1 o0s -04

-5 ~0.4

Table (1.a)
Run (1)

Time Series Length (n)

20 30 50 100 150 200 250 300
w=l | 996 | 100 100 100 100 100 100 100
w=2 99 99.8 | 100 100 100 100 100 100
w=3 | 982 | 998 | 100 100 | 100 | 100 | 100 [ 100
w=4 | 966 | 988 | 100 [ 100 | 100 | 100 | 100 [ 100
Table (1.b)
Run (2)
Time Series Leggth (n)
20 30 50 100 150 200 250 300
w=] 99.4 99.4 100 100 100 100 100 100
w=2 99 99.8 100 100 100 100 100 100
w=3 98.6 99 100 100 100 100 100 100
w=4 97.4 98.8 99.8 100 100 100 100 100
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Behavior of the Classification Technique for

Bivariate AR (1)
CASE 11
0.5 0.4 -02 02
(D 1 = d) 2 =
[0.5 -0.4] [0.2 ~0,2J
Table (1l.a)
Run (1)

Time Series Length (n)
20 30 50 100 150 200 250 300
w=1| 85.4 85.4 94.6 99.2 99.6 99.8 99.8 99.8
w=2| 84.4 80.6 94.4 98.8 99 99.2 99.6 99.6
w=3| 83.4 77 94 99.2 99.2 99.4 99.8 | 99.8
w=4| 82.4 69.4 93.4 99 99.2 99.4 99.6 99.8

Table (IL.b)
Run (2)

Time Series Length (n)
20 30 50 100 150 200 250 300
w=1{ 86.2 88.6 99.6 99.8 100 100 100 100
w=2 84 91.6 99.2 100 100 100 100 100
w=3| 83.2 92.6 99 99.8 100 100 100 100
w=4| 794 | 911 98.4 99.8 100 100 100 100
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Rehavior of the Classification Technique for
Bivariate AR (1)

CASE III
[-0.5 0.4 ~-0.4 0.3 ]
¢ | = i o 2 =
05 -04 04 04
Table (IIl.a)
Run (1)
Time Series Length (n)
20 30 50 100 150 200 250 300
w=1 70.6 60 63.2 88.4 73.2 84.8 91 94.8
w=2 68.2 47.8 56.2 82.2 59 76 84.6 91.8
w=3 64.6 39 50.4 73.8 48 76.4 80.6 90.4
w=4 62 32 50.8 65 42 73.6 76.6 88.6
Table (III.b)
Run (2)
Time Series Length (n)
20 30 50 100 150 200 250 | 300
w=1 55.2 53.6 69.8 90 100 99.8 100 99.6
w=2 59.2 63.2 74.6 93.4 100 100 100 100
w=3 62.4 69.6 71 93.4 100 100 | 100 100
w=4 59.6 73.6 65.4 92 100 100 99.8 100
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Behavior of the Classification Technique for

Bivariate AR (1)
CASE 1V
1 -0.2 0.9 -0.2
L] i = o 7 =
[1.1 -1 ] [1‘1 -0.9]
Table (IV.a)
Run (1)
Time Series Length (n) |
20 | 30 50 100 150 200 250 300
w=l | 782 | 322 904 | 772 | 786 | 824 94 97.4
w=2 | 812 40 87.2 658 | 71.8 | 816 95 97.8
w=3 77 328 | 84.2 66 72 85.4 | 94.8 98
w= 728 | 284 | 806 | 628 | 674 | 852 92.6 | 97.2
Table (IV.b)
Run (2)
Time Series Leng,t_ﬁh (n)
20 30 50 100 150 200 250 300
 w=1 | 338 64 724 | 984 | 99.8 100 100 100
Lw=2 | 264 | 56.4 68 .| 96 96.6 96 95.4 95
W= 296 | 624 68 97.4 | 998 | 99.8 | 99.8 | 99.6
_w=4 | 328 66 68 97.6 | 998 | 99.8 | 99.6 | 99.6
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CONCLUSION
To sum up, we can conclude that the suggested technique has many
advantages. One of these advantages is that the posterior distribution of the
classification vector can be computed easily and without parameters estimation.
Another point is that it is derived for the case of m sources, which means that, there is

tiird pomt is that the

no conditions on the number of the sources that can be used. A ¢
simulation study shows that the proposed technique can, in most cases, provide a high
precision level of correct classification with short time series. It also shiows that the
performance of the technique is slightly affected by the maximum value assumed to the
order of the process. Besides, even if the case is close to the s: = " »ariiy border, it can

give good results with moderate time series length. Finally, thcre is no alteinative

Bayesian technique can be used to solve such classification problem.
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