THE EGYPTAIN STATISTICAL JOURNAL
ISSR, CAIRO UNIV., VOL.,41, NO.2, 1997

ON A CONSTRAINED
TESTING HYPOTHESES PROBLEM

NAEEM AHMED SOLIMAN
Department of Statistics, Faculty of Science
King Abdulaziz University, Jeddah 21441 SAUDI ARABIA
E-Mail: ZCC3488@SAKAAUO03.BITNET

Key words: Likelihood ratio test; Asymptotic non-central chi-square distribution;
Class of local alternatives; Singular information matrix; Equality constraints;
Lagrangian multiplier test; Identifiability conditions; Restricted likelihood
equations; Positive definite.

ABSTRACT

This paper gives a proof that the likelihood ratio statistic, based on a
sample x=(X;,...,X,) on a p-dimensional random variable X, converges

in distribution to a noncentral chi-square distribution under a class of local
alternatives, for a multi-dimensional parameter space. A proof of uniform
convergence for this situation was given by Wald (1943) whose
assumptions include the uniform consistency of the maximum likelihood
estimates and of the likelihood ratio test. The assumptions utilized in this
paper can be more directly verified in applications than those required by
Wald. This paper is concerned with the case in which the information
matrix is not of full rank. This generalizes the results of Silvey (1959),
Davidson and Lever (1970) and El-Helbawy and Soliman (1983).

1. INTRODUCTION
The main object in many statistical situations is to test a null hypothesis
H, that the true unknown parameter 8 = (6,,8,, ..., 6y ), involved in the
distribution function F(,,0) of a given random variable X, satisfies certain

equality constraints. Aitchison and Silvey (1958) developed the Lagrangian
multiplier test, for testing H,.They demonstrated that, under assumptions

analogous to those of Cramer (1946), the Lagrangian multiplier test statistic
(LMS) has an asymptotic chi-square distribution under H, . Silvey (1959)
proved that, under assumptions analogous to those of Wald (1943) each of
the LMS and the likelihood ratio test statistic (-2lnA) has the same
asymptotic chi-square distribution, when the information matrix B(9) is
nonsingular. Davidson and Lever (1970) developed the asymptotic
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distribution of -2InA under a class of local altenatives when the
information matrix is nonsingular.

1t ofien happens, either for reason of symmetry or for some other reason,
that the information matrix B(0,), where €, is the true parameter value, is

not positive “=finite. For instance a multinomial distribution describes an
expeiiment in which an individual can fall into any of s classes, so we have

s dimensiona! parameter space, R® that is really s—1 dimensional. So that
B(6,) will not be positive definite. Since subsequent theory concerning

the asymptotic distribution of associated random variables makes
considerab! : use of the inverse of B(6,), this theory no longer applies. This

paper provides a method for overcoming this difficulty.

El-Helbawy and Soliman (1983) developed the asymptotic chi-square
distribution of —2InA for testing equality constraints when B(0) is
singular. The object of the present paper is to generalize the results so as to
cover both cases of singular and nonsingular informafion matrices.

Let X be a p-dimensional random vector whose distribution function
F(-,0) depends on a k-dimensional parameter 0 = (0, ,0, ..., 0y) which
are not mathematically independent but satisfy q functional relationships,

h;(0)=0 , i=12,....9 , q<k. (1.1)
We assume that the possible values of X lie in a subset R of the p--
dimensional space. The kxk information matrix B(0) defined by,

B(O) = (Bg(e)) ’ i:j= -1923---51( ’

alnf(t 0) dlnf(t,0)
28

By(6) = J dF(1,6) ,

is of rank k — q and hence is singular.

H,:0, e cQ,-
such that the elements of  satisfy the additional r—q constraints,
qg<r<k,

h;(0)=0 |, i=q+1,...,r. (1.2)
This paper concerned with deriving the limiting distribution of -2InA

under the following sequence of local alternatives,

N} a sequence of true values of 0 such that, each oN satisfies the
following conditions;

@  h(eN)=0 i=1,2,...,9, (1.3)
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these are the identifiability conditions for the k parameters.

®  heN)=8sN/IN Ji=q+l,...r, (1.4)
with;
lim 8N =35, , i=q+l,...,r, (1.5)
N> o
Note that
lim h;(®N)=h;0,)=0, i=1,...,r, (1.6)
Now

An approach for getting the distribution had been given by Soliman
(1994). Here we establish an alternative approach.

2. ASSUMPTIONS

The assumptions needed for the derivation of the limiting distribution of
the likelihood ratio test statistic (~21nA) when B(6) is singular are given

in the Appendix. Assumptions A.l-A.12 are restatements of those given by

Silvey (1959). Assumptions A.13-A.15 are restatements of those given by
Davidson and Lever (1970).

3. Asymptotic Properties of Maximum Likelihood Estimators
Under the Sequence of Local Alternatives

Consider the class of local alternatives {ON} given by (1.3)-(1.6). H,
and H  are restated as follows;

H :0 ea)=Qﬂ[6:hj(9)=0, j=q+1,...,1],
H, :6, eQ:[G:hj(9)=0 , J=1...,q<r], O6¢ew.
Since lim 6N = 8,., it follows that the information matrix,

Now®
dlnfit6fp™) ain ttt,ele"))
: i j=1,..,k]

26, 28,

B(O™) = [B;;(0™); B(8") = En

tends to B(6,)as N — .

Under assumptions A.l-A.15 and the sequence {8"} of local

alternatives, there exists a sequence {6, (-,®)} of maximum likelihood
estimators (MLE's) which are restricted to the r-conditions, b;(8) =0,
J=1,...,r, and will emerge as solution of the following equations
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. 4 oh;(0)
c ) .
S— ._——-:0’ - cen
h;(8)=0 . i=12,..,r, (3.2)

where ¥,...,¥, are Lagrangian multipliers. There exists a sequence

(-, Q)} o the unrestricted MLE’s which maximizes the likelihood

function subject to the identifiability conditions (1.1), and emerge as
solutions of the foilowing equations,

5 4, 9hy(6) .
— InL_(x,0)+ T; =0, l=1,2,...,k s 3
aoin“kk)g‘l’aei S

hJ(9)=0 ’ j=1’23---’q ’ (3.4)

n
where 1,,...,T, are Lagrangian multipliers and InL, f(x,) = 3 Inf(x;,").

i=1
We assumed that each of the sequences of estimators {é n (@)} and

{87 (,Q)} satisfies the set of assumptions A.1-A.12 and this will ensure the
consistency of the two sets of estimates.

For brevity, we shall denote 6 2 () by 0 » and 9;(-, Q) by 07.

The Asymptotic Distribution of 0 a(y®):

Under assumptions A.1-A.12 and since én —L ,0, and using
implications b and c of assumption A.9, then for almost all x,

Dn~'InL,(x, 6,|6N)=Dn'InL,(x, 8,|6")

+[D? 2(8,) + o(D)(6, -6,) , (3.5)
where D and D? are as defined in the implications a and b of assumption
A.9 and Z is as defined in assumption A.1.

Also. according to the continuity of the first partial derivatives of the
functions h,. for almost all x

u'é =Hg_+o(l) . (3.6)

hid, ) =[Hy +o(1)]6,-6,]. (3.7
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For almost all x. if n is sufficiently large, 8 ,, with a certain Lagrangian

multiplier W, (x). will satisfy the restricted likelihood equations (3.1) and
(3.2). So we have

Dn'inL (x. 8,[06N)+[D? Z0,)+0o(1))(0, —9(,]+H'6 Y. =0.(3.8)

n

[Hy, ++0(1)][6, -0,]=0. (3.9)

Since, under H,;Z(08,) is a maximum of Z in the set w, then from (3.8)
and (3.6) we have

Dn'InL,(x,8,0™)+[D>Z(©,) + o()]0,- 0,)+(Hg_+0(1)]¥,=0. (3.10)
Let D? Z2(8,)=-B(6,). Then (3.10) reduces to

[B(eo)+o(l)](é,,—eo)—[H'(,oJro(l)]wn =Dn 'InL(x,0,[6N). (3.11)

Combining (3.11) and (3.9) we get

M)

B(8,)+o(1) -Hgy +o()|6,-6,| [Dn'InL,(x.6,
= . (3.12)

Hao +0(l) 0 v

n

0
for almost any x.

Since /n He, (én -0,)=0, as shown by El-Helbawy and Soliman,
(1983), it follows from (3.12) that

' ' ~ _7!
B(6,)+H;g Hyg, -Hg_ | 6,-6,| |Dn InL,(x,0, oN)
np = (3.13)

H 0 0 \]/n 0

o

Now, the results introduced by lemmas 1, 2, 3 and 5 of Davidson and
Lever (1970) will be used to prove the following result.
Lemma |

Under assumptions A.1-A.15 and the sequence {9"} of local
alternatives, the sequence of vectors

( : ]
1—1 P(; lnl.,,(_x.(i“iO"‘ ). 1=1..... k}
v i

converges in distribution. to the multivariate normal distribution with mean
vector B(0 )6 and vanance matrin B0 ), where 6 is the kx1 vector

-~

definedby 6 = (0, 0.5, .. .0..0. .0y,



THE EGYPTAIN STATISTICAL JOURNAL
-1635-

Proof

Expanding —L—%lnL (x. 90|9N) by Taylor series expansion about
vn e

9 = GN ,we obtain

1 O
_6 inL (. O(,IG )=—=——InL_(x, eN)

Jn a6 Jn 86,

—< 18 SN|oN
+4/n E © —BN){— lnLn(x,B 07)

=1k,

for some 8™ such that IIéN -0,f < IGO —GN“.

Now, lim 6V =0, implies that lim oN =0 . It then follows from lemmas
N Noo»

(2) and (3) of Davidson and Lever (1970) that fori,j=1,...,k

i l—-—"2——-1 L, (x,8%oM) |= 1. & 11 x8)
P el n i 056,59, @ o

= cij(e,eo) = —Bij(Oo) '
Then by Slutsky’s theorem [see, for example Laha. and Rohatgi (1979)]

. 52
p lim '\/—r_lz oi>

_ k
, |9N)}]=255 B;i®,) »
i1

nowl i 69 00;
i=1...,k,
and since by lemma 4 of Davidson and Lever (1970),
{- ] A 9 InL (. oM. i=l..... k} converges in distribution to the multi-
Vvn

variate normal distribution (0, B(6)) . Hence it follows that,

j'_ | ¢

~nco

lnl L(x. 0 I()N) i=1...._.k} ,

converges  in distrihution to the multivariate normal distribution
(BB e Bo .

Lemma 2

Subjec. toassumptions A.1-A. 15 and under the sequence (6N} of local
alternativ e« the random vector
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is asymptotically jointly distributed multivariate normal with mean vector

P, 0,)0 P 0 I, 0
6, B(00) and variance matrix | °° ,where S=-Rg -| 9 .
0 0 S “ 0 0
Proof
From (3.13) we have
5 - P, Qo |[J ’
/|8a-00 | | Po Qe H 1
¥ Qo, Re, JLO

_1
where, J=(n ? é—z—lnLn(x,BoleN), i=1,...,k is a k-dimensional random
i .

vector.

From lemma 1, J has a limiting multivariate normal distribution with
mean vector B(8,)6and variance matrix B(8,).

J
Then the (k+r) dimensional random vector [O] is asymptotically

' ' 0,.)6
distributed according to the normal distribution with mean vector [B( 0°) ]

0 0
and variance matrix [B(o°) O]'

Then from (3.14),

is asymptotically jointly distributed multivariate normal with mean vector

Po, B(8,)5
0

and variance-covariance matrix
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Pg Q'eoTiPBn "—iirpoo Qq, ;PéoBeo Pg, Po, Bg, Qo,
Py, O
1o

where. Iy Bo Py =Py . Py, Bg, Qo, =Qq, Be, Po, =0

Corollary 1
From (3.12) and (3.14) we have
- B _1
Jn (0,-065)~n 2P DlnLn(x,GOIBN) , (3.15)
- |
Jny, ~n"2Qg DInL,(x,0,8™) . (3.16)

The Asymptotic Distribution of 9;(-, Q):

In asimilar manner, as used above to derive the asymptotic distribution

of é(-, ), we can get

Dn~'InL,(x,0,0N)=Dn'InL (x,8,/8N)

+[D* Z(8,) +0(1)][67 - 8], (3.17)
H'w; =Hyy +oll) . (3.18)
where. Hy, is the g<k matrix (l]i_i(e;)).hij(ﬂ:,)=%z, =1,...,
j=1....k J
hefp = [Hyy = oih]{0] -0,]. (3.19)
Hence

Dn 'int w0, 07 - (D7 20,0 -oh][0] -0,]+H . t=0, (3.20)

L, - et (3.21)
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This follows from equations (3.3), (3.4), (3.18) and (3.19). But
DZ(6,)=0 where Z(0,) is a maximum in Q of Z(0) and

D?Z(8,) = -B(8,). Then (3.20) reduces to
[B©,) +0(1)][87~0,]-[Hyp_+0(I)}t =Dn"InL, (x,8,8™) +o(l). (3.22)
Combining (3.21) and (3.22) we get
B@o»+o(1) ~Hjg +0(1) [[03-0,] [Dn"'InL,(x,8,8™)+o(1)
= . (3.23)
H, . +o(1) 0 0
Define,

T

. . .-l
Ug, Lig, | |B(B,)+Hjg Hyg, -Hyp

= . (3.24)
W, Hig 0

n

Lg

]

Since Vn H'leo (85 —0,) ~ 0 it follows by using (3.23) that

0 ' . _l
| B@o*Hig, Hig, ~Hig, +o() [en-eo] Dn”2InL, (x.8,0")
n ]

Hle,, +o(1) 0 LT 0
(3.25)
Lemma 3

Under assumptions A.1-A.12 and the sequence {ON} of local
alternatives, the random vector,

[ -0
1
is asymptotically normally distributed with mean vector [
Ug, 0
0 W |

The proof is analogous to that given in lemma 2 and follows from
(3.24), (3.25) and the result stated in lemma 1, that the vector

Ug B(6,)6
° and
0

vanance matrix

.
(Dn ?Inl,(x,8,/0")) has a limiting normal distribution with mean
vector B(8,)6 and variance matrix B(8,)).
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- -1
\n(8; -0,)=n"* U DInL,(x,8,8™)+0,()), (3.26)
. D B
vnt =n 1Ly DinL,(x,8,/0N)+0,(1) . (3.27)
Lemma 4

Subject to assumptions A.1-A.12 and the sequence {ON} of local

altermatives
-2Ink = n(6, -0;)[B(8,)+H;g Hyg 1O, -07)+0,(1) .

Proof

~

2 . -1
0,-6, =0p(n ?).

From corollaries (1) and (2),
Expanding Inl. (-.én) about 0 = 0, by Taylor's theorem, we have,

InLy(-8,) = InL (,03)+ (8, 05D InL, (,03)1B, ~ 05) + 0, (1.
Also by Taylor's theorem,
n~'D*InL,(-8;) =n"'D2InL,(,8,/8N )+0,(1)
= —B(8,) +0,(1) ,
where D? Z(0,) = ~B(8, ). |
Since nHy, (8,~8,)=0. and nH,_(83-0,)=0, then, nHg_(,-07)=0.
Hence

In2. = Inl,(.0,00%) - InL,(-.856")

=-1n(0, -0,)-[BO,) + Hyg_ Hyg, +0p(D1(6, - 0;) +0p(1)
: , |
But. 0, -0, = o (n 7). Then
ZInz = 00, - 03 V[B0, )+ Hyg Hip, 16, -0;)+0,(1) |
under the sequence of local alternatives.
Lemma 8

Subject o assumptions A.1-A.12 and under the sequence (6N} of local
altemative-. the likelihood ratio statistic - 2In 2 satisfies the relation
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-2InA=-n¥, Ry ¥, +nt Wol t
where ¥,7,Rand W are as defined in (3.1), (3.3), (3.14), (3.24) and
lemma 4 of Davidson and Lever (1970).

Proof

We have from lemma 4,
~2InA »n(8,-67) [B(,)+Hie, Hyp 16, -0})
From corollaries (1) and (2), we have
a " - |
Vn(8,-03)~n [Py -Ug IDInL,(x,8,6)

where Py and Ug are as defined before.

In lemma A.1 of El-Helbawy and Soliman (1983), we proved that
(Po, ~Ug,) [B(8,)+ Hyg Hig, I(Po, - Ug, )=Lp, W5, Lo, - Qp, R5. Q. -
Then under the sequence {BN} of local alternatives.
~2InA =07 [DInL, (x,8,/0™)) Ly, Wg. Lo, [DInL, (x,0,0™)]

-0 [DInL,(x,0,[0™)] Qg, R5} Qo, [DinLy (x,8,/0™)).
Since from corollaries 1 and 2 |

=l
Vo'¥, »n"2Qq DInL,(x,6,/8") ,
and

-1
Vntan"2Lys DinL,(x,0,6™)
It follows that
~2In = n(Hy, ¥,)[B(8,)+Hig, Hyg, I(Hp, ¥,)

~n(Hp, t,)[B(8,)+Hp, Hyp_1(Hp, 1,)
where R, =-He [B(8,)+H,g Hjg Hp |
and Wy =-Hq [B(8,)+Hg Hyg 1Hyp, .

Substituting again for R{,: and We‘ol in the expression of -2In, we get
-2InA = -n¥, Rg! ¥, +nt Wg'1

The proof is completed.
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The following theorem states the asymptotic equivalence between the
likelihood ratio statistic, —2InA and the Lagrangian multipliers statistic,

n¥ Rgl ¥, under the sequence {ON} of local alternatives.

Theorem 1

Subject to assumptions A.1-A.12 and under the sequence {GN} of local
alternatives.

-2InA =-n¥ Ry ¥
Proof

From lemma 5 we have

-2InA ~-n¥ Ry W+nt Wo'lt |

We shall prove that nt’ Wé'ol t vanishes in the limit.
From (3.25), we have

B(90)+H’leo Hloo —H'loo 9;-—90 o E
Jn Hue, 0 ][ ] ] [0] , (3.28)

where E is a k-dimensional random vector which is asymptotically
distributed, under the sequence {9"}, according to a multivariate normal
distribution with mean vector B(6,)8 and variance matrix B(0,)
(lemma 1). ‘ ‘

Consider the transformation W = VE where V is a non-singular matrix such
that,

V(B(8,)+Hg Hig )V =1 (3.29)
. Ik-q 0
VB®,)V =
[ . oJ (3.30)
| o o0
VH Hyp V' =
18, Hig, 01, (3.31)

where from lemma 1, W is a k-dimensional random vector,
W= (w,..,w,) which is normally distributed with mean vector

: . . |1 0
VB(8,)5 = V'8 and variance matrix VB(®,)V =[ I:o-q 0]'
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This implies that w,;,wj,...,Wy_o are independently normally distributed
k—q ;l
EVE 8’;1 and Wk_q+l’Wk_q+2’ooo.Wk = 00
=1

From (3.28) and the above transformation we have

VWV -Hy [le2-0,] [V'W
J;[ "°][ ].[ ] . (3.32)
H19° 0 T 0
o ! [v 0
Pre-multiplying both sides of (3.32) by the matrix 01 ]we get
q
-1 '
V -VH 0; -0 w
J; 10, n o ~[ ] L
M

- and

- oi-0, v -Hy  Je:-e,
W W=n .w : - (3.34)
: T Hie, Hje,V VHye, T

Since, va Hyg, (83 —0,) ~ 0 we have
W Wan(93-0,) B(8,)(03 -0,)+nt Hyg, Y VHie, t.,(3.35)
Waa V™ (85 -0,)-vaVH, T . (336
Pre-multiplying both sides of the last equation by ~H,g V' we get
- =Hg V WanHy V VHg 1 .
But, | ‘
o , Jo o
WVHIQ.H1QVW=W|: ]W-O ’
. 0 I,

. . fo o
M VHW.HWOV ‘[o lq] and wk-qﬂ = Wk_q+2 =, ‘= Wy = 0.

Hence Hjp, V W=0, which implies that, —vnH,e V' VHys t#0,
where ~Hjq V' W~ +nH; V' VHjq 1.
Then -nt H,g V'VH;g tw0.



THE EGYPTAIN STATISTICAL JOURNAL
-173-

. ! ! 4 ) - ! 7"1 ~ - - * -I
Since —n1 }“‘"ov S Hmor—nt \\,Oct~0 h‘nce, Zlnlw nYy Reo\y.
This completes the proof.

Theorem 2
Under assumptions A.1-A.12 and the sequgnce {9"} of local

alternatives, the random variable —n'¥' Rg‘ ¥ is asymptotically distribued

as y’ distribution with r-q degrees of freedom and non-centrality
parameter

@ =8 H (H (B(O,)+Hip, Hig, ) Ho ] B, 8

Proof
Since the matrix B(8,)+Hg H,q_is positive definitc and the rank of
B(6,) is k — q, there exists a non-singular matrix V gatisfies (3.29)-(3.31).
Now, define a k-dimensional random vector T = (t,,.,t,) by Te V]

-1
where, J=(n"2DInL,(x,0,/6N)) has a limiting normal distribution with
mean vector B(8,)5 and variance matrix B(6,). Then T is asymptotically

normally distributed with mean vector distributed with mean vector

0 .
hich
o] W

implies that t»t2,...,tx_q are independently normally distributed

v
VB(90)6=V'16 and variance matrix VB(0,)V -_-[ "(;q

k-q
(ZVUT' 6j;l] and tk-q+1 = tk_qs2 =-..=t} =0. From (3.13) we have
Fl :

Vn (3.37)

B(O,)+He Hyg, -Hg |6, -0, [I
]
Hyg 0

which is equivalent to

vyt CH, 16 - 1 [v'r
\/; ( ) 90 9n 90 o - . (338)

From (3.38), we get
TTxn0,-0,)B8,)(0,-06,)+n¥ He,V VHo ¥

where | T is distributed as non-central x? with k - q degrees of freedom
and non-centrality parameter,

o
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y=(V7'8) VB,V V'5=5B(0,)s
Since the rank of n(8, —6,) B(8,)(8, —8,), when expressed in terms
of TT is at most k—r and the rank of n‘I"HBOV'VHbo\P when
expressed in terms of T T is at most r—q, then, by applying Fisher-
Cochran's  theorem (Rao, 1962), n(8,-0,) B(8,)(®,-0,) and
nYy Hg, vV VH'OO‘I’ are asymptotically independently distributed as non-

central 2 with k-r and r—q degrees of freedom and non-centrality
parameters &,,&, respectively, which we will determine below.

To determine ;,&,, we formulate n(8, —0,) B®,)®, -0,) and
n‘P'HQOV'VH'go‘I’ in terms of tj,ty,...,ty_, as quadratic forms as
follows.

From (3.14) and (3.37) we have

Vn(@,-0,)~Py VT .

Then
n(8,-8) B(®,)(,-8,) = (Ps, V™' T) B(8,)(Py, V™' T)
=T (V)" Py _B(8,)Py V' T
=T (V)P V7T, (3.39)
where Po B(8,)P, =Py and Vn'¥=Qp J=Qy V'T.
Then
Vo' =T (V)'Qy, .
Hence
n¥ He V'VHg ¥=T (V)'Qy Hp, V'VHy Qp VT .
~Since
Qo, Ho, =[B(8,)+Hjg,_ Hyp, JHg Rg_Hg_
=V VHg_Rg_Hg_,
and

Ho, Qo, =[B(8,)+Hq_ Hy 1o, ~1x =(V'V)'Pg -1, .
then
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n¥ He V VH; ¥=T(V)'V'VHy Ry Hg, VVIVV) TRy ~1, V7T
=T (V)7 V VHg Ry He V'V(V'V) Py V7T
~T VHg Rg Hg V VV'T
=1 VHg Ro Hp Po V' T-T VHy Rg Ho V'T
=-T VHg Ro Hp V'T , (3.40)
where
Hq Py, =0 .
Let
(V)p, vii=a)
and
~VHg R Hp V' =A,
Applying Fisher-Cochran's theorem, we obtain
AjAy=(V) Py Hg Rg Hg V=0 ,
which implies the independence of the terms ‘
n(6,-6,) B(0,)(6,-0,) and n'¥’ He V VHp ¥ .
Let p denotes the mean vector of T, then
E =p Ap=(V'8) VIp (V) 'vls
=8 (V V)P (VV)'5
=8 [B(8,)+Hig, Hig, 1 Py, [B(8,)+Hg_ Hyg 15 ,
_ ' — ~1 ' ' t -1
§2=H Ayu=~(V7'8) VHg Ry Hy V' V!5
=-8 V™'VHg R Hp V' V!5
= -5 Hg Rg Hg 5 .

Now, from Fisher-Cochran's theorem, the above is true if the following
quadratic forms are satisfied

' 2 2
Q=TA;T,i=12and Y p? =3¢, i=12 ,
j=1 i=1 .
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where
Q; =n(8, -0,) B(8,)(8,-6,) and Q; =n¥ He V VHy ¥ .
From (3.38)

Q;=n(0,-0,) BO)B,-0,)=T (V)P V'T=TA,T,
and from (3.40)
Q,=n¥ Hg V' VHg ¥=-T VHg Ro Hg T=T A, T .

Since

K 5 s Lev' =1 PR R ' '

Zp‘i =u p,:(V.— 6) (V 6)-’:6 v )V 0=90 [B(90)+H190H190]6s
i=1

2 \ , ’ '

3 & =8+E, =8 [B®O,)+Hg Hip 1Py [B®,)+Hg Hyg 18

i=1

~8'Hg_Rg_Hg 5
= 8 [{B(8,)+Hyp, Hyg_} Po_{B(,)+Hjp Hyp }

-Hg_Rg_Hg 15,

but,
[B(8,)+Hig Hjp 1Qs, ~Hg Rg =0 ,
then
[B(8,)+H g Hyg_1Qq, Ho, ~Hp Rg Hg =0 ,
and |
Qo Ho, = P [B(8,)+ Hyg_ Hjp, 1-1x
Then
Hp, Ro, Ho_ =[B(8,)+Hie, Hie 1 Ps [B(8,)+Hyp Hig ]
~{B(8,)+Hg Hyp 1.
Hence

£ +82 =8 [B(8,)+Hig, Hig 18=p =3
i
Therefore, asymptotically.

n6,-0,) B(8,)(8,-8,) and n¥ Hg V VHg V¥,
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are independently distributed under the sequence {ON} of local alternatives

as y° with k-r and r-q degrees of freedom and non-centrality
parameters

e, =8 [B(0,)+Hyg Hyg 1 P [B(6,)+Hyp Hig 15, (3.41)
2= -8 ”;;l”oo {B(8,)+Hjg_ Hyp }™' Hp, 1" H:8. (342)

The proof could be completed by noting that in the expression of &, if we

substitute Rg’ ~ R;' we then have
' 6

n¥ Hy V' VHg ¥=-n¥ Rg! ¥=~-n¥'R;'Y.

under the sequence {6} of local alternatives is asymptotically distributed

as xz with r — q degrees of freedom and non-centrality parameter
a=8H; [He{B(8,)+H Hi,} " 'He] 'H;5 ,
with 8 =--=84 =6,y =---=6 =0.

We conclude by the following theorem which is the main result in this
article,

Theorem 3

Under the assumptions A.1-A.15 and considering the sequence N} of
local alternatives where 8] =0, + %’: with lim §;y = §;. The likelihood

N-ow
ratio test statistic -2In for testing the null hypothesis

H,:0ew= Qﬂ[O:hj(O) =0, j=q+l,....r1],

where Q=[0:1;(8)=0,j=1.....q,q<r], is asymptotically distributed as

non-control chi-square distribution with r — q degrees of freedom and non-
centrality parameter

a=3H; [Hg!BO,)+Hy Hy )™ Hel™ H:8 .

where ¢ - 16), .64 ) withé) = =8, =8,,;=---=8, =0.
Proof

The proof follows from theorems 1 and 2.
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APPENDIX
A.l. Forevery 0 €eQ

Z(®) = [Inf(t,0)dF(16,) |
R

exists, where f(-,0) is the density function corresponding to each 0 in the
parameter space and 8 is the true value of the parameter vector.

A.2. Q is a convex compact subset of Rk, o is a subset of Q defined by,
o =0QM[0:h;®)=0, i=q+1,...,1].
A.3.Foralmost all t eR, Inf(t, ) is continuous on Q.

A.4. For almost all t eR, and for every 6 €Q,
0 Inf(t,0)

, i=12,....k ,
00;
exists and,
J0Inf(t,0) .
——1<g(t), i=L2,... .k ,
l 50, | g (t)

where, _[gl (t)dF(t,0,), is finite.
R

A.5. The functions h;(8),i=1,2,...,r are continuous on £ and possesses
first and second order partial derivatives which are continuous on Q.

A.6. 0, €v and for any other point 0 of w, F(t,0) = F(t,8,) for at least
one t.

Assumption A.2-A.6 achieved that, for each 0, the sequence
(n'l InL,(x,0)) converges for almost all x, to Z(0) and for large n and

most X, n”' In L, (x,)) will be uniformly near Z and will attain its supremum
in the set w near the point where Z attains it supremum in ®, where
n
n'InL,(x,)=Y Infix;,) .
i=1

A.7. 0, is an interior in ©.
This assumption implies that for large n and most x, the sequence of

points én(x. ®) which are the maximum likelihood estimates of 8, under

H,, will be an interior point of w and will emerge as a solution of the
restricted likelihood equations when h;(8) are differentiable.
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4.8, For almest all t €K , the function inf(t,") possesses continuous second
order partial derivatives in a neighborhood of 6, and if © belong to this

neidlboﬂmod, then;

azlnf(t,O) <@y ‘t), i,j=1,2,....k ’
20,9,

where, Iszummea. s funite.

A9, For almost all t eP.,’ the function Inf(t,-) possesses third order partxal

derivatives' in s m,ps.km.hpod of 0, if 0 belong to this neighborhood of 6,
then;

&’ Inf(t,6)

t), i,j,s=12,...,k ,
10, 00,00, <g3(t) J

where, | g5 (t) dE(t,0 o), 1s finite.
R
Assumptions A.4, A.8 and A.9 imply that;

(a) The vecior D Z(0), exists for ever); 0 €Q and the sequence of vectors,

{Dn'InL n(X,0)} converges for almost all x to DZ(0), where the i-th
element of the kx1 vector D Z(0) is;

g8) i=12,...k
aei 1] 94y ] 5

and similarly Dn"'In L, (x,0) is defined.

(b) The matrix D? Z(0,) exists and the sequence {D%n! InL,(x,0,)} of

matrices converges for almost all x to D? Z(9,) , where the (i, j)-th element

of the kxk matrix D? Z(8,) is,
0% 2(8,)
09; 09 '

and similarly D n'InL, (x,0,) is defined.

D;; Z(8,) = i,j=12,...,k ,

18°InL,(x,0,)
00; 0006,

is uniformly bounded with respect to 6 in a neighborhood of 0.

(c) For almost all x and i, j,s = 1,2,...,k, the sequence {n'

Each of the statements in a, b and c is almost a direct consequence of the
. strong law of large numbers.
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A.10. The rxk matrix H(9°)=hij(90) is of rank r. The hij(6)=ahi(6°)/69j,
i=l,...,r, j=1,...,k. The kxk matrix B(8,) is of rank k—q where q<r and
there exists a qxk submatrix H;©®,) of H@,) such that

B®)+H;®,)H,®,) is positive definite. We assume that H,(®,) i
composed of the first q rows of H(8,).

All. The matrix B(0) exists in a neighborhood of 8, and its elements are

continuous functions of 8 there. Hence the matrix B(8) +H;(8,)H;(8,)

will be positive definite in a neighborhood of 6, . Similarly H(6) is of rank
r in a neighborhood of 6, and so the matrix R(8) is defined by;

[P(e) Q'(e)]z[B(eHHi(e)Hl(e) —H'(%]”
Q®) R(®) H(O) 0

exists and its elements are continuous functions of 0 in a neighborhood of
0,

From the strong convergence of én (x,0) to 8, it follows that;
R'@)=R"®)+0,(1) ,
where op(1) is a quantity which tends to zero with probability 1 in the limit.

8 £(t,0,)

dt=0, i,j=12,..,k
96,00 ;

Al2. |
R

Assumptions A.1-A.12 imply that, én(x, o) exists and almost converges
to 6,.

A.13. There exist positive real numbers &; and &, such that,
1
Eofles(0) - Eo(es(0) ™™ | <3 <

A.14. There exist positive real numbers v and p such that whenever,

ng--_g“:i‘e'i'-e; <v, 0,0"€Q,

i=]

. [62 nfit,0,)| )
° !9--)

2

<p<® ihj=1...,k.

59,06,

A.15. There exist positive real numbers £ and £, such that,
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3
2+€3
OInf(t,0) cE, <%
ol =a 4 ’
09; o
forall@ eQ,i=12,..,k
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