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ABSTRACT

This paper deals with some recurrence relations satisfied by the single and
the product moments of order statistics for the sample range and sample
midrange from n independent and identically distributed uniform random
variables. The negative moments and some applications are also obtained.
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- D ION

Let {Xn }be a sequence of mutually independent random variables

(r.v's) all having the same continuous distribution function (d.f)
F(x) = P(X_ <x). The order statistics of XX, X are denoted
respectively by

x{® <x{M <. < x{P)

The probability density function (p.df) of the sample range
w(,;) = X{ - x{") from the standard uniform distribution (S.U.D) is
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f(w)=n(n-l)wn'2(l-w) 0O<w<l (1.1)
It is easy from Equation (1.1) to show that;

(n—l)w_l(F(w)-wn)=f(w), (1.2)

where F(w) is the d.f. of wl(‘;) from the (S.U.D).

We write the k-th moment of Wl(';) as

1 = n-—r
= Cen [ wR(F) 0= F)* e W), (1.3)

and the product moments of Wl(’:l) as

W)= Con [ ] (o) (o) - o)™

(1-K{w,)) Ew)e{w, ) dw,dw,, (1.4)

where
n! n!

Crn = (r-=1)!(n-r1)! and Cren = (r- ) (s—r- l)!(n—s)!'

X1 X
Also, the p.d.f. of the sample midrange V](::l) = ———5—-1— from (S.U.D)
is given by:
2n_lnvn—l, osvsl’
f(v) = 2 (1.5)
Z'I*In(l—v)n_l, %SVSI.

It is easy from Equation (1.5) to show that:
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rllv_ll’(‘f). 0svsi
f(v) = » . (1.6)
bn(l-v) (1-F(v)), ZSVS L

where F(v) is the d.f, of vg? from the (S.U.D).

The moments of order statistics have been assumed considerable
interest in recent years and have been tabulated quite extensively for
several distributions. Several recurrence relations and identities among the
moments are also available, see Govindarajulu (1963), Downton (1966),
Krishnaiah and Rizvi (1966), Joshi (1971, 1973) and David (1981). Joshi
and Balakrishnan (1982) obtained several new recurrence relations linking
the product moments with single moments and moments in samples of
sizes n-1 and less. Some recurrence relations for mixed moments of order
statistics in random samples of size n from an exponential and right
truncated exponential distributions were derived by Joshi (1982). He has
shown that one can calculate all of these moments without evaluating any
single or double integral. Recurrence relations for negative and fractional
moments of single order statistics and product and quotient moments of
two order statistics drown from log-logistic distribution have been
obtained by Masoon and Khan (1987). Balakrishnan (1987), used a basic
result due to David and Joshi (1968) and showed that these identities for
the moments also hold when the order statistics arise from exchangeable
variables. A duality principle for order statistics in the arbitrary case, using
which many known dual results on order statistics was established by
Balasubramanian and Balakrishnan (1993). By considering order statistics
arising from n independent non-identically distributed right-truncated
exponential random variables, Balakrishnan (1994), derived several
recurrence relations for the single and the product moments of order
statistics. These recurrence relations will enable one to compute all the
single and the product moments of all order statistics in a simple recursive
manner. The results for the multiple-outlier model were deduced asa
special cases. The results were further generalized to the case of a right-
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truncated cxponential population. Balakrishnan and Balasubramanian
(1995), investigated the above results from non-identical power function
random variables. Nigm and El-Hawary (1996) obtained some recurrence
relations for the negative and fractional moments of single and product of
two order statistics drawn from Weibul distribution. Also, all variances
and covariances were computed by using the Chebyshev approximation
method. In this paper, some recurrence relations satisfied by the single and
the product moments of order statistics for the sample range and sample
midrange from n independent and identically distributed uniform function
random variables are obtained. A relation between negative and positive
moments of the single and the product moments of order statistics for the
sample range and sample midrange from n independent and identically
distributed uniform random variables is given.

2. RECURRENCE RELATIONS BETWEEN SINGLE MOMENTS
OF ORDER STATISTICS.

2.1. FOR THE SAMPLE RA FROM D

Theorem 2.1.1. For 2<r<n, n>2,

(k) (k) k+n) k+n
min = Cpu_1y +Co “(r—m—l - “(r—Z:n)—l g
where

__k#r=1 _dc. = nk
o e R e e

b (n-1)(r-1)

Proof. From Equations (1.2) and (1.3), we have

uled = (- ucm,[ (J) k1) (1= () dw -

! k | r-1 n-r
(j)w o-l(p(w))  (1-F(w))  dw (2.1.1)
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Upon integrating Equation (2.1.1) by parts, treating w*! for integration
and the rest of the integrand for differentiation in the first integral and
treating w'*" for integration and the rest of the integrand for
differentiation in second integral, we get,

s =(n’1)Cr:n|:££Ez glw"(F(w))‘(l—F(w))“”"‘f(w)dw

L W) 1 F) o

_a- ";) w48 ()1 F(w) ")

W) J o () 2 (1= Fw) ) |

Hence,
(k (n 1)1‘ r k n k+n n k+n
“rrn) X "(r+)1n X Q _m“(r:n—l) *Yin p‘(r—l:n)—l' (2.12)

Replacing r+1 by r in Equation (2.1.2), we have the result.

The negative moments of single order statistics for the sample range
from uniform distribution have been evaluated by using the following
corollary.

Corollary 2.1.1. From Theorem 2.1.1., with k +n=a, o <n, we have

Ja-n) _ (a- n)+(r 1) Ja-n) n(c ~n) Jo @)
rn (n-1)r-1) Hr—Ln a(n-1)(r-1) r-In-1 "r-2in-1
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k
Corollary 2.1.2. u‘“) = 0.

Proof. It is obvious.

Theorem 2.1.2. Forn22,

(k) _n(a+1) ( () (k+n+1)).

In+l = k+n+1 Hin ~Hln

Proof. From Equations (1.2) and (1.3), with r =1 we get,

1 -
i =("“)C|;n[ (J)lwk"F(w)(l-F(w))n'ldw— (j) wk*8=1(1_ p(w))® 1dw]

Put F(w) = 1-(1- F(w)), then we have,

Ll(rlz;):("—l)cl:n[ (I)lwk_l(l—F(w))n_ dw - élwk—l(l—F(w))ndw

1 |
_ (J) Wk+n—1(l—F(w))n_ldw}, (2.13)

Upon integrating the three integrals in Equation (2.1.3) by parts
similar to technique Theorem 2.1.1., we get the result.

Corollary 2.1.3. From Theorem 2.1.2., with k+n=a, o <n, we have

(-n) _ nln+ 1)( (a—n) (O‘*l)).

Hin+1 = 771 | Min —(a—n)p.lm

Corollary 2.1.4. Forn2 2,

A (o)
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Proof of Corollary 2.1.4. From Equation (1.3) with r=n and from
Equation (1.2), we have,

p,(k) =n(n—l)[ J)lwk"l(F(w))n f(w)dw - f‘) 1wk"m"l(l"'(w))n-lf(w)dw .

Using the same manner of Theorem 2.1.1., the proof is complete.

2.2. FOR THE SAMPLE MIDRANGE FROM S.U.D,

The Equation (1.3) can be written as the form for the sample
midrange,

) - Cr.n[ (J) %v“(F(v))’(l- F(v))' f(v)dv +

;lvk(F(v))"‘(l-F(v»““f(v)dv}=a£-‘.§2+n£-§2 @2.)
2

Theorem 2.2.1. For1<r<n,

ug::l) =ep+ °2[(n G )ggj-)l:n +“§9;)—1]+ °3[n “g:)-l T ng—?l:n]’

where

1

k+n
el = Tl:-(%) Cr;n, 32 = iﬁ and €3 = ;—_1'

Proof. From Equations (1.6) and (2.2.1), taking the same manner of
Theorem 2.1.1., the proof is complete.

Corollary 2.2.1. With r =1 in Theorem 2.2.1. and for n > 1, we have
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“(1;) =eyt es[(“ - 2)5(72 + “5(11;)—1] +°6[“ Mi:p-1 ‘“n]’

where

Proof. It is obvious.
Theorem 2.2.2. For n>2,

k k+n n? (k) (k k
Hnn = %(}é) - Ek—§£1:1)1 +n£1—)kn—1 - ﬂgl_}l;n-
Proof. It 1s obvious.

k) 1
2. ekde ( — I
Corollary 2.2.2 Miq -

Proof. From Equations (1.6) and (2.2.1) with r=n=1 and using the
same manner of Theorem 2.1.1., the proof is complete.

3. RECURRENCE RELATIONS BETWEEN PROD
MOMENTS OF ORDER STATISTICS.

3.1. FOR THE SAMPLE RANGE FR U.D

Theorem 3.1.1. For 1Sr<s<n, n22,

Lk [“(j,k) (j,k) +2( (jk+n) (jk+n) ) (j k) ]

rsn 1 M sen-1"Hr s-1n-1 r,sn-1"Prs~In-1/723Hr s~1n

where

ay=-- n(n-1) a - and a —(1—9—_—1)
P k+(n-1)(n-s+1)’ 2 k+n 3 n )
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Proof. From Equations (1.2) and (1.4), we have,

w) (a-1)c, s,,[; I wd w =Y (Fwy)) ™ (F{wa)-F(wy))* ™!

0wy
( 1-F(w2 ))n—sf (wl)F(wz)dwz dw,

-; 1 sl w8 o) (o))
0wy

(I—F(wz))n-sf(wl) dw, dwl]
a1y 11w o) o))
1

(:l—F(wz ))n-sf ( wl) dw2 dwl

— 1 1 whwh By )" (Blwy)-E(wy)S

Owl

(1= F(w)* ™ (w7 dwy dwy

"J I W"Wk+n_l(F(W1))r—l(F(W2)‘F(Wl))s_r—l

0w

(l—F(wz))n_sf(wl) dw, dwl]; (3.1.1)
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Upon integrating Equation (3.1.1) by parts, treating wk1 for integration
and the rest of the integrand for differentiation in the first and second
integral and treating wk+n=1 gor integration and the rest of the integrand
for differentiation in the third integral, we get,

(j,k) _

r,sn

(n-1)C

H r,snl g J JW"liWlZ((F(Wl))r—I(F(WZ)_F(WI))S-r-l
0

(I—F(wz))n_sf(wl)f(wz) dw, dwy

n-s+1) 1 1 . - S—1-
L Pt

(1—F(w2 ))n—sf(wl.)f(wz) dw, dw

s—r-1) 1 1 . - s—-r-
) o) g
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(1=K ()" )£ () dw,y

(1-F(w))" ™ E{wy)£(w,) awy dwl]. (3.1.2)

From Equation (1.4) then Equation (3.1.2) becomes

p(j,k)___n(n-l)l[u(j,ld _ k] ]+(u—1)(n-s+1) [ k) (j,k)]

r,sn k r,sn—-1 “r,s-lIn-1 k r,s—ln "r,sn

3

n(n-1)[ (j,k+n) _ (j,k+n) ]
k ur,s—l:n-l r,s'n—lj’

which simply implies the result,

Corollary 3.1.1. From Theorem 3.1. 1., with k+n=0a, o <n, we have

(j,o.—n) (j,o-n)  (j,a-n) (j,o) (j,ot) (j,o.—n)
My sn =by My sn-1" r,s—l:n—l+b2 ur,sn—l"'”r,s--];n—l 830 s—1n |

where

iy 2] (i)

Corollary 3.1.2. With s=n in Theorem 3.1. 1., we have

“(j,k) e [u(j,k) (j,k) cz(u(j,k+n) 4 [bke+n) ) (j,k) J

H ,nn r,n:n—l_u r,n—ln-1 r,nn—-1""rn-ln-1 3 p'r,n—l:n

where,

~ n(n-—l) n 1
Ci= . = l———— d ===
1 k+n-1 ©2 ( k+n) e n
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Theorem 3.1.2. For 1<r<s<n, n22,

(L1+n) = (L14n) )
Crsn dl[of,sn-l—cr,s—l,n-1+d2(or,sn—l r,s-kn-1)

(n+1)  (n+1) Y]
+“r:n[(”sn—l—”s—l:n—l)+d3(p‘s:n-l+“s-1:n—l
i

where ( )
nin-1 1
= dy=de=——
I k+(n-1)(n-s+1)’ 2773

n+l

Proof. Since

Or,sn~Mr,sn"Mrn Hsn-
The proof is complete after using Theorems 3.1.1 and 2.1.1.

3.2. FOR THE SAMPLE MIDRANGE FROM S.U.D.

The Equation (1.4) can be written in the following form:

2 1 ety oru

0 Vl -

(j,k)
r{gnzcr,SIn
(I—F(vz))n-sf(vl)f(vz)dv2 dVl+

() (Fvg )

|
SV

(1-F(vo))" " (v;)£(v, ) dvy dvlJ=§(j’k)+n(‘i’k) (3.2.1)

+

r,s r,sn’
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Theorem 3.2.1. For 1Sr<s<n,

G.k) .Gk 1] (k) (j,k) (j,k)
p‘r,s:n’_'gr,s:n"';{__s["‘r,sn--l_(s'_r)nr,s+l;n—1-r"‘r+1,s+kn]’

Proof. From Equations (1.6) and (3.2.1) and using the same manner of
Theorem 2.2.1., the proof is complete.

4, FURTHER REMARKS

The results for the sample range from S.U.D. can be generalized to
the spacing from S.U.D.

n) _ x(n) _x(n) i<
wi(,j —Xj -Xi , 1<i<j<n

It may be noted that the i-th quasi-range W(n) Xfln)l = Xi(n) is a special

case of Wi(’?) and hence a spacing is sometimes called a generalized quasi-
rang. The spacing Wi(ljl) has a Beta (j-—1,n-j+i+1) distribution which

depends only on j—i and not on i and j individually. Further, we note
from Equation (1.1) that for the (S.U.D) the sample range is distributed
exactly same as the (n-1) the order statistics in a sample of size n from the
(S.U.D). The results for the sample midrange can be derived for the
density function and the distribution function of the generalized quasi-
midrange

X(“)+X(n)

,?) ——3-— i 1<i<j<n.

which of course will include the i-th quasi-midrange as a special case.

Theorems 2.1.1. and 2.1.2. and Corollary 2.1.2. are used to calculate p( k)

(k)

2<r<n. Once ., are know, Corollaries 2.1.1. and 2.1.3. may be used to
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obtain p(r‘:’n“'“’ . The beauty of the result is that from p(:n—n), we can find

negative moments of order statistics with some constraints, viz. at
a=1n=2 a-n=-1.For calculating product moments matrix

j j,k j+k
((u(,J;l;) D, the diagonal elements u(rj,mz = p.gn ) can be filled up first.
“(1',’2‘-(2) can be obtained easily by direct numerical integration. The elements
“E’J’rl-?é"n . 2<r<n-¢-1,, ¢=12,..,n—-1r-1 are obtained from Theorem

2.2.1. Once u(rj,;l;) are known, u(,{é’,‘f“) can be obtained by Corollary 2.2.1.

Finally, from Theorem 2.2.2., we can obtain

n) (n
COV(Xg )’Xg ))=°r,sn=“r,s:n_”r:n Hsn

(n) 2.-2 —1))\2
Var(——xzn))= “(r,sn )‘(“(r{’sn)) :
X3

and

These moments may also be used to find best linear unbiased
estimates of location and scale parameters of sample range for the (S.U.D).
The above applications can be satisfied for the sample midrange.

REFERENCES

Balakrishnan, N. (1987). A note on moments of order statistics from
exchangeable variates. Commun. Statist.-Theory Meth., 16(3), 855-861

Balakrishnan,N.(1994).0n order statistics from non-identical right-truncat-
ed exponential random variables and some applications. Commun.
Statist.-Theory Meth., 23(12), 3373-3393.

Balakrishnan, N. and Balasubramanian, K. (1995). Order statistics from

non-identical power function random variables. Commun, Statist.-Theory
Meth., 24(6), 1443-1454.




ISSR, Cairo Univ., Vol.,41, No.1, 1997, PP.28-42
42

Balasubramanian, K. and Balakrishnan, N. (1993). Duality principle in order
statistics. J. Roy. Statist. Soc,, Ser. B, 55, 687-691.
David, H A. (1981). Order statistics. second edition, New York: John Wiley &

Sons.
David, H. A. and Joshi, P. C. (1968). Recurrence relations between moments of

order statistics for exchangeable variates. Ann. Math, Statist., 39,
272-274.

Downton, F. (1966). Linear estimates with polynomial coefficients. Biometrika,
129-141. '

Govindarajulu, Z. (1963). On moments of order statistics and quasi-range from
normal populations. Ann. Math. Statist., 34, 633-651.

Joshi, P. C. (1971). Recurrence relations for the mixed moments of order

‘ statistics. Ann. Math. Statist., 42, 1096-1098.

Joshi, P. C. (1973). Two identities involving order statistics. Biometrika, 60, 428-
429, |

Joshi, P. C. (1982). A note on the mixed moments of order statistics from

exponential and truncated exponential distributions. Sankhya, Ser. B, 39,

362-371.

Joshi, P. C. and Balakrishnan, N. (1982). Recurrence relations and identities for
the product moments of order statistics. Sankhya, Ser. B, 44, 39-49.

Krishnaish, P. R. and Rizvi, M. H. (1966). A note on recurrence relations

between expected values of functions of order statistics. Ann, Math. Statist.

37, 733-734.

Masoon, M. A. and Khan, A. H. (1987). On order statistics from the log-logistic
distribution. J. Statist. Plann. Inference, 17, 103-108.

Nigm, E. M. and El-Hawary, H. M. (1996). On order statistics from the Weibull
distribution. ISSR. Cairo Unjv., vol.,, 40, No., 1, 80-92.




