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Asymptotic Distribution of Spectral Density Estimate of
Continuous Time Series on Crossed - Intervals
BY
Ghazal, M.A. & Farag, E.A.

Abstract. Let X(t) (- © < t < o) be a zero mean, r vector-valued,
continuous-time strictly stationary process with spectral density function

f g() (A), (-9 <A < o). The problem of asymptotic distribution of estimate

fg() (AM)of fyx(A)on crossed intervals based on the values of X(t)

t=0,1,...,T)are considered where the periodograms are calculated, using
data window. The first, seconed-order moments and cumulant of

f,(g() (A) are derived. Further, some results in this area are presented. Also,

the asymptotic distribution of f')(g() (M) on crossed intervals is derived. Our
purpose, is to indicate the appearance of the Wishart distribution as an exact
limiting distribution of £{)(A).

Keywords. Spectral estimate of continuous-time processes; Data window;
Finite Fourier transform; Periodograms, Asymptotic normality; Wishart
distribution.

1. Introduction

Let X(t) (- o < t <o) be a real-valued stationary process with mean zero,
continuous autocovariance functionCyy(u)(- © < u < ) and spectral
density function fyy (A) (- © < A < ). Many authors as ¢.g. Brillinger [2],
Dahlhaus [3], Ghazal and Farag [6), Zurbenko [9] have studied the
asymptotic expressions of the first, second-order moments and cumulant of
estimates of the spectral density on crossed intervals. Brillinger [2], analysis
the first two moments and cumulant in two cases, the first by using the
tapered data (data window), and the other where the untapered data is used,
and in these papers one can find the first two moments and cumulant by
using data window. Our work mainly based on the properties of data
window ( Brillinger [2], Ghazal and Trush [5];, Ghazal and Farag|7]).
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The statistical analysis of cstimate I')(("x)(h) of [xx (A)on crossed intervals

in discrete time processes is considered in Ghazal and Farag [6], and our
paper is an extension of the latter in continuous time processes. The
estimation of spectral density on crossed intervals mainly based on study the
properties of the expanded finite Fourier transform in discrete or in
continuous time processes ( Ghazal, Hennawy and Farag [5]; Ghazal and
Farag [7] ). The asymptotic noimality of the estimate of fyy(A)is

considered in Lii and Masty [8]; Brillinger ([1], [2]) while the asymptotic
Wishart distribution of estimates of spectral density is established in the

latter.
I this paper we study the statistical properties of spectral density

estimate [ )((1'() (A) (- o <A <oo)on crossed intervals using data wndow. In

Section 2 we introduce the notation and some recent results which will be
used later. Details can be found in Ghazal and Farag [ 7]. In Section 3 the
asymplotic expressions of the first, second-order moments and cumulant of

ST . : : ;
l)((x) (A)ate given, and some resulls in this area are presented. Section 4

contains some useful results on the asymptotic distribution of f' }(&) A),
whete two limiting distiibutions me scen to appear in the case of estimate

spectral density. Under one limiting process it tends to be ')(,2 distribution
and under it tends to be a Wishart distribution.

2. Preliminavies

Let X() (- » < t <o) beasthictly stationary r vector-valued continuous
time scries with mean ze10. Let Cyy (W) (- o0 < u < o) be an antocovariance

fimction  and spectal density fimction fyg(A) (- @ < A < =) be an

rxr matrix of sccond-order spectial densities which are given by
]
Cxx (W =E{X(1) X(t 1 w)}- j [yx (M) exp (iur)dA , 2.1)

Cm=tu<mo), (o< <o)
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{xx (7&):(21r.)"l j cxx (n)exp(—iud)du _ - 22)
(-0 <A <)
respectively. Suppose
I |exx () |du=<co, @.3)

where l cxx (W) [ denotes the matrix of absolute values.

Now, given a sample of observed values of XOfort=0,1,..,T),
let h(t) be a data window, where h(t) equal zero outside [0 , T-1]. Put
T = L N + M- 1, where L. is a number of crossed intervals which contains
N + M - 1 observations, 0 < M < N. We construct on £ - intervals
observation:

X(LN), X(ENA 1), ..., X[(£+DN - 1], £=0,1,...,1-1

the expanded finite Fouricr transform which can be represented as

1
(lg(N (A)= e
n j Wt (£ - DNt
(¢-)N
INIVM -1
x j it - (- 1)N] X(1) exp(-itA)dt 2.4)
(L-)N

We shal define the estimate spectial density on £ - intervals observation by

AT 1
()~ ==

1.
o j1§§(x)de, =1, ... L 2.5)
|
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where 153 (A) = A3 (M) oy 2.6)
(-o<h<m), £=1,....L

is the expanded periodogtam on £- intervals observation. The bar denotes
complex conjugate.

Set
°n|,...,ak (tl ’“'s'k—l)

= cum {X"I (- t)""’x“kél (Y ¥ t),X“k (T)} 2.7

(Ao =y 8 — 0 Uty T <o k=1,2,...)
using the assumed stationarity. We then set down:

Assumption 1. X(1) is astrictly stationay series all of its moments exist.
Foreachj=— 1,2, ... . k-1 and k-uple a,,...,a; we have

T 1 |
“ I I“j Cay iy U,y Dlduyduy <0, k=23, ...
1y

(2.8)

If X(1) satisfies Assumption 1 we may define its k-th order cumulant
spectrum by

1
ral,...,ﬂk (7\'1 )'-',hk_!)'— -(»i;[_)i(_‘_i
T T k-1
) I Icﬂl.-.-.ﬂk (Wy,.0 sy ) eXP(-i ) Aqug)duy..duy
P . ¢ ) oD j-_l

(Anmap=L,5 -0 <A <w; k=2,3,...), 2.9
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and we note that f, o (Ay,..., Ay _y)is bounded, uniformly continuous,

and [2 (M) =f(A) .Ghazal and Farag |6] studied the statistical analysis of

spectral density estimate on crossed intervals in discrete time series. In the
next section we will construct the moments statistics of spectral density
estimate and study the limiting of these noments in continuous time series
using data window.

3. Asymptotic Expressions of the Estimation of Spectral Densily

We shall consider estimate I )(&) (A) (- © <A <o) given by formula (2.5).

The general expressions for the first, second-order moments and cumulants

of the estimate spectral density [ xx) (M) is given by the following Iheorem

Theorem (3.1). Let X(U) satisfy Assumption I and have mean zevo. If h (1),
a=12,..,r (-o<t <m)is bounded and has bounded variation, then

{S,)(W)} IA"(w) ap(a)do @.1)
where

L
A"(A--a)= T

L
x j(zn)“[n;*(o)n,‘,‘(o)] 21],’{'(7&-—a)ﬁf,’(7\,-— w)de , (3.2)
1

and
NaM 1}

k k
":.....ak (le)= I h"l (z) ... h"k (Zexp(-i), Ajz)dz,
j=1 0 -l

z=1-(£-DN,j=1,....k 3.3)
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Cov i, (1) (0, 0p)
A M- (10, @1, (0)) 2 N, (i hy)

Iy O 14 Ty, )iy C A 1 (NEM=D)

1
N 3 2 N
% (“:ll ,b2 (())”b] My (0)) 2 “n|_h2 (A - )‘2)

2 (A'l '"'A"Z) rnll)2 (kl)rh'n.z ( }"I)

3

F(NtM-1) 2 RN, A,) (){(N M- 1)“'}, (3.4)

The error term is uniform in A, ..., Ay, and there is a finite K such that
l

LHA (O)D

RN(M,M)IS K ( az(xl"'kz)l

NI—

Iy Gr=2o)| 35

1 ( Ia, b (O)D
and

(,um{[‘flh)l(k,),.. f,f;l,k().k)} {[ N4 M- l) K,,]},
2,3, (3.6)
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froof: Foimula (3.1) comes dircctly from formulas (2.5), (2.2) and then
“mbstituting about { -- (l I)N = 7 in the resulting equation. To deduce the

cwariance of f ,(&) (M), we must state the following lemma:

lemma (3.1). Lct Assumption I be satisficd and have mean zero. If hq (1),

¢=1,2,...,1 (- <t <o) is bounded and has bounded variation, then
1

1
. f N N _ @m*? 12 N "2
Cum {dn| (Ay) - vdnk (A'k)} (i’ﬁmt};:i) (,I]a 1"k (0))

k
Moy (L) fayony PR
J::

k k
x cxp[—-iz Aj(e l)N] I (){(N-t M- l)—_i} , (3.7

k
vhere "rl'“'"'k (Z A ;) isgiven by (3.3).
=1

Ihe proof of this lemma is basically a repetition of the proof of Theorem
2.1) in Ghazal and Farag [7]. Let

=(L-1)"2 Cov {f:;rgl A1) f :32 (Aq )} ; thenby ( Theorem 232, pg
i) in Brillinger 3], relation (3.7 and the
wiation 11}, (A), aycq (M) =O(N + M - 1), we have
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|
(m £(m e
C OV{‘nﬂpl (7\'!) iayh; (7\"2 )} (] ')2

LT 1
[ [N M—-l)"'(l]” oy O (o)) 2
11

L O A) TI o 1 A9) S ) D5, (- 20)

1
TN+ M- 1) (l,’,J b, (())ll,, M (())) 2 I]a by Ay -2y)

T,y B =2g) T ) ) B e (1)

ofnim-1))

1
e LN ) 20N g
SN Vi ( “1*"2(’) ayay (A1+22)
fo 2(M)¢“<P{ (M +A5)(2- DN
1

(“ﬂ b (0)) 2 "n l) (A'l A'2) rnlhz (A'l)

x exp{--i(x, ~Ap) (£~ 1)N}} »|0{(N + M- 1)"'}} d¢,de,,

Now (3.4) follows when ¢, = £, . Finally, from (2.6) we have
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(T p— 1
§ - 1 B
Cum {ls:gl ). ’['Sk')’k (A )} = (l__l_)i
1

j b (Ay, s Mg ) dey . dly (3.8
1

X

where
hk(x,, oes ,)\,k)

) N _ - | Al
= Cum {]:ll“l (M) oo s Tagby (hk)} = Z (_,nm{Csl } (,um{(,s ) }
9
3.9
where [Csl 5 s gop J is an indecomposable partition of the elements of
p

the table

day (M),dg (~2y) dg (1), dq, (39)

dl‘k (M),dgk (-Ay) d?k (llx),dlqu (3¢)

and the summation in (3.9) extends over all such indecomposable partition
[ See Brillinger [2], Theorem 2.3.2]. Note that in the using the transformed

table 'ébove, Cum {d?j(u i»d s,j 3 j)} denotes the cumulant of all mndom

variables {d?j(u ik df,'j(s j)} excluding the cases with p; = — 9= M

for some j, m. Then by (3.7), (3.9) becomes : .
1

2

hye(Ays oAk )= X [(N+ M- 1)"; {.[i]n?i,.i (0)}
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{I I“( A (l' ‘()'i)‘;-i(li('()i)}

xexp[_i > (v 9_,)(e- l)N}4 io{(N + M- 1)"'.}

j=1

|
x{(N|M¥— N (n” . (0)) (u” R -si))

g exp{’“i(lli + Q'i)(f— l)N} fcidi (lli)}],

With the notation FIN, (1) =O(N + M --1), then relation (3. 6) is obtained,

which completes the proof of the theorem.

From the previous theorem, we can derive the following corollary

which indicates that fé",) (A)is an asymptotically unbiased estimate of

fap(X) if A =0 (nod2n).

Corollary  (3.1). Under the conditions of the theorem and if
ha(D)=hy(2)=1, t-(£-1)N=2Z, £=1,...,.L and g, b =1,....r..

then

Lim F{f( )(x)} fay(A), -mo<h<o (3.10)
N-» o

if A #0 (mod2n).
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Proof. Put A - o -y into expression (3.1) and (3.2), we get

L | 1
<1 fen™ (Y oui ) 21 oI @ e -—v)dy}de,
| =)

As [p(A-7) is a uniformly continuous function of vy, then

ihazal and Farag | 7] ( Theorem 4.1) indicates that the inner integral tends to
Lap(A)as N —> o, A #:0 (mod 275). This gives the indicated result.

In Corollary (3.2) below we make use the function

n(A) =1 if A=0(mod 2n
() . ( ) 6.11)
=0 otherwisc
This is a periodic extension of the Kroncker delta function
5(A) =1 ifA=0
. 3.12)
=0 otherwise

The statistical dependence of 5;?1 (A;) and f g‘)n (A,)is seento

fall off as the functions ll:{b(l.) fall off. In the limit Thcorem (3.1)

becomes:

Corollary (3.2). Under the condition of Theorem (3.1), suppose
AMptAy;=0(mod2r);h (1) =hy(1)=1; a,b=1, ..., rand that L does
not depend on N. Then
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. - I
Lim Cov B0 DT, ()

11(7“1'7”2) |n2(7‘l)'hlb2( 7\‘1)'“(2“1 ?"2) lbz(}"l)fblnz( )"l)

-1
(3.13)
for Aj,Ay #0 (mod2n), and il A LA, + 0 (mod 2n), then
Lim cov{r(lhl (A1), l,f;,{z(xz)} -0 ~ 3.14)

The proof comes directly by using the following notations:
® In‘,(?n)f (N+M-1), when h, (1) = hy, (1) = 1 and A =0 (mod 2n).
(i) Lim I1N,(0) = o

H-»m

In the case of A, = + A,, Corollmy (3.2) indicates the following

corollary:

Corollary (3.3). Under the conditions of Theorem (3.1) and Corollary (3.2)
and il Ay =+ A, then

1 (x)

Tim Vo RINE (3.15)

Tuming to the k-th arder comulant of f,(g()(?\.), we have the
following cotollmy:
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Corollary (3.4). Under the conditions of Theorem (3.1) , then

Cum IA::;,)I(K,), 'f::(l)rk (Mg )} -» 0 as N.» on, (3.10)

The proof comes directly fiom equation (3.6) .

4. Asymptotic xz and Wishart Distribution of Spectral Estimates

This scction is concerned with finding the asymptotic distribution of

f,((Tx)(}»), on crossed intervals which based on the study of asymplotic

distributions  of the expanded finite Fourier transform (I;N (A)and

periodograms.

Theorem (4.1). Let X(t) (- @ <t < o) be an r vector-valued series satislying
Assumption I and h,(u) (- o < u < @) bounded, has bounded vaiiations dnd

cqual  zero oulside[(), T-- l]. Let d,‘(N (A) be defined as (2.4) for
- <A <o, =1 ....,.anda=1, ..., r Then d;N(A.)= d:N(k) are

asymptotically independent N';'((),f nb(?\,)) variates if A 0 (mod n) and

asymptotically N,((), f,“,(A.)) variates if A=+ n,+ 3w, ..., a3 N - oo,

Proof. We begin by noting that

1
BN ()~ e e
2 hg[r-(e-1)N]au
(L )N
{NIM- |

j haft - (¢ INJexp( iA)dEX,(1) = 0,
(r HN
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Then E (I:N(A) = 0 it AFO0 (modm)and A=Ln,x3m, ..., using
Lemma 3.5 in Ghazal and Farag | 7] and the notation

(N1 M-1
j h, [1 ~(e- l)N](lt = . We therefor see that the first comulant of

(L-)N

d g(N (1) behaves in the manner required by the theorem. Next we note that

czov{d,ﬁ“(x,),df,'“(xz)}= [Lan (PN =18 -2y)d9 (@1

wheic

(I)tr:h(s = A,],‘(} - A’?) ~ (),")l

INIM-1 (NiM-1 2
x[ j j ha[ty - (£~ DN] Iy [ty —(€~1)N]d|,d|2]
(E-DN (& DM '

X P (3= A)Fh (9 1y)

INIM- ]
with o™ (x)-- j ln[t.v(g--.I)N]ck|v(.--il.x)dl
(¢L-)N

Then  equation  (4.1) tends to 0 if ApytAy=0modn). If
TA =T Ay (modm), ittends to [, (1) (using Corollary (3.1), in Ghazal

and .ang {71 ). This indicates that the second-order cumulant behaviour
required by the theorem holds.
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Finally, we note from I.emma (3.1), that
Cum {d: (Ay), - ,d:‘k (kk)} tends to 0 as N — oo if k > 2 becausc

HY o W)= O(N+M-1).

Putting the above results together, we see that the cumulants of the
variates at issue, and the conjugates of these variates, tends to the cumulants
of a normal distribution. The conclusion of the theorem now follows from
Brillinger [2] ( Theorem P4.5, p.g. 403 ) since the distribution is dctermined
by its moments. :

In Theorem (4.1) we saw that the expanded finite Fourier transform
of the same frequency, A # (0 (mod =), which is constructed on crossed

intervals were asymptotically independent N';‘((), f ab(?»)) variates. This

result suggests that the periodogram will have two limiting distribution, the

first is xz - distribution, and the other is Wishart distribution which we can
express about these distributions in Theorems (4.2), and (4.3).

‘Theorem (4.2). Let X(t) (- © <t < ) be an r vector-valued series satisfying
Assumption 1 and h(u)(- e < u < ) bounded, has bounded variations and

cqual zero outsidc[O, T- l]. Let
(4 ( ¢
1) =ddma o “4.2)

£=1,..,L, (- © <A <o) ThenasN —» o, I;’;‘((k), £=1,...,L arc

o fxx (M1}
asymptotically indcpendent S variate if A 0 (modn) and

. fex (M1
asymptotically idependent ~-—-—2-—-—- variate if A=+ n,+ 3n, ... .
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L
Proof. Theorem (4.1) indicates that Re (I;N(%), Im de (A)are

1 ;
asymptotically independent N,((),-i fxx(l.)) variates. It follows from

Theorem P 5.1, p.g. 413, in Brillinger [2] that
IN oy (N . T (NP
118 )= [Re dN ]+ [m i)

is asymptotically fxx (A) x; / 2 . The asymptotic independence for different
values follows in the same manner ftom the asymptotic independence of the

a2 ).

This result will suggest a uscful means of constructing spectral
estimates later.

Theorem (4.3). Let X(1) (- 0 < t < ) be an r veclor-valued series satisfying
Assumption 1 and h(u) (- © < u < ) bounded, has bounded variations and
cqual zcro oulsidc[O, T- .I]. let 1 Q‘i () be defined as (4.2). Then 1 )l(rj{ )
£=1,...,1. are asymptotically independent W (l, fxx (A.)) variates if

A 1 0 (mod ) and asymptotically independent W,(],f xx(?\,)) variates if
A=tmt3n ..,asN— o,

Proof.  ‘Theorem  (4.1)  indicates  that  d g(N (Ag ),...,df(N (Ay)are
asymplotically independent  N{(0, fxy (A)) variates while the Re
1N i (N . .

dy (Aj)anc Im dy"(A;) are  asymptotically  independent

N,((),f XX (h)) vatiates. Now, Theorem P 5.1, p.g. 413, in Brillinger [2]
indicates that

(N i
Lx M) = 4 ADAT ), =1,
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are asympotically independent W (1,fxx (1)) variates. The asymptotic
indcpendence for different values of i follows in the same manner from the
asymptolic independence of the dx (A;). j=1,...,J, which completes

the proof .

The asymptotic distribution of f)(g? (A) under certain regularity
conditions is indicated in the following :

Theorem (4.4). Let X(t) (- e < t < 0) be an r vector-valued series satisfying
Assumption I and h(u) (- © < u < ) bounded, has bounded variations and

cqual zero outsnde[O T- l] Let lxx (A) be defined as (4.2). Let

C”(K)“*—"I' x(M)de, =1, L “4.3)

fﬁx(x)x%(Lmn

where T =LN+ M- 1. Then f)(&) (A) is asymptotically

fXX(A')}i_l

if A7 0O(modn)and asymplotically independent
{ 0 ( )a symptotically independe WL

A=tn+3n,.. 88N-»m,

The proof comes directly fiom Theorem (4.2) and Theorem P 5.1, p.g. 413,
in Brillinger [2] .

Theorem (4.5). Let X(t) (- »» < t =) be an r veclor-valued series satisfying
Assumption 1 and h(u)(- @ < u < o) bounded, has bounded variations and

equal zero omsidc[O,'l'- l]. Let f)(";)(k)bc defined as (4.3) where
T = IN 4 M - 1. Then (r)(l) 1S asymptotically
(L-1) " WE(L-1,fxg (M) i€ A O(modn) and asymplotically
(L= 1) W (L~ 1,Myg(A)) A=tm 13, ....08 Nosoo,
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The proof comes directly from Theorem (4.3) and Theorem P 5.1 , p.g. 413,
in Brillinger (2] .
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