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Abstract

In this work , we consider a continuous Robbins — Monro process in
a Hilbert space , a nonlinear mapping f is treated instead of the usual
linearity assumption .

A modified process with varying truncations is analyzed , and the
asymptotic properties are investigated and convergence as well as
necessary and sufficient conditions are obtained . Yin and Zhu [7]
considered the discrete Robbins Monro in a Hilbert space , and we extend
. their results to the continuous case , by introducting randomly varying
truncations and we prove the almost sure convergence of the stochastic
approximation algorithms .

1 . Formulation of the problem :

Let x* be a fixed point of H, but arbitrary. with
|x *|| < M , for some M> 0.
Let M(t) be an increasing positive real function , such that

M(1)—== . Define a sequence of a real - valued random variables by

kl = ]’ kn+l = kn + 1{r~<ao}
where I{,_ <) IS the indicator of the set {a) it (a)) < 00}.(0 € Q,
where Q2 is the sample space .

t, =inf{r:|x, (0> M(k,)}

Now , we define the continuous version stochastic approximation
algonithm with randomly variation truncation as follows

for n=1,2,....,. Letta=0, x,(¢,.,) = x .

dx (1)

= —a(1) (X (1)) + a()E(1) f
de

-0, (11
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Remark 1 :
It is clear that k, is monotone increasing random sequence of

positive integers , hence either k, = o or k, — k, a finite limit .
If finite k exists , then there exists a positive integer N; , such that for all

>ty g x v, (] < M (k)

i.e after finitely many steps x (f) will be bounded uniformly for any

fixed o.
Hence our main task to prove the finiteness of the limit k .

2 . Assumptions :
Al: a(t) isareal positive continuous functionon [0, ) ,

a(t) > 0fort— o ; j a(t)dt = o . (2.1)
1
a'(t)
= 0(a(t)) as t— (2.2)
a(t)
Remark 2 :

Let a(f)=<—,¢ 21, ThenAl holds.

A2 : & (t) is a stochastic process with pathes in H which are

integrable on a ¢ - finite intervals and

lim a(t)jé(z‘)dr = 0, with probability one .
0

A3 : f (. ) : H—>H isan operator that maps bounded sets into
bounded sets and has a zero point 6 € H . fis continuous ,
and the continuity is uniformly on any bounded subset of H .
A4 : There is a twice continuously , Fre'chet differentiable
functional V(Liapunov functional ) V: H — R such that
V maps bounded subsets of H into bounded subsets of R with

VO)=0, lim  V(x)=o (2.3)

'X ~» O

V(x)>0 , Vi) f(x)>0 ,Vx 20

where v'(x) and Vv"(x) denote the first and the second
Fre'chet derivative of V (x) , respectively (cf.[6], [8]) .
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Remark 3 :
The assumption A3 covers a large class of nonlinear operators . In
the following examples , we assume that f has a zero pointat 6 .
Example 1:
If £ is alinear operator , then A3 is clearly satisfied .
Example 2 :

Let f: H — H suppose that there existscp>0, 0 < a <1,
such that

”f(x)—f(y)“ScO”x—y"a, for all x,ye H

i.e. f isaHolder and Lipschitz operator then A3 holds .
Example 3 : |
(Uniformly continuous operators ) .
f:H —> H isuniformly continuous iff forany n> 0, there exists

d (M) >0, such that lx—ﬂ <d(n)
implies  |f(x)- f(»)| <7 (cf.[6]).

The uniform continuity of f implies that f maps bounded sets into
bounded sets . It follows that if f is uniformly continuous then A3 is
satisfied . Many nonlinear operators such as continuous operators with
“polynomial growth” and compact operator and integral and differential
operators can make A3 holds .

(A4) is a “stability condition” . V can be viewed as Liapunov functional .
When we are treating R’ values stochastic approximation problems,
this kind of condition is used often (cf. [6]) , the actual form of V need
not to be known .

If the operator f is Fre'chet differentiable at © then a locally quadratic V
can be used i.e , there is a self — adjoint , postive (linear ) operator

Q : H - H , such that

V(x)=< x-6:Q(x-8)> +0(x-8[).
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(A2) is a “robustness” assumption (robust with respect to the random
errors . Conditions such as independence or no correlation need not to be
assumed . To see the scope of the assumption A2 (cf. [4],[5]) .

3. Main Results :

In the following , we need to show that the number of truncations is
finite and this finiteness 1s the first step for obtaining the convergence
result and we need the following lemma to prove theorem 1 and
theorem 2 .

Lemma 3.1 :

Let W:R® — H be locally Riemann integrable function . Then

lima (1) [ ¥ (s)ds =0, iff

{— 0

lim sup a()[ ¥(s)ds =0

t>r

(The proofis direct for R” and can generalize to H, (cf [4] ) .

Theorem 1 :
Let the assumptions Al-A4 hold ; Then
k,—>k as n—> ©

Proof :

If the truncations are executed infinitely often, ie  k, > oo.
Then there is a positive integer N, such that Mk, )>2M, thenx(r)

would across the sphere {x;|x|= M} infinitely often . and there would
exists 6§, and s, with  0<d,<5,, such that

[6,.6.]c (V(x'),d), where d=inf {V(x),[x] > M }

Let D = {)«‘;(5l SV(X)S52}M{.\':]X(SM},

which implies that D 1s a closed set .
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Then forevery N 2 N,,thereexists #;, ¢ such that t,_, <f, <t, <1y,
be the time of the first entrance from the left and the first exit from the
right of the sequence {V(x,)} to the interval [5,.5,]. By virtue of (A4),
{x(1),1, st t,} isbounded .

Now Let x, (t) = x(f) .

Let
[
T(t,,n) = maxif; Ia(s)ds <snp -

Let T = min [l,,T(l,r])]

multiply (1.1)by  V'(x(1)) (inner product) we obtain

< V'(x(1)). X(1) >= =a(t) < V/(x(). £ (x(1)) > +a(t) < V'(x(1)).£(1) >

then

V(x(1) = —a(t) < V'x(). £ (x(1)) > +a()(V'(x(1))-$(1)) (3.1
by integration w . r. t. t we obtain

V(x(D) - V(1)) = = [a(u) < V'(x(w). f (x(w)) > du + G

h

(3.2)
where

r T _
G, =<a(Nu(T),V'(x(T)) > - j < u(s),a(s)V'(x(s)) > ds - ]< u(s)a(s)V'(x(s)x(s)>ds  (3.3)

O

where u(T) = [£(s)ds (3.4)

Let H' be the last integral in (3.3), thus by (1.1) we have

HY = [<u(s).a® (V7 (x() S (x(s)) > ds = [ < u(s),a” (V" (x()4(s5) > ds (3.5)

L 4 [ 4

la ()= ota(s)) as s> ®
using (3.3) to (3.5) we get
6 <] Vx| auni+
r
«k, supl atyu(n)ff j[|v (x(5)) + [V (x (DY (x (sl a(s)ds]

+ JIV N B llatsrds)
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since “ X "SM, V(x(s),  V"(x(s), Ja(s)f (s)ds <0

. “GtT < k sup“ a(t)u(t)“(k,r; + ky)

V(x(T)) - V(x(t,)) < —ﬂn7+-sip“czU)u(tﬂKk,ni-kz)

let A(t,) = suplla(t)u(?)]| ; Let T be chosen and hence ¢,

121,

A
such that A (¢,)( k7 + k,) < 2L

ie T> t, choose f, such that

At kn+ky)< '1777— and this is possible and since

A(t,) = suplla(t)u(t)| ; and this is converges to zero as ¢, —> .

121

[ according to lemma (3.1) ] and hence A(?,) can be taken

arbitrary small and in this case we take f, such that
An
2(kyn + ky)

A(t) <

thus
V(x(T)) - V(x(¢))) £ Z_;f.’l, which contradicts that

5, <V(x(1)<6,, for t €[t,,1,]

Theorem 2 :
Under the assumptions (A1) - (A4)
X(f) convergesto © w.p.l as t— .

Proof :

It follows from theorem (1), that there exists T;> T, such that

Ix())|< M (k) forall 2T, -1

Thus from (3.2)
V(x(1) = V(x(T) = = [a(s) < V'(x(5)), [ (x(s))ds

+ Ia(s) < V'(x(s)),é(s) > ds

L
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we prove the theorem by contradiction . Suppose }i_m"x(!) -6|#0. ie

there exists a positive number 6 such that for every ¢, there exists ¢

such that |x(t*) - 6||> 5, from the previous assumption |x(1)] is
finite and bounded after a certain time (finite truncation ) .Assume that
}Lrgsup x(t) # }LT inf x(t)260 and V(a)= V(b) =0, then there exists

[a, a; J<[a,b], suchthat V(x(¢)) would be across infinitely often, since
Ix(r)] < M (k),and repeat the same arguments in theorem (1) we reach to a

contradiction .

Now, assume that lim x(¢f) exists = 6 # &
{—» ®©

o

Then for ¢>Ts-1, |[x () - 0||>7

Now

{

Vx@)- V(T = - fa(s) < V(x(5)), £(x(s)) > ds
4]

!

+ Ia(s) < V'(x(s)), &(s) > ds

T
since < V'(x(s)) f(x(s))> =20

then inf < V'(x(s)) f(x(s))>

Tysssi
1)
5 S Ix(s) - 6|| s M (k)
exists and is biger than zero.

Let A= inf < V'(x(s)) f(x(s))>

Tysssi
%s Ix(s) - 6| s M (k)
since < V'(x(s)) f(x(s))> 24
then

-<V'(x()) f(x(5))> <-4
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then
V(x(1) - V(x(T)) < -4 [a(s)ds + [a(s)V'(x(£)),¢(s) > ds  (3.6)
T, 7,

and since the last term integral in equation (3.6) isconvergent from

t
theorem (1) and IG(S)dS is divergent .
T

Then sup V(x(1)) < -0,

{—> 0

which contradicts V(x(¢)) > 0,
lx(¢)|| is bounded , which completes the proof of the theorem .
4. Asymptotic property :

For the usual stochastic approximation algorithms , the normalized
error has normal limiting distributions. For the varying truncation
algorithms, the asymptotic normality still holds.

Let us examine (x(t)-6)/+/a(t) as t — oo there exists Ny, such that

for all > t,v|_|

p{ sup “le (t)“ < M(k)} >1-¢ foreverye>0

12N,
Let y(f) denotes the solution obtained from the usual stochastic
approximation algorithm without truncation and with approximation

condition leads to asymptotic normality . Thus for any bounded subset B
of H, we have

lirnSl’lp p{ x\(/tal(;_)e € B} < liIIlSL{lp p{ x\(/tal(_;_)ﬁ eB,tzs;lll}zlllx(t) .0 O}

+ limsup p{—)-(—(/t;l)_(:_)e € B, sllvlp_I"x(t) -y(0)| > 0}

) -6 EB}-*—E

< limsup
t { \/a(t)
Similarly
liminf {y(t) s eB} < liminf p{ X9 eB}+ £
t=béd pt Ja(t) Pefen Ja(t)

since & is arbitrary

lnpl =2 gl _ limpJ XN-6_p
= | JJa(l) == | JJa(n)

which proves the asymptotic normality of the truncation process .
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