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Abstract

Classification Analysis 1s concerned with the problem of classitying a
subject to one of several distinct groups on the basis of a set of measurements.
For example, in business, a bank loan officer wishes to classity loan applicants
to low risk credit customers or high risk credit customers on the basis of a set
of variables.

The presence of missing values in a data set uscd for building a
classification rule is a serious problem that may face the investigator when
applying the classification analysis (CA) to a practical situation. Many
procedures have been developed to handle the missing values when applying
(CA). The default method of handling missing values in (CA) used by many
statistical packages ( for example, SAS, Minitab and SPSS) is to omit all units
containing missing values. Thus, considerable information may be lost due to
the reduction of the sample size.

Many studies dealt with this problem in case of two multivariate
populations with equal covariance matrices while a few studics treated it in
case of two multivariate populations with unequal covariance raw.ccs. The
present study deals with the problem of classification analysis wiik missing
values in case of two or three nuitivariate normal popuiations with equal and
unequal covariance matrices through a simulation ctudy. Three rules of
classification and five methods of handling missing values are considered. The
objective of this study is to compure the different methods of handling
missing values with respect to their abiitiy in obtaining a “good” classification
rule. In this study, two patterns of missing values are concidered and the
mechanism that lead to the presence of missing values is assumed to be
missing at random (MAR).

Seven factors are taken into consideration. The impact of each factor on
the methods of handling missing values is studied. A Minitab macro was
designed to run the necessary calculations.
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1.Introduction.

The problem considered in (CA) i1s classifying a subject to one of
several distinct groups on the basis of a set of measurements associated
with the subject. When we want to build a classification rule to classify a
subject, a serious problem may face us. This problem is the presence of
missing values in the data set which is used to build the classification rule.
This may occur in many practical situations, for example, some respondents
may refuse to answer a particular question on a survey questionnaire. Also, the
researcher may forget to record an answer or a measurement.

Many statisticians investigated the performance of the methods
used for handling missing values in multivariate data analysis. Most of their
studies were devoted to multivariate regression while a few statisticians
compared this performance in ( CA) . A review of related literature is
presented in Section (2).

Many rules have been developed to solve the classification problems.
The rules of classification used in this study are presented in Section (3).
Section (4) is devoted to display the procedures of handling missing values
suitable for multivariate data analysis. Methodology and tools are explained in
Section (5). In this section, we will discuss the methods of choosing
parameters, generating samples, and drawing units to be classified. The results
of the simulation study are presented in Section (6) while summary and
conclusions are given in Section (7).

2. Review of Related Literature.

In (1968), Jackson compared three methods of handling missing values
using real data. The methods used in her study were, the complete case
method, the mean substitution method and the regression estimation method.
In the first method, the units containing missing values are discarded and the
remaining units used in building the classification rule. In the second and the
third methods, the missing values are replaced by estimated values and the
classification rule is designed by the completed data set. Jackson used the
Fisher’s discriminant function as the classification rule. She pointed out that
eliminating units with missing data may result in considerable bias if
missing data are not randomly distributed.

In (1972), Chan and Dunn used simulation techniques to investigate the
performance of seven methods of handling missing values for small samples .
They assumed that all pairs of variables are equally correlated. Methods used
in their study were:

Method A : Only complete data vectors, are used.
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Method B :All available sample values are used to calculate means and
covariances.

Method BA : If method B yields a negative definite covariance matrix,
use method A, otherwise vse method B.

Method C :The mean substitution method.

Method D :The regression estimation method.

Method DS :A modification of method D.

Method E : The principal component method.

Chan and Dunn compared the performance of these methods on the
basis of the expected probability of correct classification calculated from
Fisher’s discriminant function. They tound that method C and method E
were in general superior to the other methods .

In (1976), Chan and Dunn studied the performance of seven methods of
handling missing values using Fisher’s discriminant function . They did not
restrict themselves to equal correlation matrices and used methods A, B, C,
D, E and two additional methods for handling missing values. The additional
methods were:

Method D*: A modification of the regression method D .
Method E* : A modification of the principal component method E.

They found that method D* is almost always better than methods C,
E ,B,E* and performs approximately the same as method D . Method A
is better for small values of k ,where k is the number of variables.

Little (1978), suggested two consistent regression methods for
handling missing values in ( CA ). The two methods are modifications of
method D mentioned previously .

In (1992), Little collected all procedures of handling missing values
suitable for the multivariate data analysis. He grouped these proccu:os 1n sex
classes. In his study, the treating of missing valucs using each ciass of
procedures is discussed when applying multivariate regression analysts.

Twedt and Gill (1992), examined the performance of four methods of
handling missing values in case of equal and unequal covariance matrices. The
methods used for handling missing values in their study were:

Method NR: Only complete units ate used (non-replacement method).
Method MR: The mean substitution method.

Method PC : The principal comporient method.

Method EM: The expectation maximization algorithm.

The rules of classification used in their study are Fisher’s discriminant
function and the quadratic discriminant function. They found that methods
MR, PC and EM (replacement methods) are better than the non-replacement

3




THE EGYPTIAN STATISTICAL JOURNAL
3%

method NR, and  that  the differences among these three replacement

methods arc slight.
All the previous studies were conducied under the condition that the

mechanism that leads to missing values is “missing at random (MAR)”.

3.Classification Analysis (CA).

In many practical situations, a problem occurs in which an observation
has to be assigned to one of several populations. For example, a firm manager
wishes to classify workers as skilled labor or unskilled labor on the basis of a
set of related attributes of these workers. Also in medicine, a psychotherapist
wants to predict whether an individual is more or less likely to be depressed on
the basis of readily available information about this individual. The common
attribute of the previous examples is that one needs to classify a subject to one
of several distinct groups. |

Thus, the problem considered in (CA) is the following : given that a
subject is known to come from one of g distinct groups (populations), we wish
to assign the subject to one of these groups on the basis of a set of
measurements associated with the subject. The vector of measurements
associated with a subject is usually called its profile. Many rules have been
developed to solve the classification problem. This section presents an
overview of the classification rules used in this study.

A good classification rule should result in a small number of |
misclassifications. In other words, the probability of correct classification
should be large. The use of the probability of correct classification as a way of
judging the performance of any classification rule will be discussed in this
section.

3.1 Rules of Classification Used in This Study.

Let X be a vector of p measurements associated with a subject, i.e. X
is the subject’s profile. In order to classify X into one of g populations, IT1,
12, ..., Ik, many classification rules were developed to do so. The rules
used in this study are presented in the following subsections.

3.1.1 The Generalized Distance Rule (GDR).
The generalized distance rule (GDR), which was developed by
Mahalanobis (1936), classifies the subject with profile X to the k™" group

(M ; k=1,2,..,g) if the square distance between X and the vector of means for
group k is less than the square distance between X and the vector of means
4
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for any other group. The squared distance between X and the k" group is
defined as : :

(D =X=p)' Tk K- k=12 (0
where Ui is the vector of means in group [Ty and 2 is the covariance
matrix in the same group .
However, in practice, Lk and X x are usually unknownand ther theu
sample estimates are used.

Another important issue related to the concept of the generalized
distance is the squared distance between two populations, which is called the
Mahalanobis distance between two populations. The Mahalanobis distance
between population (i) and population (j) is defined as:

2 _ \ -1 T g i -
(A =@i-pj)2Zp (Hi-nj), =L2,....8 =, ()
where Z, is the pooled covariance matrix.

The Mahalanobis distance (A ) between population (i) and
population (j) is a statistical measure for the separation between these

populations. A large value of (Aj > means a large separation between the
two populations and, consequently, a large ability of a classification rule 1o
correctly classify subjects into populations.

3.1.2 The Quadratic Discriminant Function Rule (QDF).

The quadratic discriminant function (QDF) rule, which was introduced
by Welch (1939), is sometimes called the maximum-likelihood classification

rule. According to this rule, we allocate X to population ITy if the likelihood

function of X coming from ITy (k=1,2,...,g) is greater than the likelihood
function of it coming from any other population.
If we assume that in the k™ population, X has a p-varizic normal

distribution with vector of means | k and covariance matriz 2
k=1,2,.......... .8, then the (QDF) rule becomes : allocate X to Tik if
(D} ¥ =min[( D} )}, (D} ),....(Dg )*], where

( D} y'=(Dj) + 1n|z| i=12,...8. (3).

If the parameters are unknown, then their samples estimates are used

3.1.3 The Linear Discriminant Function Rule (LDF).

The linear discriminant function rule(LDF) is a special case of the (QDF) rule
if the distributions of X in the populations are multivariate normal with
5
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equal covariance matrices. If we assume that for the k™ population ITy, X has-

a p-variate normal distribution with mean vector WUk and the covariance
matrix Y, then the LDF rule is as follows: allocate X to ITx if

sy )

( D/ )* = min [( DY ), ( DY ), Dy ) 1, where |
(D P=X-p)' T X-pi), i=12..8 @)

3.2 Estimating the Probability of Correct Classification.
One important way of judging the performance of any classification rule

is to calculate its ability in correctly classifying subjects. This ability is
measured in terms of an important concept called “ the probability of correct
classification 7. Often, we depend on sample statistics in building the
classification rule. In this case, a way of estimating the probability of correct
classification 1s needed. The apparent probability of correct classification
(APCC), which 1s sometimes called the “hit rate” is the simplest way of
estimating this probability. To evaluate the (APCC), suppose that g samples
are generated from g populations and the classification rule is built using the
statistics  calculated “trom these samples. Also, suppose that from each
population, 1 (1=1,2,.,g) observations are drawn. These observations are
classified using the classification rule which was built from the g samples . If

the number of observations correctly classified in population I1; is m; then,
the apparent probability of correct classification is given by:

. g g
APCC= Y m./ ¥ n. . (5).
i=1 '/i=1"
For more details, the reader is refereed to Lachanbruch (1975), Stevens
(1986. Chapter 7) and Richard and Wichern (1992, Chapter 11).

4. Procedure of Handling Missing Values
Many multivariate statistical techniques, Such as factor analysis,
regression analysis and classification analysis, are based on calculating the
sample statistics; mean vector and sample covariance matrix of the variables.
When some observations in the data set are unavailable, the question of how to
estimate these statistics is very important. When we talk about the
classification analysis, this question becomes; how to estimate these statistics
i order to build a good classification rule, i.e., to build a classification rule
that has a I gh probability of correct classification.
In real-life situations, there are many reasons that can lead to the
presence of missing values in the data set. For example;, respondents in a

6
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household survey may refuse to report income. Another example is the
negligence in recording a particular item on a survey questionnaire. The nature
of the reason that leads to the presence of missing values is usually called “the
mechanism of missing values”. The style of the spread of missing values in a
data set is called “ the pattern of missing values”. In this study the mechanism
that leads to missing values is assumed to be missing at random (MAR). Also,
two patterns of missing values ( the univariate and the bivariate pattern of
missing values) are chosen. For more details about the mechanisms and the
patterns of missing values, the reader refereed to Little (1992).

Many procedures have been proposed to handle the missing values in
the data set when applying (CA). The procedures of handling missing values
used in this study are presented in the following subsections.

4.1 The Complete-Case (CC) Procedure.

The default method of handling missing values in a multivariate
statistical analysis by many statjstical packages, such as SAS, Minitab and
SPSS is the (CC) procedure. According to this procedure, units containing
missing values are discarded and the required statistics ( mean vector and the
covariance matrix) are obtained from the complete cases only. This procedure
is sometimes called the “listwise deletion procedure”.

4.2 The Estimation Procedure.

The most important procedure of handling missing values is to
substitute them by their estimated values obtained by using the available data.
A classification rule is then built using the statistics estimated from the
completed data set (observed and estimated).

Many methods have been developed to estimate the missing values in
multivariate statistical analysis. A brief introduction to the methods of
estimation used in this study is presented in the following subsections.

4.2.1 The Mean Substitution Method (MS).

According to the mean substitution method (MS) which was propesed
by Wilks (1932), we calculate means from all available sample values and
substitute them for the missing values. This method yields a biased estimate of
the covariance matrix and ,in general , it is not recommended in applications.

4.2.2 The Principal Component Estimation Method (PC).

In (1959), Dear proposed an alternative method to treat the problem of
missing values which is suitable for the multivariate data analysis. He based
the estimation of the missing values on a principal component analysis. The
idea of Dear’s method is to convert the original data matrix X into the
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X.. —X.

standardized matrix Y, where Y= U__ ' for the observed values and

S..
il

g7 =0 for the missing values, i=1,2,....p, j=1.2,..,n , pisthe number of

vanables and n is the sample size. Then, the ceefficients of the first principal
component of Y are obtained; these coefficients may be denoted by q , where
4 ~“( ¢i.92....9p) is the eigenveclor of unit length associated with the largest
eigenvalue of the product matrix Y'Y. Then, if x i is missing, the value of

¥ii is replaced by the value of (ajqi) , where

D ,
ai = ¥ §.¥n i=1,2,....p, J=1,2,..,n 4.1).

i=] VU’ L
After that, the matrix Y is transformed back to the original matrix X , where
Ni T Y \/s: +X, . Several simulation studizs have: con¢luded that the (PC)
method, in general, is better than the (MS) methad.
4.2.3 The Regression Estimation Method {R(s).

A more promising method for estimaling the missing values is to
replace them by their estimates using an estinrated limear regression equation.
This method was proposed by Buck (1960). The basic idea in this method is
that the estimated regression equation is obtamned Lty regressing the variable
with missing values on all the remaining ones using th: camplete data set.

In general, the (RG) method yields reasonable cstimates of means
especially when the multivariate normality assumpticn satisfied. On the other
hand, this method yields a biased estimate for the cosarfance matrix. But this
bias is less than the bias of the (MS) method.

In (1976), Chan and Dunn modified Buck’s methed. Instead of using
only the complete cases in performing the regression function, Chan and Dunn
proposed that all missing values are firstly replaced by the variables means and
then the regression function is obtained wsmg alldata (observed and
estimated ). Chan and Dunn used the (RG} method ind #s modification in a
simulation study. They found that the modified method is slightly better than
Buck’s method. In this study we used the modified merhod.

4.2.4 The Expectation Maximization Algorithm { FM).

The (EM) algorithm is an iterativé method This algorithm was
proposed by Dempster, Laird and Rubin ir' {1977). The iteration of this
algorithm consists of two steps; the M step .ard the E step. In the M step, the
maximum likelihood estimation of O ( the paramerers victor) is performed
depending on the complete cases. In the E skep, assunmung that the current

8
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estimated parameters are true, the expected value of the missing data given the
observed data and the current parameters is computed.

Hence, the M step is to find 0 (the maximum likelihood estimator of 0)

and the E step is to find £ (Xmissing/ Xobserved » ©). The calculation cycles
from one step to the other until the current estimates do not differ appreciably
from the one obtained in the previous iteration. One can summarize the steps
of this algorithm as follows:
1- The parameters of the underlying distribution are estimated from the
available data.
2- The missing values are replaced by estimated values depending on the
observed data and the current estimated parameters.
3- The parameters are reestimated.
4- The missing values are reestimated, and so forth iterating until stability is
achieved.

For more details, Richard and Wichern (1992) illustrated the
computational aspects of this algorithm when the multivariate normality
assumption holds through a numerical example (pp.204).

5. Methodology and Tools

Using a simulation technique, the performance of the five methods of
handling missing values, mentioned before, in terms of their ability in
building a good classification rule is examined. Furthermore, the three rules of
classification are used to classify subjects into groups. The probabilities of
correct classification are éstimated for the three rules of classification before
and after the presence of missing values using the APCC method which was
described in Section (3.2). Besides the five methods of handling missing
values and the three rules of classification, seven factors are taken into
consideration. These factors are the sample size (n), the number of variables
(p), the number of groups (g), the Mahalanobis distance (A%), the covariance
matrices (equal or unequal), the pattern of missing values ( the univariate or
the bivariate pattern) and the percentage of missing values (m%).

The samples are generated from populations assumed to be multivariate
normal with equal and unequal covariance matrices. Subjects (units) are
classified into either two or three populations (groups). In this section, the
methods of choosing parameters, generating samples and drawing units to be
classified will be presented.
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5.1 The Two Populations Case.
In this case, two situations are considered ; equal covariance matrices

and uncqual covariance matrices. Methods of choosing parameters and
drawing samples in each situation are presented in the following subsections .

5.1.1 Equal Covariance Matrices.
The Mahalanobis distance ,which is given as:

Ao Hl)\ip_I (L2= ) ~(6).
where L i1s the vector of means in population (i) ( 1=1,2) and 2, is

the pooled covariance matrix, 1s a statistical measure for the distance

between two populations. In this study, the values 1, 4 and 16 are chosen for A’
The steps of choosing parameters can be summarized as follows :

I)YI'he number of variables ( p ) is determined , where p=2,3,4and 5 .

2) Without loss of generality | the covariance matrix 2 is taken to be

the correlation matrix , i.e. 2 = [py], 1,J=1,2,......... ,p, where p;=1 for

(1=7)and p;j1s a value generated from uniform (-1,1)  for (1 #) ).

3) Three values are chosen for the Mahalanobis distance( AZ); A*=14and 16 .

4) Without loss of generality i | i1s taken to be 0.Thus the Mahalanobis

distance will take the form :
5 -1
A‘- = “ 2\ Zp u' 2 (7)

5) W 2 1s chosen to satisfy equation (7) .
After choosing the parameters using the previous steps, two samples

are randomly generated from normal ( 0, 2 ) and normal (UL 2, X)) with equal
sample size using the statistical package Statgraph (Ver. 7). We choose the
values 20, 40 and 100 for the sample size . From each population 500 units
are randomly drawn and classified into the two populations according to the
classification rule obtained from the sample data. The estimated probability
of correct classification is obtained for each classification rule.
3.1.2 Unequal Covariance Matrices.

The difference between this case and the previous one is that, the
covariance matrices 2, and X, are selected in an unequal fashion. These

covariance matrices are selected as . in Section (5.1.1). Assuming that

N, . . . .
5 I, where N;  (i=1,2) is the size of population (i), then the pooled

P

covariance matrix Y., will approximately equal to(Z,+X , )/2 and Equation
(7)1s changed to

10
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L o Sy
A? = Hz\\—‘l—l\‘uz‘ (8)

Then L 2 15 selected to satisfy Equation (5.3). Atter choosing the paramcters
we proceed as in Section (5.1.1).

5.2 The Three Populations Case.
Two situations are also considered in this case. the equal covariance

matrices and the unequal covariance matrices situations.
5.2.1 Equal Covariance Matrices.
The Mahalanobis distance between two populations in this case takes

the form :

A =(i- Ui\ S, (- M), i=12 j=2.3 and i#] ©)
The steps of choosing parameters in this case are as follows :

1) After choosing the number of variables (p), the covariance matrix 2, is

selected as in Section (5.1.1). |

2) Assuming that |l | =0, then the Mahalanobis distance between population

(1) and populatlon (2 ) will take the form:

A= o Zp : : (10).
and between populatlon (1)and populatlon (3) will take the form :
S ERDITE (11).

3) Azlz and AZH are taken to be equal , 1.e. | A212:= A*;=14 and 16.

4) U 2 is selected to satisfy equation (10).

5) U 3 1s selected to satisfy equation (11).

After choosing the parameters, a sample of size n (n=20 , 40,100) is generated
from each of the three populations: normal (0, X)), normal (Lt 7 , ) and

normal (U3 2). 500 units are randomly drawn from each population and
classified using the three rules of classification.

3.2.2 Unequal Covariance Matrices.
The covariance matrices in this case are chosen in an unequal fashion.

Each matrix of them is selected as 2 in Section (5.1.1).
Assuming that Blo s 1 and -g—tz 1, where N; (i=1,2,3) is the size of
2 3
population (i), then the pooled covariance matrix 2, in Equation(10) will
approximately equal to(2, +2 , )/2 and Equation (10) 1s changed to

11
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Ay = ot (T --“’Y‘ H2 . (12).
while ¥, in Equatlon(ll) will approximately equal to(X,+X ,)/2 and

Equation (11) is changed to

Ly + X,
N =) H3. (13).
Then }t ;and M 3 are chosen to satisfy Equation (12) and Equation (13)

respectively. After choosing the parameters, we proceed as in Section (5.2.1).

5.3 Estimating the Probability of Correct Classification in the Complete Data Set.
In the complete data case, five factors are considered. These factors and

their levels are as follows:

1- The Mahalanobis distance A? ; A2= 1, 4 or 16.

2- 7The number of variables (p) ; p=2, 3,4 or S.

3- The number of populations (groups) g ; g=2 or 3.

4- The sample size (n); n = 20, 40 or 100.

5- The covariance matrices; equal or unequal covariance matrices.

Thus, there are 144 combinations of these factor’s levels that are considered in
this case. For each combination, the three rules of classification are applied
and the probability of correct classification is estimated. A Minitab macro was
designed for performing the necessary calculations.

3.4 Estimating the Probability of Correct Classification in the Incomplete Data Set.

After calculating the estimated probabilities of correct classification in
the complete data set, m% of the sample size are randomly deleted from each
sample. In this case two factors are considered besides the five factors
mentioned in Section (5.3). These factors are the pattern of missing values and
the percentage of missing values. Two patterns of missing values are
considered in this study; the univariate missing values and the bivariate
missing values. In the first pattern, we randomly select one variable from each
sample and then randomly delete m% of its observed values. In the second
pattern, we randomly select two variables from each sample and then
randomly delete m% of the observed values of these two variables.

The first pattern is applied to the 144 combinations mentioned
previously, while the second pattern is applied to the combinations where
number of variables is 3,4 or 5. For each pattern, m% of the sample size are
randomly dcleted where m= 5, 10, 20 and 30.

Therefore, in the case of incomplete data set, 576 combinations of the
levels of the factors AZ P, 8 n, mand the covariance matrices (equal or

12
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not) are considered in the first pattern, while 432 combinations of these
factors’ levels are considered in the second pattern. This means that we have
1008 combinations in the case of incomplete data set.

For each combination, the methods of handling missing values is
‘applied and the probability of correct classification is estimated for each
method using the three rules of classification. To guarantee randomization,
each combination in the two patterns is proceeded five times. For each time,
we randomly delete m% of the observed values and then the methods of
handling missing values are applied and the probability of correct
classification is estimated using the three rules of classification. The average
of the estimated probabilities of correct classification of the five times is
obtained.

6. Results of the Simulation.

In this Section, the results of both the complete data set and the
incomplete data set are presented. The results obtained in the complete data
set give an evidence of the accuracy of this simulation while the results
- obtained in the incomplete data set give us a view about the performance of
the methods of handling missing values. Also, the results clarify the impact of
each factor considered in this study on the methods of handling missing
values.

6.1 Results of the Complete Data Set.
As we mentioned in Section (5), 144 combinations are considered in

this case. For each combination the estimated probability of correct
classification is obtained using the three rules of classification. The results of
all combinations considered are displayed in Table (1).

To study the effect of each factor individually, the &vorage of the
estimated probabilities of correct classification according to the levels of each
factor are obtained. Table (2) presents the averages of the probabilities of
correct classification according to the value of A% It is clear that the
probabilities of correct classification increase significantly as A’ increases .
This result was expected. In fact, it may be regarded as a check on the
accuracy of the simulation. The reason for this is that a large value of
A? indicates a sufficient separation between populations; and this in turn
should increase the ability of a classification rule to correctly classify subjects.

The averages of the probabilities of correct classification according to
the other factors are also obtained and the following results are deduced :

13
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As g increases from 2 to 3, the probabiiities of correct classification
decrease rapidly, especially for small values of A’ This provided another
check on the accuracy of the simulation as it is expected that the probability

of correct classification decreases with the number of groups.
The probabilities of correct classification tend to increase as n increases,

especially for small values of A’ This is a logical result as it is known that
more information are obtained with the increasing of the sample size and this
leads to an increasing ability in correctly classifying subjects.

The probabilities of correct classification increase significantly asp
increases when A”=1. These probabilities slightly increase as p increases if A’
= 4, while no impact is shown for the increasing of p when A>= 16. The reason
of this result is that a small value of A? indicates a large overlapping between
populations and hence more information are needed to get a higher probability
of correct classification. These information may be obtained as the number of
variables increases. On the other hand, a large value of A? indicates, as we
mentioned previously, a large’ separation between populations and
consequently a large ability to correctly classify subjects.

The LDF rule is better than the other rules when the covariance
matrices are equal while the QDF rule is the best when these matrices are not
equal. Also, the probabilities of correct classification in case of equal
covariance matrices are smaller than the probabilities in the unequal
covariance case, especially for small values of A’ . The last result can be
explained by the fact that the overlap between populations in the first case
( equal covariance matrices) is more than the overlap between populations in
the second one.

The probabilities of correct classification for the given classification
rules are slightly different for large values of A* while they are significantly
different for small values of A”.

The QDF rule is always better than the GDR rule in case of unequal
covariance matrices while they are approximately identical in case of equal
covariance matrices. This result is regarded as another check of the accuracy
of our study as it is known from Section(3) that the generalized distance takes
the form:

(DY =X = pi)' i X-pi), k128 (14).
while the quadratic discriminant function takes the form:

(D y*=(Dx)* + In |zk , k=12,..g. (15).

Comparing the above equations, one observe that the QDF rule modifies
the GDR rule by taking into account the extent to which the variables in each

14
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group are dispersed. Therefore, it is expected that the GDR rule and the QDF
rule will be approximately identical if the covariance matrices are equal. If
these matrices are not equal, the QDF rule will be better than the GDR rule.

For a small value of A?, the probabilities of correct classification are
very sensitive to the increasing of the sample size and the number of variables.
They are also sensitive to the decreasing of the number of groups. This is
because a small value of A’ means a large overlap between populations.
Hence, to increase the ability of a classification rule to correctly classify
subjects, more information are needed. These information can be obtained
with the increasing of the number of variables or the sample size. On the other
hand, the decreasing of the number of groups reduces the overlap between
these groups.

6.2 Results of the Incomplete Data Set.

In this case, 1008 combinations are considered as was mentioned in
Section (5). Each combination is proceeded five times. At each time, the
probability of correct classification is estimated using a rule of classification
after applying a method of handling missing values. The average of the
probabilities obtained from the five times is calculated. This is done for each
method of handling missing values and each rule of classification. Therefore,
75 runs, using the Minitab macro were made for each combination; this is
because we proceeded each combination five times using the three rules of
classification and the five methods of handling missing values.

Based on the results obtained for all combinations considered in this
study, the ranks ( from worst to best with respect to the estimated probabilities
of correct classification) of the different methods of handling missing values
were obtained. The medians of the ranks for the different methods of handling
missing values according to each rule of classification are given in Table (3). It
is clear that the median of the EM method is always greater than ( or equal to)
the medians of the other methods while the median of the MS method is
always less than the medians of the other methods.

Also, from Table (3) one can observe that the lowest medians of the MS
and PC methods are found when the QDF rule is used. The greatest medians of
the EM and CC methods arc found when this rule is used while the greatest
median of the RG method is found when the LDF rule is used.

To study the impact of each factor considered on the methods of
handling missing values, the medians of th¢ ranks according to each factor
considered are obtained. As an example, Table (4) presents the medians
according to the number of groups . According to the medians of the ranks
obtained, one can deduced the following results:
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The EM and RG methods often tend to be better than the other methods.
The results of these tables emphasize that the performance of the CC method
gets better when the number of groups increase or the number of variables
increase or the sample size increase.

The most influential factors in the case of incomplete data set are the
sample size, the percentage of missing values and the pattern of missing
values. Based on the results obtained for these factors, we conclude that the
CC method 1s the most efficient method when the sample size is large
especially if pattern of bivariate missing values is presented, otherwise the
EM algorithm is better than the CC method.

In small and moderate sample size, methods of estimation are often
better than the CC method. However, in this case, the EM and RG methods
are always better than the PC and MS methods. The PC method is always
better than the MS method but is always worse than the EM and RG methods.

Another kind of results are presented in Tables (5-7). In these tables the
averages of the probabilities of correct classification according to some factors
are obtained , based on the results obtained for all combinations considered in
this study. The averages of the probabilities of correct classification according
to the remaining factors are also obtained.

Looking at the figures in Tables (5-7), we observe that the difference
between the averages of the probabnlmes according to the different methods
of handling missing, valugs. is- ‘often very small, whereas this difference is
significant for the large values of A% especially when the proportion of
missing values is large.

Another_ important feature of these tables is the increasing of the
efficiency of the CC procedure with the value of A>. This is a logical result; it
can be explained by the fact that when the distance between populations is
large then a small number of units are sufficient to build a good classification
rule. Consequently the CC procedure is recommended for use in this case.

Inspection of Tables (6-7) shows a decrease of the averages of the
probabilities of correct classification as the percentage of missing values
increases. This is another logical and expected result. Also, These tables
ensure that the RG method and the EM algorithm are often the best methods of
estimation. Also, one can observe that In small and moderate sample size,
methods of estimation are often better than the CC method while the last
method is the most efficient method if the sample size is large.

16
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Table(1):The Estimated Probabilities of Correct Classification binationsConsidered in the Complcte Data Sct.
BRI Dt ‘RO T T i TR T FTEI )
The Case | Sample “Ruleof |1 A ’ A=4' e
Considered] - Size-: . [Classificat.p' p=2 _,Es. Cop=d Lifh Is p=d p p p=S
LDF 0.663 | 0.657 | 0653 | 0.685 | 0842 | 0778 | 0.805 | 0.78 0.98 0988 | 095 | 0.972
n=20 GDR 0622 | 0643 | 0.603 | 0607 | 085 | 0753 [ 0797 i 07313 ] 0977 | 0988 | 917 | 0.96
Twe QDF 0628 | 0647 | 059 | 0613 ] 0343 | 0745 | 0.802 | 06.72 0.977 0.98 692 | 0.968
Groups. LDF 0642 | 0662 | 0672 | 0.647 | 0842 | 0812 | 0832 | 0807 { 0983 | 0985 | 0.675 [ 097
and n=40 GDR 0.643 | 0.617 0.6 0.63 | 0.835 | 0.805 0.8 .81 9.9%2 2.8 2.97 | 0.973
Equal QDF 0.643 | 0.635 | 0655 | 063 | 0838 | 0805 | 0795 | 0.8 c982 | 0985 | 097 | 6973
Covariance| LDF 066 | 0655 | 0675 | 0.685 | 0.833 | 0805 | 0833 | 0.802 | 0983 | 0.985 | 0975 | 0.973
Matrices. N=100 GDR 0.663 | 0642 | 0665 | 0668 | 0833 | 0305 | 0813 | 0805 1 0983 | 0987 | 0972 ; 097
QDF 0.648 0.6587 0.67 0.652 0.853 0.805 0.825 0.8 0.983 0.987 .97 ¢.973
LDF 0.707 | 0.708 | 6.678 | 0.658 | 0.837 | 0.828 | 0822 | €.9%9 § 45679 | 0261 | 0.965 | 0.973
n=20 GDR 0.671 072 | 0.834 | 084 § 0.841 | 6361 | 0395 | 685 1 06.967 698 | 098 | 0.988
Tweo QDF 0667 | 0.792 | 086 | 0361 | 0834 | 0893 | 6.8%: ; 0892 } 0965 | 0.951 , .95 | 0.934
Groups LDF 0732 | 076 | 0742 | 0.666 § N5 | 0838 | 0838 | €317 § w70 | 0472 § 0972 § 0973
and Nn=40 GDR 0722 | 0805 | 0845 | 0.862 | 0343 | 0885 | 0904 | 0094 § 0973 | 6978 | 0.987 | 0.989
Unequal QDF" ] 0719 | 0826 | 0865 | 0.874 ) 0.542 | 0.906 | 0.908 | ¢ 02 | 0974 0.98 | 0985 | 0.99
Covariance LDF’ 0.716 | 0.772 | 0.729 | 0.667 | 0.855 | 0.831 | 0.852 | 0.815 | 0.98 0.967 | 0975 | u.981
Matrices. Nn=100 GDR 0717 | 0799 | 0871 | 0.857 | 0.858 | 0.899 | 0916 | 5.926 F 0981 | 0.986 | 0985 | 989
QDF 0.715 | 0844 | 0xs2 | 0899 | 0852 { 0.906 r0.9l6 0935 | 0982 | ooss | 0987 | 9991
LDF 0569 | 0497 | 0.485 | 0542 § 0.748 | 0.709 | 0.734 | 0.73 0.967 | 0967 | 0875 | 0.969
n=20 GDR 0528 | 0435 | 0445 | 04583 | 0745 | 0.718 | 0679 | 0638 ] 0963 | 0957 | 0572 | 0.949
Three QDF 0538 | 046 | 0453 | 0468 | 0739 | 0.714 | 0677 | 069 | 0963 | 0961 | 0877 | 0.955
Groups LDF 0563 | 05435 | 0503 | 0573 | 0741 | 0.738 | 0.734 | 0.756 | 0.963 | 0.969 | 0.893 | 0.967
and =40 GDR 0554 | 0831 | 0501 | 0.549 | 0743 | 0737 | 075 | 0.736 | 0959 | 0.967 | 0.882 | 0.954
Equal QDF 0569 | 0.526 | 0.519 | 0545 | 0734 | 0735 | 0735 | 0732 | 0.959 | 0.967 | 0894 | 0.957
Covariance LDF 0564 | 0545 | 0528 | 0577 | 0751 | 0744 | 07583 | 077 | 0963 | 0.969 | 0.902 | 0.969
Matrices. N=100 GDR 0533 | 0538 | 0520 | 0549 ] 0745 | 0743 | 0747 | 6745 | 6.0 | 0968 | 2903 | 0.965
QDF 0.836 | 0.541 @ 0.518 | 0.85§ 0.738 | 0.743 0‘76‘“ 0.765 | - . | B s::q 0.897 | 0.964
LDF 0524 0505 | A5 | 0.843 | 0775 | 0599 ) 077 . 0771 | 0.8 | 57 0923 ) 8927
n=20 GDR | 0521 | 6.670 | 0.637 | 0.759 | 0781 | 0796 | 0797 | 0.862 | 0844 | o' . i_ 0959 | 0537
Three QDF 0528 | 0.067 | 0763 | 0773 ] 0791 | 0796 | 0.845 | 0875 [ oR:: | 0977 | 0963 | 094: B
Groups LOF 0515 | 0479 | 0581 | 0579 § 0749 | 0.628 | 0.766 | 0.786 | 0.847 l 0917 | 0947 | 0937
and N=40 GDR os18 | 071 | o7l 077 ] 0736 | 081 | 0807 | ¢3¢ | 6832 | 0976 | 0561 | G.976
Unequal QDF 0.51% | 0.709 6797 | 0767 | 0.809 | 0868 | w.a%r | 0845 | 0977 | 0973 | 0.87v
Covariance LDF 0.539 0.5 056t | 057 ] 0789 | 065 | 0.796 | 0.774 § 0848 | 0907 | 0937 | 8347
Matrices. N=100 GDR 043 | 0709 | 0.691 | 0398 | 0792 | 0818 | 0247 | a%es b Agdl | 6979 | §.972 | €.581
L QDF 0.562 0.72 o8 | o427 fosar w2 ! owim Loaser | oaxe 0981 | 0978 | 0.986

17




THE EGYPTIAN STATISTICAL JOURNAL
-49.

Table(2):The Averages of the Estimated Probabilities of Correct Classification of theThree Rules

for VariousValues of A*

0.781
0.653 0.807 0.957
0.671 0.815 0.960

Table (5) . The Avera%es of the Es timated Probabilities of Correct Classifi cation of the Three Rules
: for Various Values of A According to Each Method of Handli

670 | .674 | .674 | .674 | .801 | .804 | .807 | .807 | .806 | .948 | .951 958 | .960 | .960
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Table (6): TheAverages of the Estimated Probabilities of Correct Classification of the Three Rules for
Various Values of A? , the SampleSize and the Proportion of Mlssmg According to Each Method of Handling
Missing Values in the Unmrlal:e Pattern.

Sample [ m% | Rule Al =1 3 Al =4 | A’ =16
Size e ~i{MsS PC RG EM cclMs pPc RG EM CcC]lMS PC RG EM CC
LD¥ | 598 | .600 | .600 | .600 | 598 | 768 | 768 | .767 | 767 | 767 | 942 | 943 | 044 | 944 | 9ua
o GDR | .624 | 625 | 622 | 621 | 620 | .781 | .783 | 784 | .783 | .783 | 941 | .944 | 948 | .948 | 948
3% lopF | 641 | 642 | 642 | .642 | .641 | 794 | 795 | 796 | .795 | .794 | 946 | .948 | 951 | .951 | .95¢
LDF | 598 | .599 | 590 | 598 | .595 | 769 | .770 | .769 | 768 | 769 | .939 | 941 | .944 | 944 | 943
lepr | 623|622 621|618 619|782 | .783 | .783 | 783 | .779 | .938 | .941 | .946 | .947 | 945
‘ 10% fopr | .642 | .640 | 641 | .640 | .638 | .792 | .794 | .796 | .795 | .787 | .943 | .945 | .950 | .950 | 948
n=20
|, |LDF |.594 | 596 | .597 | 598 | .589 | .750 | 766 | .767 | .765 | .765 | 931 | .933 | 940 | 943 | 943
20% |cpr 618 | 616 | 618 ) 616 | 612 | 769 | 773 | 777 | 776 | 771 | 926 | 931 | 942 | 946 | 944
QDF | 636 | 634 | .638 | 638 | 633 | .779 | .783 | .787 | .788 | .784 | 932 | .935 | .945 | 948 | .946
LDF | 588 | .589 | .591 | .597 | 589 | 762 | .765 | .766 | .764 | 759 | 926 | .929 | .935 | .940 | .940
30% | cpr | 606 | .6o8 | .610 | .611 | .606 | .764 | .764 | .772 | .771 | 760 | 919 | 924 | .92» | 938 | 93¢
| QDF | 620 | 622 | .626 | .628 | 623 | .776 | .777 | .784 | 783 | 776 | 926 | 929 [ .935 | w41 | 94
LgF, 613|613 | 615 ] 614 | 613 | 765 | 767 | 767 | 768 | 767 | 952 | 953 | 954 | w32 | 954
50, GDR | cco | .661 | .661 | .661 | .661 | .795 | .794 | .795 | .795 | 793 | .os8 | .95v | .959 | .959 | .958
QDF | 674 | 675 | 678 | .678 | .677 | .801 | .801 | .802 | 803 | .802 | .961 | .961 | .962 | .962 | .961
LOP | 612 | 613 | 614 | 613 | 613 | .765 | .766 | .767 | .767 | .766 | 947 | .949 | 953 | .953 | .952
10% | GDR | g1 | .662 | .61 | .661 | .660 | .792 | 791 | 792 | .792 | .792 | .953 | .954 | .958 | .959 | .959
QDF | 674 | 674 | 677 | 676 | 675 | .798 | .799 | 300 | .800 | .801 | .956¢ | .957 | .961 | .961 | .961
20% | LPF | 610 | 612 | 612 | .613 | .612 | .765 | .766 | .767 | .768 | .766 | .943 | .946 | .952 | .953 | .952
GDR | 65 | 658 | 659 | 659 | .658 | .793 | .791 | .792 | .790 | .791 | .949 | .950 | .956 | .956 | .957
QDF | 667 | 669 | 673 | .674 | .673 | .796 | .797 | 800 | .799 | .800 | .952 | .953 | .959 | .959 | .960
30% | LPF | .606 | .607 | .607 | 609 | .606 | .763 | .766 | .766 | .765 | .767 | 938 | .942 | .950 | 952 | .952
GDR | .648 | .648 | .653 | .654 | .654 | .783 | .786 | .789 | 785 | .786 | 942 | .944 | .952 | .953 | .954
ODF | .656 | .659 | 666 | .669 | 670 | 789 | .793 | .798 | .796 | .799 | 515 | .946 | .955 | .956 | .958
i LDF | 618 | .620 ] 621 | .621 | 620 | .790 | .790 | .79: | .791 | .791 | 953 | .u51 | .954 | .954 | .954
5o, GDR | 672 | .672]|.6713]| 673 | 672 | .824 | 824 | .824 | .824 | .824 | 962 | .962 | v64 | .964 | .964
° | opDF |.686 | .688 | .690 | .690 | 689 | .829 | 830 | .831 | .830 | .830 | .964 | .964 | .965 | .965 | .965
tDF | 617 .620] 620 621 | 619 .789 | 790 | .790 | 790 | .790 | 947 | 949 | 954 | .954 | .954
oo | GPR | 672|673 | 73 | 673 | 671 | 823 | 2 823 | 823 | 824 | 955 | .956 | .964 | .964 | .964
o B00 10% | qor | .683 | .685 | .c88 | .689 | .689 | 827 | .827 | 820 | 829 | .829 | .958 | .959 | .965 | .965 | .965
| 200 | LOF | 615 ] .617 | 619 | .621 | 621 | .787 | 789 | .790 | 790 | 790 | 943 | .945 | 953 | 954 | 954
| GDR | .6671.669| .670| .672 ]| 6711 | 819 | 822 | .823 | .822 | 821 | .951 | .954 | .963 | .963 | .963
QnF | .676 | .681 | .686 | .687 | .689 | .822 | .824 | .828 | .827 | .827 | .953 | .955 | .964 | .964 | .965
30% | LPF | .615 | 618 | 619 | 622 | 619 | 784 | 789 | 789 | 789 | 789 | .942 | 944 | 952 | 953 | 954
GDR | .664 | 665 | .668 | .669 | .668 | .813 | 818 | 821 | 820 | 822 | .948 | .959 | .960 | .962 | .963
opnr | 672 | .673 | .682 | .684 | .686 | 816 | 822 | 825 | 827 | 827 | .950 | .952 | .961 | .964 | .965
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Table (7): TheAverages of the Estimated Probabilities of Correct Classification of the Three Rules for
Various Values of A’ , the SampleSize and the Proportion of Missing According to Each Method of Handling

M_i;sing Values in the Bivariate Pattern.

' PC EA E
{
590 | 592 | .592 | .591 | .758 | .758 | 787 | .756 | .756 | .940 | .942 | .945 | .946 .944|
638 | .639 | .637 | 637 | .776 | .777 | 776 | 775 | .774 | 943 947 | 950 | .954 | 954
663 | 665 | .662 | .662 | .791 | .792 | .792 | .792 | .792 | .948 951 | 954 | .956 | .956 ;
593 | 595 | .593 | .593 | .758 | .759 | .757 | .756 | .757 | .935 938 | 944 | 945 | 944
.634 | .632 | .630 | .630 | .774 | .777 | .779 | .774 | .775 | .934 937 | .950 | 951 .951'
656 | .658 | .656 | .657 | .788 | .791 | .794 | .791 | .792 | .942 946 | 953 | 954 | 9581
1
|
586 | 590 | 591 | 589 | 756 | .757 | 757 | 754 | 754 | 922 | 927 | 938 | 943 | 942 |
628 | 629 | .626 | .625 | 761 | 770 | 771 | 771 | 766 | 918 | 925 | 942 | 546 | 947
647 | .651 | 648 | .651 | 774 | .783 | 785 | .785 | 783 | 925 | .931 | .948 | .948 | .950 |
t
583 | 585 | 589 | .583 | 754 | .755 | 753 | 750 | 752 | 918 | .921 | .934 | 944 | 84I
621 | 623 | 617 | .617 | 750 | 750 | 762 | .756 | .757 | 910 | 916 | .930 | 944 | 943
638 | 641 | .638 | .640 | .765 | .772 | .778 | .772 | .778 | 915 | .920 | .937 | .947 | 947
._1
612 | 613 | .612 | .612 | .758 | .758 | .757 | .759 | .757 | .951 954 | 956 | 956 | .956
679 | .678 | .677 | .678 | .797 | .795 | .796 | .796 | .795 | .961 964 | 966 | .966 | .967
693 | .695 | .696 | .696 | .803 | .804 | .804 | .805 | .804 | 964 | .966 | .968 | .968 | .969
612 | 612 ] 613 | .612 | .762 | .763 | .763 | .762 | .762 | .947 | .950 | .955 | .956 | .956
678 | 679 | 678 | .676 | .798 | .798 | .797 | .794 | .794 | 956 | .959 | .964 | .966 | .967
692 | .696 | .696 | .695 | .804 | .806 | .806 | .806 | .807 | .958 | .961 | .966 | .968 | .969
.610 | .610 | .610 | .608 | .758 | .760 | .760 | .759 | .759 | .940 | .944 | .955 | 95§ | .955
672 | .675 | .675 | .674 | .791 - .794 | .796 | .791 | .794 | .51 955 | .964 | .964 | .965
.683 | .690 | .692 | .693 | .795 | .799 | .805 | .804 | .807 | .953 | .956 | .966 | .967 | .967
.606 | .608 | .608 | .608 | .754 | .756 | .757 | .757 | .755 | .931 934 | 950 | .952 | .954
.661 | .666 | .663 | .665 | .779 | .783 | .789 | .785 | .785 | .937 | .942 | .957 | .960 | .961
671 | 683 | 682 | .685 | .784 | 791 [ 799 | .797 | .800 | 939 | .943 | .961 | .962 | .964
619 | 620 | .621 | .621 | 784 | 784 | 786 | 785 | .784 | 953 | .955 | .957 | .958 | 958
693 | .693 | .693 | .692 | .830 | .830 | .830 | .830 | .830 | .965 | .967 | .970 | 972 | 97
712 | 72 | 714 | 715 | 834 | 835 | .835 | .837 | .837 | 967 | .969 | 971 | 972 | 97T2
620 | .620 | .621 | .620 | 784 | 784 | 785 | 785 | 785 | .950 | .953 | .957 | 958 | .958
691 | 692 | .691 | .691 | 827 | 829 | 829 | .829 | 829 | .963 [ .966 | .970 | .972 | 97
710 | 710 | 712 | 713 | 832 | 834 | .834 | 837 | 837 | 964 | .967 [ .971 | 973 [ 972
617 | 619 | 619 | .619 | 782 | 783 | .783 | .783 [ .784 | 943 | 946 [ .958 | .958 | .958
688 | .689 | .68 | .688 [ .821 | .824 [ .827 | 827 | .827 | .951 | .956 [ .970 | .970 | 971
702 | 707 | 709 | 712 | 824 | .829 | .833 | .834 [ .835 | .953 | .958 | .971 | .971 | 972
615 | 616 | .619 | .618 | .778 | .781 | .781 | .781 | .782 | .938 | .940 | .955 | .957 | .956
681 | 685 | .685 | .688 | .812 | .820 | .824 | 824 | .826 | .945 | .950 | .967 | .969 | .969
693 | .701 | 704 | .710 | .817 | .824 | .828 | .828 833 | 947 | 952 | .968 | .970 | 97!
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7. Summary and Conclusions

The presence of missing values in a data set is a serious problem that
may face the investigator when building a classification rule to classify
subjects into groups. In this study we used the Monte Carlo Simuiation
technique to investigate the performance of five methods of handling missing
values when applying classification analysis. The probabilities of correct
classification are estimated for three rules of classification; the LDF rule, the
GDR rule and the QDF rule, before and after the presence of missing values.
Two patterns of missing values were chosen; the univariate missing values
pattern and the bivariate missing values pattern . The mechanism of missing
values was assumed to be MAR. The samples were generated from
populations assumed to be multivariate normal with equal and unequal
covariance matrices. Cases of two and three populations were considered.
Seven factors were taken into consideration. The impact of each factor on
both methods of handling missing values and rules of classification was
studied. ‘

The results obtained emphasized the accuracy of the present simulation
study . These results simplify the following conclusions. The LDF rule is better
than the other rules when the populagons are homogeneous (with equal
covariance matrices). On the other hand, the QDF rule is recominended for use
when the populations are non-homogeneous. In the case of small sample size,
estimating missing values is better than to eliminate them. However, in this
case the RG method and the EM algorithm are superior to the other methods
of estimation, especially when the proportion of missing values is high. When
this proportion is low, the differences among the methods of estimation are
often slight and consequently any method of them will yield a good
classification rule.

The CC procedure, which discards the units containing missing values is
recommended if the sample size is large. However, if the proportion of
missing values is low then the EM algorithm performs as well as the CC
procedure in this case. In general, the CC procedure is the most efficient
method if the available information are sufficient to build a good classification
rule. This sufficiency is achieved in large sample size, large number of
variables and large distance between populations (measured by the
Mahalanobis distance A® ). On the other hand, if the available information are
not sufficient, then methods of estimation will be better than the CC
procedure.

Finally, the reader should be reminded that in this study the mechanism
of missing values is assumed to be MAR. Under other mechanisms of missing

values, the results may differ considerably from the results obtained here. It is
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remarkable that the present study can be extended to more missing values
problems. It may be extended to other mechanisms and patterns of missing
values. Also, it can be extended to other rules of classification. Extensions to

non-normal populations and more than three populations are also possible. In

this thesis, we assumed that ﬁL ~\ (i,j =1,2,..,g, i#j). This assumption can
j
be discarded in another extended study.
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