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ABSTRACT

It 1s customary to use chi-square tests to compare survivals.
However, if it was known that the treatments are ordered(for
example differnt levels of a-single treatmemt), the chi-gquare
test is no longer appropriate.  In this paper, we introduce an
alternative technique to test the hypothesis of ordered survivals.
We suggest a test statistic , derive its mean and variance and show
that its asymptotic distribution is normal. The theorical results are
illustrated through an application on real data sets(sources are
cited in the text) for bladder cancers patients and another data set

on treated and untreated cancer patients.

1. Introduction :

In the comparison of several treatinents, the main question is
whether there is any difference among the treatments. To answer
this question, one may wish to test the null hypothesis of no

difference.

However, in deciding an appropriate testing procedure , it is

enough to specify the null hypothesis H, . One must also be clear
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about the naturc of the alternatives against which H, is being
tested . Suppose that the treatments are ordered ( of course,
before survival data have been obtained in such a way that under
the alternative one could expect better survival under treatinent 2

than under treatment 1, under treatment 3 than under treatment 2,

and so on.

We note that the use of the chi-square is no longer appropriate
since it rejects H, whenever the difference between any two
groups is sufficiently large, regardless of this order, while a

"trend " in survival would support the altenative over the null

hypothesis .

2. Testing Against Stochastically Ordered Alternaﬁves :

Analysis of continuously  measured covariates often
assume a proportional hazards model (Cox, 1972). An ordinal
covariate does not have a defined metric, so linearity of
proportional hazards model is not totally meaningful . However,
the inherent ordering of categories allows consideration of
monotonicity and a test of stochastically ordered distribution

could be formed ( see, e.g. Huang , 1994) .

2.1 Mathematical Formulation :

Let S(t), i =1, ....,n be survival functions for n groups
defined by the value of on ordinal risk factor. For all t, we
consider

Ho:Si(t) = S; () =.... =S, ()
Hy: Si(t) 2S,()>...2S_ (1)

and for at least one i,
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Si(1) = Sint) .

2.1.1. Data Set-up.

To test H, against H, , the required data takes the form of a

set of tables at times t,...1, at distinct m time nstants . where
we record for the 1 th  group , (at t) ny : the number of
individuals at risk at time t; , dy = the number of events at ty, , and

sik=ni - dij, for k=1,....,mand 1=1, .. n.

2.1.2. The Test Statistic :

The following notation will be used in the sequel .

I if 1>,
sgn(i—j)=40 if 1=},
-1 if i<

We shall introduce a " weighted " test statistic that reflects the
characteristics of the available data , and enjoys some of the
desirable asymptotic properties, so that a decision as to accept or

reject Hy, could be easily made.

W§ begin by defining
W I
ik k -
Ty =X ——"=sgu(i - j)
where wijy is a certain kind of we:ht associated with groups i and
j at time #.

Then a Possible test stalistic couid be

o, =§_, dy Ty
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It should be noted that ( see Appendix II), under the null

hypothesis H, , £ 6, =0 and one can show that

where dj is the total number of events , ny is the total number at

risk and sx = ny - dg at time t;.

Now, if one defines

k=1
Since © is the sum of Ok (over k= 1,.., m) and each Oyisa
hypergeometric random variable, the central limit theorem(for large

samples - see Appendix II) gives that the distribution of 0 can be

approximated by a normal distribution.

Thus, 6 =N 0 g dy Sy 2 ny T,
k=l ny (ny —1) i=1

It follows that

0 -0

m o dy s, S n. T2
2 Dy Ly

, 1s the test statistic based on which we accept or reject H, at o -

significance level as follows : Reject H, if Z> Z, .. Weare

now in a position to talk about the weights . In this regard, we
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follow Torane (1975), who suggested a reasonable choice 1s to

assign weight according to
Wy = (n, +an) a, ,

where a; is the weight associated with tx and takes into

consideration the number subject to risk this instant. It 1s commen

in the literature to take ark=L :
n,

Using Torane's weights , one can reach at the following -

simplified formulas to estimate Var (0,,) , where

n

3 3
d, s, (n, - )

m

Var(@)=Y a;
k=1

i=l
3n,(n.)

3. Applications :

In this section, we shall demonstrate the usefulness of the
methodology developed in the previous section through two real
data sets. The first data set is for Bladder Cancer patients, and
the second is for cancer patients ( treated versus untreated ). The
data were collected over 7 time points where we record at each
point both number at risk (ny) , number of deaths (dx) and number

of survivals sy =ny - di .

3.1 Bladder cancer patients .

Table (1), in Appendix 1, Contains the data regarding bladder

cancer patients. The patients were classified into three groups A,
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B and C . Group A for patients who were treated with radiation,
group B for patients who were treated with chemical therapy , and
group C for patients who were treated with any other treatments.
The time to death is recorded , and it is our interest to test the
hypotheses :
Ho o Sa(t) = Sp(t) = Sc(t)
against

H; : Sa(t) = Sp(t) = Sc(t)

for all t and that one of them is different for some value of t .

Calculations

The computations go in the following sequence:

1. a, = S for k=17,

n,

’ 1
for example w, =—. |
56

2. The relative weights : wijx = (ny+njx) ax for j=2(since j#i), k =
1,...,7

3. Using the simplified computational form for the value of the

TR

test statistic as:

7 2 3 2 3
0 :Z akliz S ik Z d _Z dy z S ik }
i=l

k=1 j=1 i=j+] J=i+l
Substituting the relevant values from the above tables , gives :

6 =0.7316

The variance of 0 is estimated by
, d,s (n —Z n,)

lar© )= a’ =
; " 3, -1)
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Again, using the relevant values, yields

Var(9 )= 12897 ,
then the estimated standard deviation of 6,6 =2.6999, which gives

z=0.240.

,___ O, 07216

- = 2.699
\ Var(8,,)

Since Z=0240<2Z, , =Z4 =1.645, we cannot reject H, ,

=0.240

meaning that there is no significant differences between deaths

the three groups at the 5% significant level .

3.2 Cancer patients treated or untreated.

Table (2), in Appendix I, contains the data for two groups of
patients; treated and untreated. The treated group involves
censoring. Also, the time to death is recorded and it is our interest
to test the hypotheses:

H, : Si(t) = Si(t)
against
H, . Si(t) > Sx(t) .
Here we first construct the survivals and plot them on the same
graph. This is shown in Table (3) and Fig. 1 both in Appendix I
It is obvious from the figure that S;(t) > Sy(t) for all values of t.
Howeverv _ a statistical hypothesis test is needed. This is done 1n

accordance with our results in section 2 as shown below .
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IFollowing the same steps as in the previos case, we have :

0 = 7.8048, and its variance estimate =  5.2826 .

It follows that

/7=3.395.

Since
Z > Z, (for a=.01)=2326
the null hypothesis is rejected meaning that S;(t) > S,(t) for all t

as  expected , i.e, the time to death is significantly longer for the

treated group if compared with the untreated group.
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APPENDIX I
Table(1-a)
Group A
t;.(years) d, n
1 12 21
2 6 14
3 1 6
4 1 6
5 1 10
6 0 5
7 0 3
Table(1-b)
Group B
t;.(years) d; n;

N ONWnm S Wi
QOO OO Wn
DN = W
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Table(1-c)
Group C
{_ ti.(vears) d; 0
| ] 17 28
3 2 6 14
’ 3 1 9
4 1 7
5 I 12
6 0 6
7 0 5

Source: Patients with the diagnosis of bladder cancer registered at
Ain Shams University hospitals between 1989-1995
t; : time point, d;: number of deaths ,
n; ;. number at risk ,
S SR
To put the data in an easily accessible way for calculations,

Table(1) can be summarized in the following format:

Summarized data

@ 06
i=() d 12 5 17 34

i=@2) 6 0 6 12
19
14 | 31

2]

o0
W
co

n 14

[9S]




1=(4)

1=(5)

1=(0)

1=(7)
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d ] §) I 8

S 5 ] 8 14
n 6 7 9

d ] 0 ] 2

S 5 | 6 12

n 6 1 7 14

d ] 0 ] 2

S 9 1 y 21

n 10 1 12 23

d 0 0 0 0

S 5 I 6 12

n 5 1 § 12

d 0 0 0 0

S 3 2 0 12

n 3 2 5 10
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Table (2) : raw Data

O =0(censored) ; 5=1 uncesorded

I ]
" 5 " 5
1 i 6 i
I I 6 1
2 1 6 1
) l 7 1
3 1 10 "
4 I 13 I
4 I 34 0
5 1 16 1
5 1 22 1
g 1 23 I

8 I 6 0
: 1 9 0
8 1 35 0
|1 1 10 0
(! 1 1 0
12 1 17 0
12 1 19 0
15 I 20 0
17 1 25 0
2 I 32 0
23 I 3 0
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Table(3)
t: Time S, (1) LS,
_(nweeks) | _
[ i 92039 | |
2 84078 | |
3 0.80097
4 72136 i
5 64174 |
6 53093 8571
7 49720 8067 |
8 36385 |
10 33362 7529 |
11 27059
12 20566
13 17525 6902
15 14682 |
16 12050 5378
17 09622
22 04603 4482
23 01175 4482
0.9
A
0.8 e
e
0.7 —= =
0.6 \‘i
.
0.5 —’>\ e ——S1(t)
A ——— A
0.4 \ —A- SZ(t)
0.3 \\\\
0.2 \,\\\\\\*\»
0.1 ~\\\\‘~‘§‘-’
0 | 1 i 1 I ]

6

7 10 13 16 22 23

Figure (1) Survival functions for treated and untreated patients
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I (Untreated)

t] di n; S

6 21 3 18

7 17 1 16
10 15 1 14
13 12 1 11
16 11 1 10
22 7 1 6
23 6 1 5

Il (treated)

ti d; n; S;
6 9 21 12
7 0 12 12
10 4 12 8
13 4 8 4
16 2 5 3
22 1 2 1
23 1 1 0
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Data collected in subtables to make it

. ready for calculations

i=1) d 3 9 12 d

n 21 21 42 n

i=(2) 1 0 1
16 12 28
17 12 29
i=(3) 1 4 5
14 8 22
15 12 27
i=(4) 1 4 5
1 4 15
12 8 20
i=(5) 1 2 3
10 3 13
11 5 16
i=(6) 1 1 3
6 1 13
7 2 9
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1=(7) 1
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APPENDIX 11

- Proof : E6, =0

Since dix ~ HG ( ng , nix , di )

ng
= E dik = L
n, +d,
Moreover, T, = Ky sgn (i-j)
n, +n

and 6, =X dy T
hence

X X Wi “ni‘k_:]l‘:k sgn(i - j)
E ek — J d ik JK (l)

In (1), Wi = Wik,
Sgn (1 -j)=1 or -1 dependingon 1>j or 1 < j and Sgn
g + Ny

(i-j)=0for i=], and the expression 1S symmetric

in (i ,j), hence the expression has equal terms alternating in

sign and sums up to zero. This explains why E 0, is equal io

zero, since 0=3 0O,
k

=E 0= E©,)=0 .
k

- Proof : Var 0,
We note that dy , dix and di + dix each follows a
hypergeometric distribution as follows:
dix ~ HG(ny » nix » di)
dix~ HG(nw ;i 5 di )
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dyt+dye ~HG (i, hig + ni )

where HG stands for hypergeometric.

It follows that, under Hy , that one can easily ( using standard
results) obtain expressions for Var(dy), Var(dy), Var(di+di)
and Cov(dix , dix ).

Substituting these expressions in the definitions of © and the

estimate of its variance explains the previosly mentioned

results.

-0, is iid :
Under H,, all survivals are the same, hence the distributions,
and of course O, are all identical.

Moreover, each 6, is based on a different samples , and the

samples are independent and therefore,,0,,....0,, are nd.

- Speaking of large samples this is mented to be the case, since
in all demographic and biomedical studies the samples are
large enough to apply the iid case of the central limit

theorem.

- How to apply CLT.

Under Hy {0, } is a sequence of 1id random variables with mean O ,

and valiance var. {0,}, O is based on a hypergeometric

distribution. Thus, the central limit theorem applies to

2;, 0, or ? O, /m (the average).
=1
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This is a direct application of the central limit theorem (the iid) case,

see, e.g., Feller Vol. II. Thus to apply the CLT, one has to normalize
(standardize) {: 6, by subtracting its mean (which is zero) and

dividing by its standard deviation, Hence the result .



