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Abstract:

In this paper, we present a general technique for construction of the empirical
Bayes (EB) methods considering accelerated life tests with m of the stress levels.
Estimates of prior density based on orthogonal expansions are proposed for the-
conditional density. We obtain the EB estimators of the parameters of the inverse
power model, and the parameters of the Weibull distribution.

This is a first part of a two-part series on the empirical Bayes approach of
estimation using accelerated data. The theory and application are described briefly
here, and step-by-step procedures for a method for EB estimation of the parameters of
the Weibull distribution and the reliability function in the coming Part.
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1- Introduction

Accelerated life testing (ALT) of products and materials is used to
get information quickly on their life distributions. Such testing involves
subjecting the test units to conditions that are more sever than normal.
This results in shorter lives than would be observed under normal
conditions. Accelerated test conditions are typically produced by testing
units at steady high levels of temperature, voltage, pressure, vibration,
cycling rate, load, etc., or some combination of them. The use of certain
accelerating or stress variables is a well-established engineering practice
for many products and materials.

The results obtained at the more sever or accelerated conditions are
extrapolated to the normal conditions to obtaii an estimate of the life
distribution under normal conditions. Such testing provides saving in
time and cost compared with testing at normal conditions. Indeed, for
many products and materials, life at normal conditions is so lengthy that
testing at those conditions is completely out of the question.

A model that connects the distribution of accelerated failure times
to the distribution of the failure time under usual conditions is then used,
and the parameters in the model are estimated from accelerated life time

data.
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[.et v be a one or higher dimensional stress applied to a device. In
most of all applications, the relation between stress v and corresponding
life time distribution was assumed to be given by the dependence of a
statistical parameter A on the applied stress v. Several authors have
considered the problem of analyzing ALT by the classical and Bayesian
approach (see for example, Nelson (1990), Mann, Schafer and
Singpuralla (1974) ) . Now Bayesian analysis is carried out in the
following way. Iflife timedataD=( t;,)=1,2,..., n;, 1= 1,2,..., m)
are observed for stress combination vy, va,..., v the posterior distribution
n(® /D) of © is obtained by Bayes theorem n(6 /D) « g(8) L(6; D),
where g(8) is the prior distribution of 8 and L(6;D) is likelihood
function.  Under the squared error loss, the Bayes estimator is the
posterior mean E(0/t), here 6 is the set of all possible values of the
parameter.

In the empirical Bayes (EB) procedure due principally of (Robbins
(1956,1964) the prior distribution function is not known and usually it is
estimated from a sample D=(t;,j=1,2,...,n;, i= 1,2, .., m). This
estimated used to obtain posterior distribution of ® by using Bayes rule.
If one or more sample x."“_‘ . foreveryi=1,2,.., m,is observed, then

this sample and the posterior distribution are used to obtain EB estimator
of the parameter Ogp, an estimated of ©, correspondingto Y  ,,o0rto

estimate the value some function of the parameters.

Robbins ( 1956, 1964 ) was able to provide a set of consistent
estimators, which, when the loss function was bounded in the parameter,
are asymptotically optimal (a.0.). Therefore, we consider a sequence of
iid pairs {(0;,t;), i1} where 0, is generated according to an unknown
( prior) distribution G and given 0, ,t, has distribution f{(t, / 0, ). The 6°s
are non- observable and the t’s are observable sequentially. At stage n+1,
for any positive integer n , the problem is to estimate 8,4, ,under squared
error loss, based on the past data t; , t,......, t, and the current data ty..
The ( Bayes) risk incurred by an EB estimator 8" in estimating Op+; is
given by

Ra(8,G) =E{5 (ti ,t2, . ta:tw)-6u1 }?,

where as the (Bayes) risk R(G) of 8, the Bayes estimator, is given by
R(G)=E{8 (tw1) - Oui}’,
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the later being constant with respect to n. It can easily be checked that
Ra (8, G) 2 R(G)

for every finite n . An EB estimation § 1s said to be asymptotically
optimal {see Robbins ( 1956, 1964 ) } if
Do (5,G) =Ra(5,G) - R(G) —> 0as n —w

for all priors G ; which means that the performance of § s
asymptotically ( as the amount of past data grows) as good as that of the

Bayes estimator 8g, no matter what the prior distribution G is. § is said
to be uniformly asymiptotically optimal if the above convergence is

uniform in G .
In this paper, we assume that the lifetime of any item under

consideration is assumed to follow a Weibull distribution with a scale
parameter A and a shape parameter B3, both of which are unknown; i.e.

B(LABY=Y —exp(~A"y |, t>0 (D)

we assume that the stress v affects only the scale parameter of the
Weibull distribution A through the inverse power law model, we assume
that the shape parameter B is invariant with the stress, i.e. , it dose not
change with v. The inverse Power law model is used when the life of a
system 1s inversely proportional to an applied stress. The underlying
failure rate distribution can be log-normal, or exponential, but the
weibull distribution seems to be used more often than the others.

Two common applications of the inverse power law are for voltage
stress, and for fatigue due to alternating stress. Fatigue may be low-cycle,
such as that resulting from temperature cycling, or high-cycle, resulting
from mechanical vibration. The general form of the inverse power law is

A=c/s" (2)
where ¢ , o are the physical parameters and corsider an EB approach to
be estimated, and s = 1/v is the applied stress.

In section 2, orthogonal expansion methods are used to show the
relation between associated functions with more than one parameter and
orthogonal polynomials. This technique, has been introduced by Huang
JFu and Pao (1994) in the case of univariate and bivariate distribution

with one parameter.
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2 - General procedure
Consider the families of continuous distribution whose probability

- density function f(x/0) where 6 = ( 6y, 0, ..., 0.). Suppose the prior
distribution given by, G(0) is absolutely continuous with respectively
density g (0) , then the marginal density is given by

f(x) = [A(x D0 )0 3)

We assume that fand g € L%(0,0 ) and we approximate f and g by partial
sums of their expansion with respect to the orthogonal polynomial on

(0,00 ), which are denoted by L¢(1) , such that

TL-,W\L-\Kn)e‘”c\n =5,
where 6-\-} is the kroneckel delta, and Li(n) is define by

nak |
L\(Kn\-——%;\(—nke M fork=0,12,... 4)

Define also the polynomial

Py (000, )=T1L, (8,),k=0,1,2,. (5)

They are orthogonal and complete on (0,0 ) with respect to the
weight function e™>°. Thus, for example orthogonality is defined as, for
every k, we have ‘

J(:)‘.?k,'\ &6‘ ,9] )Pk) &e\ ’93 )e‘(93+e§ )de'\de} = 6“

We assume that the density function of the random vector 0, g(0) to be

in the span of P(0 ) in L}(e % (Q,)).
We now form the function

0= b, p, () I (©6)

thus (3) may be expressed as approximately,

(%) = [f(x 18YY. o, (0)e 270 (7)
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New, we define the function
0. ()= jfwew (0)e %40 (8)
so that f{(x)=XVb. ¢ &x\ (9)

Suppose there exist associate sequence A(x) such that

EA()) = w@)e = (10)
where x is a random variable from the marginal density f(x) defined by
(3), we note that ¢, (X)) and A X are orthogonal, for every i and j, it

follows that the associate coefficient b of f(x) in the expansion of
¢3&X\ can be obtained as A '

b= [EHRAMRYR = E (AR, (11)

The expectation is taken with respect to the marginal density
function f(x). For single population, Prasal and Singh (1990) and Singh
and Prasal (1989) have constructed a class of empirical Bayes estimators
of the parameters through estimating the prior distribution. Without loss

of generality in this paper, we seek to select the sequence of function 4, ,
based on the orthogonal polynomial, such that the integrated mean

square error of é\,“ (0) goes to zero as N — . We now use (11) to
estimate b and use this in tuen to estimate the prior density g.

3- Estimation of The Prior Distribution

Consider continuous probability densities which belongs to form
f(x /6) for the univariate random variable, with three parameters. Let x,,

X3,... , Xy be the iid samples from the density function defined by (3) .
From (6) and (11), an estimator g, of g based on orthogonal expansions
is proposed by the following

q-s\u\qlux\t\\\m/\ &9+Q+By2- (12)

0.0.0)= R
NCUR A 2o 2 °, P
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N
where the statistics v j\ 1s computed from a random sample of size N

from the density (3) such that,
A N
by, :K\'N\\E\M,'},\U\\J - (13)

and q;(N), q2(N) and q3(N) are positive integer valued functions of N

. N N N
such that qi(N), qu(N), qs(N) = oo, with 214 \‘\‘2.; a3 (N

—»>0as N

— 0,
Huang ,Fu and Pao (1994) show that, the set S = [Aij1,13,1=0,1,...],1is
linearly independent.
Theorem (1) :

- Let g(0, o, B ) can be expanded by (6) and if A (r),

N
1,1 = 0, 1, ... is uniformly bounded, then ¢(0,a,B) is a strongly
consist estimator of g (6, o, B ) at continuity point, where

: N
Q(N), G(N), qs(N) = oo, with 21 “2;““3‘“‘ S0as No o,
proof : ( see [Huang ,Fu and Pao (1994)] ).
By the extending Parseval’s formula, we have the following

lemma.

Lemma (1) :
Let h(6,a,B) e L? (e " (0, »)) and suppose that
n(0,a,B) = \Z%‘ZQ‘Z“‘O \,3,\9'\,3,\&93 a,B) (14)
=0y=0i=

where p;;i(0 , o, B ) defined by (5). Then

0 O 0
10 (0,0,B)e "+ **PapdodB = 33 T b, Ly <
\=0y=01=0
and i i i‘D"\.‘,,\ —0 as N— o,
1= (N1 3=q, (N)eli=q ( N+
Theorem (2) :

Let x), X2, ...,X, be iid random variables with density function given
(3), let the orthogonal polynomial in L? (e “®***" (0, «)). Then, the
estimator (12) is integrated mean square consistent for g, provided that
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W0 asN-o>w»

where
QW N)q,(Nyq,(N)

™wW=2 X Z V&I\l.‘_n&x\\
(R ST T
proof.
We first observe that %\,;.\ is unbiased consistent estimator of

bi;i the coefficient of g. This follows form,
A N
BCous )= QN 2 Bk D =0y, (15)
The mean integrated square error (MISE) is given by.

Ay (®ha (M (™,

\‘-HI\% (8,a,B) - 2(0,c,p)\*d0dcdf = £ Z Z X Lo -b,\

120" 1=0
0 x Q3L Wyq, (N)q, (W) A
L > Z‘Dlm.\ = Y X Blog-b9,\'
V=g AN+ =g ( N)+1ia=q (W) \=0 =0 =0
Q0 20 Qo
+ Z Z Zbl\’\ (16)

A=q( W)+ 1j=q( N)+1i=q( N)+\

Usmg (14) and (15), then the first term in (16) may be expressed as,

N\
ELbi L~ g3y 1= (N var(R (o) (17)
Since the set S =(Aij; ,1,,1=0,1,... )1is linearly independent, then i

\\\“\‘\1\“\\\\“\ : '\\\“\\1‘“\‘\\\“\

E'\‘\)\3,\ ‘0\3‘\\ =(\IMN) ¥ T X var(A;;,(x))—>0as

\=0 =0 =0 \=0 =0 =9

N—> . since A;j;is uniformly bounded in (0, « ). By lemma (1) we note
that the second term of (16) goes to zero as N— . Hence the

| conclusion.

Lemma (2)
Let the hypothesis of theorem (2) hold, then

Ble(0,a.B) - gL0,0,B)\* =0 as N> .

We should find a sequence of function { Aij;(x) ,ij,l=0,1,...}
satisfies (11) and (14), this means that, we need to drive function A;;, (x)
such that, for every ijl1=0,1,... N
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J’ {& X !Qa,[)\k\;}\kx\dx =P \‘S‘\&ewa\B\e—&e+a+B\Q (17)

and then we can use the estimator of the prior distribution (12). In
practical we often have a nice special cases when the exact solution A,
(x) of equation (17) exists. Since the right hand side of equation (17) is
entirely known. it can be solved by the Fourier or Mellin transformation
or Laplace method [ see Penskaga (1994) and Tierney, Kass and Kadane

(1989)]

Suppose we can observe nj+1 sample from a marginal density f(t)

under stress v; , 1= 1, 2,... , m, then we are interested in estimating the
“prior density g(0, o, B ) based on the first n; ,i= 1, 2, ... ,m sample and to
make use an addition sample \, .| to estimate the parameters 6, a

and
. Using the mean square loss error, then, the EB estimator of 6, o and B

basedontj,j=1,2,..,ni+1,1=1,2 ..., m, from ft), is given by
AN
\/L\; _ [ wi116,0,8)2(6,0,5)d6d0dB

E A
JIf5Ce18,a,B)2(0,0,8)d0d0dB

and y =0 ,a ,and 3 |
In the rest of this paper, we study the above procedure of the empirical
Bayes 1n the of the Weibull life time distribution.

4 - Empirical Bayes estimator for the Weibull distribution

Consider T as a random variable, which denoting the life of an unit
with a Weibull density given by (1). We assume a stress variable v
affecting the scale parameter A, but with common shape parameter 3 for
all stress level, with m levels of a stress variable, assume the inverse
power rule model given (2), such that
A, =0.v.*, fork=12,.. m

where 0 and o are unknown parameters. Thus, with ny units at the
beginning of each test with v, we have the observations given by

Vobieeate o for ko= 1,2, .., m, such that Enk =N. Our objective
%=\

now is to obtain estimators for the parameters 0 and o , and to predict A,
, the value of the scale parameter at use conditions stress v,,.
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Considering the data of m stress levels v,, v;, .., v, taken at
random, then, the likelihood funciion for D, « and P is given by

L0.a.B) = [TH Tt .0.0.B)

w \t

= OB Tt ) v expl-8F S v (v )") (18)

w=\f=\ x=\1(=\

Usually, in engineering applications different prior could be used in
Bayesian analysis of the model. Since we have difficulties to get exact
posterior or predictive densities of interest, our objective here is
estimating the parameters by the EB approach. Firstly, we construct an
estimator for the unknown prior distribution based on the orthogonal
polynomial, then we derive the estimator of the parameters with respect
to the estimated prior, otherwise we derive the sequence A;;( ti; ) fori.j.)
= 1, 2, ... such that under stress vy, wé have

IA\.}.\&‘ w.t X%y ¢ \p_\e—ev"‘\‘_‘“ & = 9'\.;.\\&“»8\?'."9‘a.mnl (19)
)

Using the Laplace’s method for approximation of integrals [see Tierney ,
Kass and Kadane (1989)] we find an approximate sequence

- . -\ \ *
A"\-'!-\ &‘k\ - UI;.RB . v\.}.\\esasﬁyeev“a "kB (20)
Je\v\;\a ‘-kp

where 1, =man(t, (. £=12,...,n Yfor all k=1,2,.. ,m Ac tlingly,

if the right hand side of (20) holds, we can obtain the estimat:: +f the
coefficient b;j; which is given by

Ab\":.\ = ki::“"“;"k‘i'\.').\\{k \ (2] )

From (12) the estimator of the joint prior distribution g“ (0,a,B) Is given

by
BBap)= T R N (5B pye OB (22

A=\ ‘:\ =l k=) N
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Hereafter, we let ty, fork=1,2, .., m, 6, a and B denote the (nk+l)‘h
observations ti+i, Ox+1, 0k+1 and P+ respectively. Then the EB estimation
of 6, a and P under squared error loss by utilizing all ny+1 observations
are given
A {1030, a,B)d6dad
= [/ %6,,B)d0dcdB
_ |lfa¥8,0,8)40dadf
@ 70, o, 304048

and  p.. = JBYO:p)d0dadp . (23)
=[] X6, a,p)d0d0dB |

where
m 3 m a N
‘\esas B\ = \ep\“ﬂ\vka&tk;ﬂx +\ \B-‘ ex?\_ekg\ vk &"_k.l\k-&\ )B' %N kesasB\.

The EB estimator of the scale parameter A, under the usual stress
vy can be obtained by using the following equation

Aw = Ben (¥, )= (24)
Canavos(1973) finds, for the Poisson distribution, that the EB point
estimate of reliability function obtained by substituting the EB estimate of
the failure rate into reliability function has a uniformly smaller EB risk
than the estimator based on the expectation of the reliability. In our case,
the EB estimator of the reliability functional mission time to, is given by

\ ) A
R. &‘“) - e-)\.“\tﬂ s

where A« and ﬁ“ are given by (23) and (24)

5- Conclusions

In this paper we obtained formulas for the approximate prior
density and empirical Bayes estimators under the squared loss. Since the
accelerated life tests in reliability analysis are important in all
applications, the obtained results could be of great practical interest. We
obtain the empirical estimators of the parameter of the inverse power
model, and the shape and scale parameters of the Weibull distribution
.We also could obtain the estimators of the reliability function .
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