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Abstract:

The decision in the Bayesian hypothesis testing depends on the posterior
probability distribution of the associated parameter and the loss function. In
turn, the posterior probability distribution depends on the prior probability
distribution of the parameter. Goal programming is used in this paper to study
the robustness of the decision to the changes in the posterior probability and\or
the loss function. The approach depends on the fact the hypothesis-testing
problem can be reformulated in the language of a single stage decision theory.
Three types of sensitivity analysis are considered in the paper; sensitivity
analysis for the posterior (prior) probabilities keeping the loss function fixed,
sensitivity analysis on the loss function keeping the probabilities fixed and
sensitivity analysis on both the prgbabilities and the losses. The bounds of
changes in the probability and\or the losses are determined by using the linear
goal programming in the first and second case. For the joint sensitivity on both
the probabilities and the losses, the problem is converted to a multiobjcctive
program then to a nonlinear goal program. By using the suggested approach,
the global optimal solution is attaineﬂ in the first and second cases because of
using linear goal programs. The nonlinearity in the third case can be managed
by the priority ranking in the achievement function.

Key words: Multiple hypothesis testing, Bayesian approach, Prior probabilities,

Posterior probabilitics, Loss function, Goal programming,.
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1- Introduction

The statistical hypothesis testing problem can be defined as: Having an
unknown parameter 0 which is known to be from a will defined set ®, we
want to know whether O e ®, or 0 ®; where:
O U O = O and Oy N O; = . By using a set of observations x (sample)
whose density p(x | 0) depends on 0, one can perform a test to decide whether
Oe Oy or O O, . This problem is written in the following form:
Hy : 0 € ©y as the null hypothesis and H, : 6 € ®, as the alternative

hypothesis.

In the classical statistics the test is decided by a rejection region R defined
as [10,13] :
R = {x; observing x would lead to the rejection of Hy}.

R is determined by using two types of probabilities; the probability of type I
error; o; and the probability of type II error; B;. o and B are defined as:
a=p(R| Oe ®g) and =1 -p(RI Oe ©).

The Bayesian approach is more straightforward. The decision is taken based

on the prior and posterior probabilities of 6 . The prior probabilities of 0 are

defined as [3,13]:
o= p(6€ ©p) and n;= p(6 e Op) and the posterior probabilities are given by:
po= p(Oe O | x) and p;= p(0e O | X) . By using the prior and posterior
probabilities of 6, the Bayes factor B is defined as:
B = porti/p 7.
The Bayes factor can be interpreted as the odds in favor of H, against H,

given by the data and is used to choose between Hy and H;.



ISSR, CAIRO UNIV., VOL., 42, NO.1, 1998, PP.55-72
= S
The comparison between the classical approach and the Bayes{an
approach can be found in [3,13]. On the other hand the hypothesis testing
~problem can be reformulated in the language of decision theory [3,13] and in
this case the losses of taking the false decision is to be taken into
consideration together with the prior and posterior probabilities. The
robustness of the decision to the changes of the prior and posterior
probabilities and/or the loss function is the ultimate goal of this paper.
Section 2 of this paper presents the sensitivity analysis in the general decision
theory problem. The sensitivity analysis in the Bayesian multiple hypothesis
testing is considered in section 3 and numerical examples for illustration are
given in section 4.

Sehsitivity ahalysis is performed through this paper by using goal

programming. The general form of goal programming is as follows:

Lexicographically minimize Z:

Z = { g(nyyvi) t=1,2,...,T} (1)

Subject to:

f(y) +ni—vi=Db, i=1,2,..., 1 2)
y20,n20,v;20 i=1,2,..., 1 3)
n;.vi=0 i=1,2,...,1 “)

Where vy is the vector of the decision variables, fi(.) 1s a real valued function ; n;
and v; are the negative and positive deviational variables, respectively, for the i
goal , g(.) is a real valued function for the goal with priority level t ; 'and T is the
number of priority levels . An intensive review on goal programming

formulations, solutions and applications can be found in [14,16,17]. One of the

important properties of goal programming [4,11}] is that :



THE EGYPTIAN STATISTICAL JOURNAL
_8§_
n+v,= lfi(y) - byl
This means that if we need to minimize |fi(y) - bil, then the equivalent goal
program can be attained by putting g(n;,vi)= n; +vjin (1) and sﬁlving (1)-(4).
This property will be used through this paper to reformulate the resulting

models to goal programs.

2- Sensitivity analysis in decision theory

Single stage decision theory is defined as choosing one alternative from
among a finite number of alternatives. Many criteria were suggested to
determine the best alternative [2,12]. If more than one state of nature is known to
exist, and the probability of each sta;e is known, then the best alternative is the
one that maximizes the expected value of the payoffs. We can also define the next
best alternative as the alternative with the closest expected payoff to the best-
expected payoff.

Let A={A, A, ...,An) be the set of alternatives, S = {S,, S,, ..;.,Sn) be the
states of nature, and P(S=S)) = p; be the probability that S;j occurs. Let the payoff
matrix be defined by H = {h;;} where hjj is the payoff when the alternative A;is
selected and the state of nature turns out to be S;j. The best alternative depends
on both p; and h;;. The sensitivity analysis of the single stage decision making
involves determining bounds of changes in the parameters (p;j and/or h;;) at
which the optimal action remains the same. The problem as defined here was
studied in [5,6] and nonlinear programming was used.To study the sensitivity

analysis on probabilities, let the optimal alternative be Ay, i.e :

2 hgpi =Y hyp; forall izk (5)
j=1

: =
and let A; be the next best action .
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If X = (X1 X2....X,) represents an arbitrary probability vector; then the

changes from P to X can be measured by the following or other forms :

D)= (Y (xp)H"”

n

DX,P)= Y |x;-pil

J=1

We will use expression (7) in this paper because it leads to a linear goal program.

The problem now is converted to finding the values of x; that:

Minimize DX,P) = > |x;- pjl

J=!

Subject to:
> hyxi= Y hyx
J=1 j=1

Z hyj xj = Z hijx; for all i #r and i 2k

j=1 j=1

n
Xj =]
Jj=1

xj =0 i=1,2,...,n

®)

®)

(10)

(11)

(1)

Also, to study the sensitivity analysis on the payoffs, let the changes in h;; be tij .

This means that the new values of the payoffs become h;; + t;; . Holding the values

of p; fixed, what are the minimum values of t; that makes A, as best as A and

better than other actions?. To answer this question the following program will

be solved
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Minimze Sj ".ij!

Subject to :

" n
X

2. (htty) p= 2: (hyjtty)p;

B i=l

(hjtt) pj 2 z (hij+tij)p; for alli#r and k
i=1

!
1=

(13)

(14)

(15)

To find the minimum changes in both the probabilities and the payoffs until A,

becomes the best action, the previous two programs will be combined in the

following multi-objective program :
" 1 N

Minimize Z |xj-pi|,>: Z |tij|

j”' i=1 /)

Subject to:

n n

Y. (tt) xi= )0 (hygttig)x

=1 J=1
Z (h,‘j"‘t,-j) Xj 2 Z (hgj‘*‘(ij)Xj for all i #r and i #k
j=1 j=1

Z Xj=1

n
J=1

xj =0 i=1,2,...,n

(16)

17)

(18)

(19)

(20)

Each of the first two mathematical programs (8)-(12) and (13)-(15) are special

cases o f the third program (16)-(20). Putting t;; = 0 in (16)-(20) gives the

program (8)-(12) while putting x; = pjgives program (13)-(15). In the following

the programs (8)-(12) and (13)-(15) will be transformed to a linear goal program

while the third program (16)-(20) will be transformed to a nonlinear goal
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program. The linear goal program can be easily solved using any of the
sequential or multiphase simplex methods, while the nonlinear goal program can
be solved by using the sequential approach of nonlinear programming [4,7,8,9 |.

First case : determining the changes in the probabilities :

To convert the program (8)-(12) to a goal program, the objective function will
be transformed to a goal constraint at priority level 2, the other constraints will
be considered at priority level 1 (absolute goals); and by adding the negative and
positive deviational variables the following goal program is obtained:

Find x; (j=1,2,...,n ) so as to lexicographically minimize Z, :

m n

Z={vat Y. uituty, Y (w'itwh)) - 73]
i=1 j=t '

Subject to:

x; +w'i-w}=p; j=1,2,...,n (22)
Z hrj Xj- Zj=|n hijj + u;k-Vrk =0 (23)
j=

> hgx Y, hixj +us-ve=0 for all i #r and i #k 24)
j=1 j=1

Z xj tutv=1 (25)
j=1

x; =0 ji=1,2,...,n (26)

In the program (21)-(26) minimizing u, + v,y is equivalent to satisfying (5) i.e.
to make the alternative A, as best as Ay, minimizing X u,; is equivalent to
satisfying (6) i.e. to make A, better than other alternatives except Ay, minimizing

u+v is equivalent to satisfying (7), and minimizing Xj-;"( w'j+w2j) is equivalent to

minimizing Z 'Xj-pjlas a property of goal programming,.

R :
ey J=1
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The goal program (21)-(26) is linear and can be solved by the sequential or

multiphase approaches [8].

Second case : determining the clianiges in the payoffs :

Using the same approach of the first case, the program (13)-(15) can be

transformed to the following goal program:

Find t;; that lexicographically minimize Z,:

Z2={"rk+i Uri Z i (vij Fwi’)) 27)
i=1

=) J=1

Subject to:

z (ll.-j+trj)])j- Z (hkj‘*‘tkj)[)j +u,.k-vrk=0 (28)
Jj=1 J=1 .
Z (hyjtty) pj- (hij*+ti))p; +usi — vi=0 for alli #r and i 2k (29)
j=1 J=1

(30)

ti; + wijl - wijz =0 i=1,2,....m j=1,2,...,n

1)

Urk 5 Vrks u,.i,v,i,wi,-l,w;jz >0 i=1,2,...,m j=1,2,...,n
In the program (27)-(31) minimizing u,y + v, is equivalent to satisfying (10) i.e.
to make the alternative A, as best as Ay, minimizing > u,; is equivalent to

satisfying (11) i.e. to make A, better than other alternatives except Ay, and

m n m n

minimizing Z Z (wij'+w;jz) is equivalent to minimizing Z Z Itijlasa

=l el =t j=I

property of goal programming.

The goal program (27)-(31) is linear and can be solved by the sequential or

multiphase approaches [8].
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Third case : determining the simultaneous changes in the probabilities and the

ayoffs :

To transform the program (16) — (20) to a goal program, the same approach of
the previous cases will be used. The resulting program in this case is the
following nonlinear goal program.

Find x; and t;; so as to lexicographically minimize Z; :

m n m n

Zs={vat D, ugtutv,y (wiwh) LD > w'tw?)  (32)
i=1 j=1 =t j=I
Subject to :
Z (hrjtteg) Xj- Zj=1" (hijttyg)Xj Haee-vec=0 . (33)
Jj=1 4
(hejtty) x; - z (hi+ti)x; +ui—v=0 for all i #r and i 2k (34)
j=1 Jj=t
xjtut+v=1 (35)
j=1
Xj + w'j— wzj = pj =1,2,...,n (36)
ti+wi' —wi’ =0 i=1,2,....,m j=1,2,...,n (37)
x;=0,all deviational variables>0, and t;; are unrestricted (38)

The nonlinear goal program (32) - (38) can be solved using the sequer ial

penalty algorithm [4,8].
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3-Sensitivity analysis of the decisions
in the Bayesian multiple hypothesis testing

The statistical hypothesis testing can be thought of as a decision-making
problem, in which one has to choose between two (or more) hypotheses. Let us
assume that we have the following hypotheses:
Hi: 0 e A;  i=1,2,...,K 39)
Where A, (i=1,2,...,K) are mutually exclusive and exhaustive sets. Furthermore,
from a Bayesian point of view, the decision-maker can assign a prior distribution
of 6 and using both the prior infornr;ation and the sample datum the posterior
distribution of 6, P (H;) = P (0 € A, ),can be computed. The other input to the
decision problem in the case of the hypothesis testing is the loss function. Let
L(i,j) be the loss occurring if H; is accepted while H; is true. This situation can be
represented by a single stage decision problem. The states of nature in this case
are S;={ H; is true} (j=1,2,...,K) . The posterior probabilities are P(S;)=P(H; is
true). The alternatives are A;= accept H; (i=1,2...,K). The associated losses are
{ b} (i=1,2,...,K,j=1,2,...,K) where:
h;i=0, hj=L(i,j) i=j (40)

According to the Expected Value Criteria, the optimal decision is the one with

minimum expected loss. It can be proved that Hi; is to be accepted if :
.

R
Y. hiP(H) <> h,P(H) r=1,2,...,.K , r#i (41)
/=1

J=!
In the case of having only two hypothescs, H; and H,, H; is to be accepted if :

P(H;)/P(H,) < hat/h, (42)
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Tlvl’é; left hand side of (42) is called the posterior odds ratio in favor of I} in the

Bayesian approach while it is called the likelhood ratio in the classical approach

(assuming equal prior probabilities for H; and H;). The loss ratio in the right

hand side is not used in the classical approach, instead the classical statistician

can determine a rejection region in terms of the likelhood ratio and to some

value of o (level of significance) [11].

Now, starting from a specific posterior distribution, if the best alternative is H;

and the next to best is H,, then how sensitive is our decision to the changes in the

posterior distribution function and therefore to the changes in the prior

distribution?

The suggested model in section 2 (first case) can be used to answer the previous

question as follows:

Lexicographically minimize Z, :
K K
Z &= {u,+ Z vituty, Z (w'j+w2j)}
k=1 j=1

Subject to:
X;j + le - \sz = P(HJ ) j=l,2,...,k

%

i
Z hrj Xj - Z hijx_i + u,-v,; =0
j=1

J=i

K
D hixi- D higxj Funeva=0; k=123, K;k#r;k#i

j=1 j=!

(42)

(43)

o

(45)

(46)

(47)
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The goal program (42) — (47) finds the minimum changes in the posterior
probabilities (equation 43) that makes the r'™ decision as best as the i™ decision
(equation 44) and better than other decisions (equation 45).

To study the robustness of the decision to the changes in the loss function, the
goal program (27) — (31) can be used as follows:

Find t;; that lexicographically minimize Z,:

A K K
Z, ={vrk+z Ui Z (w3 +wi?)) (48)
i=l i=| j=
Subject to:
.
Z [(hej+t)pj- (hyjtt)p; [Hupe-v=0 49)
J=1 ;
.
D [ (hyj+ty) pj- (hi+t)p; [+uri - vei=0 for all i #r and i 2k (50)
J=1
i+ wi —wi’=0 i=1,2,...,K j=12,...K (51)
Uric s Veks WrisVreisWij sWii” 20 i=1,2,... K j=1,2,....K (52)

The goal program (48) — (52) finds the minimum changes in the losses (equation
51) that makes the r'™ decision as best as the i"™ decision (equation 49) and better
than other decisions (equation 51).

If both the posterior probabilities and the loss function are to be changed,
the bounds of changes in each that keep the current decision as best as the next
to best one, can be determined by solving the following goal program:

Find x; and tij so as to lexicographically minimize Z; :

. .
Ly={vy+ Z ui tu+tv, Z (w'itwh) Z z (wii'+wiih)} (33)

K A
=l

i= y=l =

Subject to :
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K L
Z (hrj"'t,-j) Xj- Z (llkj+tkj)Xj +uk-v=0 (54)
J= J=

K K
Z (hrj‘f'trj) Xj - Z (hij"‘tij)Xj +u,i— v=0 for all i #r and i #k (55)
j=1 j=1

K
> xjtu+v=1l (56)
j=
x; +w'—w}=p; i=1,2,...K (57)
ti +wy' —wit =0 i=1,2,....,K j=1,2,...K (58)
x;20,all deviational variables>0, and t;; are unrestricted (59)

The goal program (53) — (59) finds the minimum changes in both the posterior
probabilities (equation 57) and the losses (equation 58) that make the r'™ decision
as best as the i" decision (equation 54) and better than other decisions (equation

55).

4- numerical examples

Bayesian hypotheses testing for the mean of a normal distribution:

Suppose that a sample of size n=10 is drawn from a normal distribution with
unknown mean p and known varian;:e c’=400 a‘nd the sample mean is 200. If the
prior distribution of p is normal with mean M;=220 and variance c,’=25 , then
the posterior distribution of p i‘svnormal with mean M; and variance o,% [11}. M,
is the weighted average of the prior mean and the sample mean, the weights
being the reciprocals of the respective variances. The reciprocal of ool is equal to

the sum of the reciprocal of the prior variance and the reciprocal of the variance
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of M. i.e.:Mz - (Wi M+ WoM)/( Wi+ W) and 1/5,% = Wi+ W, where W,=1/c,2

and W,=n/c" [1 1]. In this example M,=212.3 and 5,°=15.38.

Starting with these information, if one is going to choose between the following

three hypotheses:

Hi: 210 <p<220 Hy: p<210 and  Hj: p>220 then the posterior probabilities of

each of H,;, Hj;, and H; being true

distributions of p as follows:

can be computed from the posterior

Hypotheses H;

H,

H,

H;

|
L

Posterior probability P (H;)

0.695

0.28

0.025

Suppose that the loss function is defined by L(i,j)=100( p;. p.j)z, where:

Hi= E(p’ pneH;). By using the definition of the expected value of truncated

normal distribution, 11,-213.6 , 1,-207.6, and p3=221.2. Accordingly the losses can

be presented in the following Table:

Alternatives H, is true H,; is true Hj; is true
P(H;)=0.695 P(H;)=0.28 P(H3)=0.025

Accept H, 0 3600 5776

Accept H, 3600 0 18496

Accept H; 5776 18496 0

Using the expected loss principle, the best decision is to accept H; and the next to

best decision is to accept H,. To determine the minimum changes in the posterior

distribution that makes H, the best alternative, the following goal program is to

be solved:

Find x;, x; and x3 so as to:

Lexicographically minimize Z, :

1 2 1 2
Z={uytvytvyztuty, w'.+w2| +wortwh+wotw s}

(48)
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Subject to:
x;+ w'. - wzl = (0.695 (49)
x; +wlh—-w? =0.28 (50)
x3+ w's— wi; =0.025 (51)
3600 x; - 3600 x; + 12720 x3 + uy; - v 3; =0 (52)
-2176 x; - 18496 x; + 18496 x3 + uz3 -vy3 =0 (53)
xitx+xrutv=1l (54)
x; =0 i=1,2,3 (55)

By using the Micro-Manger Software, the optimal solution of the LGP (48)-(55)
is: x;*=0.5 , Xp*=0.5 and x3*= 0 and in this case the expected losses of accepting
H, is equal to the cxpected losses of aécepting H, (1800) . This result can be used
to determine the associated changes in the parameters of prior and posterior
distributions. For example if the prior distribution becomes normal but with
parameters M;=240 and 612=50 . Also another sample with the same size (n=10)
was drawn from the same population and gave mean M=180. What is the effect
of these changes on the best decision? To answer this question all we need is to
calculate the posterior probabilities of each hypothesis being true and check if
the changes in these posterior probabilities are within the ranges that was
determined by the goal program (48)-(55) or not. The new posterior distribution
is normal with mean M= 206.67 and variance G2 = 22.22. accordingly the
posterior probabilities of the hypothesis being true are:

P(H,)=0.237 , p(H;)=0.76 , p(H3)=0.003

These posterior probabilities are out of the allowed range to accept H,. H, is no

longer the best decision according to the new information. P(H,)=0.237 is less
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than its lower bound (0.5) and p(H;)=0.76 is higher than its largest bound (0.5).
This result can be checked if we calculate the expected loss for each decision.
By using the same approach together with the suggested goal programs in
section 3, the robustness of the decision to the changes in the loss function can be

investigated for this example.

Conclusion

Goal programming is used in this paper to study the changes in the
components of the Bayesian hypothesis testing problems. The paper includes
three types of sensitivity analysis. Sen;itivity analysis for the prior and hence the
posterior probabilities of the tested parameter keeping the loss function ‘flxed,
sensitivity analysis on the loss function keeping the prior and\ posterior
probabilities fixed and joint sensitivity analysis on both the posterior
probabilities and the loss function. The suggested approach can be used for the
general single stage decision theory. The resulting programs are linear goal
programs in the first and second cases and nonlinear goal program in the joint

sensitivity analysis case.
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