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Abstract

In this paper, we obtained an appriximate Bayes procedure for the
estimation of the reliability function of a two-parameter Cauchy distri-
bution under a predictive distribution approach of Sinha and Guttman
(1988) using Jeffrys’ non-informative prior. Based on a Monto Carlo
study and Mathematica programs, such approximate Bayes estimator
is compared with those of Howlader and Weiss (1988b) and Maximum
likelihood.
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1 Introduction

The special form of the Pearson Type VII distribution, with probability

density function
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is called the Cauchy distribution. The reliability function is
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for various (fixed) value of t.

The parameters 6 and X are location and scale parameters, respectively.
The distribution is symmetrical about = 6. The median is §; the upper and
lower quartiles are § = A. The distribution does not posses finite moments of
order greater than or equal 1, and so does not posses a finite expected value
or standard deviation. However, § and A are location and scale parameters,
respectivily, and may be regarded as being analogous to mean and standard
deviation.The Cauchy distribution is often used in extreme cases to model
heavy-tail disributions, such as those which arise in outlier analyses.

For the problem of estimating § when A is known, Copas (1975) and
Gabrielsen (1982) showed that the joint likelihood function for § and \ is
unimodal. Hence the two-parameter situation is easier to handel than just the
location-parameter alone. For Bayesian inference Franck (1981) considered
the problem of testing of normal versus the Cauchy, and Spiegelhalter (1985)
used some of Franck’s results to obtain exact Bayes estimators for § and
A under a non-informative prior, for odd values of n larger than 3 and for
even values of n. Howlader and Weiss (1988a) pointed out that the exact
formulas given by Spiegelhalter (1985) are difficult to compute and require
great computational precision as these estimtes are very unstable and often
blow up in values. Through an emperical Monte Carlo study that they carried
out, they also observed that the exact method often grossly overestimated )\,
especially for small values of n.

Howlader and Weiss (1988a) derived some approximate Bayesian estima-
tors by using a method of approximating ratios of integrals [due to Lindley
(1980)]. They then showed that these approximate Bayesian estimators per-
form very well in comparsion to the maximum likelihood estimator (MLE).
Also Howlader and Weiss (1988b) derived an approximate Bayes procedure
for the estimation of the reliability function of a two-parameter Cauchy dis-
tribution using Jeffreys’ non-informative prior with a squared-error loss func-
tion. and with a log-odds ratio squared-error loss function. Based on a Monte
Carlo simulation study, two such Bayes estimators of the reliability function
are compared with the maximum likelihood estimator at § = 5, A = 1 at
n=7,15,30 where R(t), t=1....9.
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They showed that the three procedures are fairy competive, and the max-
imum likelihood does generly well. Sinha and Guttman (1988) suggested a
predictive distribution approach for the estimation of the reliability function
of a two-parameter Weibull distribution using Jeffreys’ non-informative prior.

2 Reliability Function: A Predictive Approach

Based on n independent observations z= (z;,z3,...,2,) from the Cauchy
density (1), the likelihood function for 0 and X is

nmyn - : . 2] -1 .
(=7""\ 11—11 [/\2 -4 (.’7,: — ()) ] ] (;)
Then, the log likelihvod function

f=—nlnmr+nln\— Zln [,\2 (2:, — 0) ] (4)

i=1
Then, the likelihood equations for € and A to be
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Suppose little is known a-priori about f and X so that Jeffreys' (1983)
vague prior, say g(0, \) is appropriate for this situation, that is

1

9(0.2) = <. (7)
From (3) and (7) we have the joint posterior of  and A is given x . b
L6,
WO, X |z) = 16, ) (8)
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By following Sinha and Guttman’s (1988) approach, an approximate
Bayes estimator of R(t) is
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where

u1(8,\, z) = -,1\- [1 + (“’;0)2]—1. @

Then ( 19) become

R(t) = % / (E (8, ), ) |z]} da. D

The ratio of integrals in Efu;(6, A, z) |z] in (12) does not seem to take any
close form. Howlader and Weiss (1988b) derived approximate experssion for
E[w(0) |a] where w(0) is arbitrary functionin @, §= 6,, ...,0,,. Now according
to Howlader and Weiss (1988b) (12) becomes
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All functions of the right-hand side of (13) are to be evaluate at the
maximum likelihood estimates of (0, A) and where

A= 22 w; — 4X22103,
i1 i1

C = LZ ( . ) (1 = 4X2w,-) w?,

2
D= n

+
-1
w; = [,\2 € — 0 ] ,

to evaluate Z; ,4 = 1,...5 in (13) we first used Mathematica to evalnate

:\ (3 4/\2w) w? |

the following integrals
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all zpgi=1,...5 from (14) to (18) are evaluated at the maximum likelihood
estimates of (0, \) to obtain Z;, i=1,...5 in (13) .

3 Monte Carlo Study

In urder to compare our estimator (13) of the reliability function with those
of Howlader and Weiss (1988b), say R(t), and MLE, say R(t) , 1000 (=N)
samples of sizes n=10,20,30,40,50 were generated from p.d.f. in (1) with
0 = 5,A = 1. The study performed using Mathematica programs (version
2.2). The mean of N estimates and the corresponding (emperical) mean
square error (MSE)

Sum of squares of the N deviatiuns estimates from the true value

N

MSE =
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were compited where R(t), t=10. We reported the results in table (1).
The entries within the parentheses indicate the corresponding mean square
errors. To compare the efficiencies of the three estimators of the reliability
function, the relative error (RER)

MSE

True value of the reliability function

RER =

was computed and the results in table (2).

Table (1)
True Reliability 0.0628
Estimates
n | R(t) R(t) R(t)
10 | 0.0961 0.0804 0.0691
(0.0075288) (0.00479266) (0.003197)
20 | 0.0819 0.0687 0.0592
(0.000747951) | (0.000301853) (0.000209765)
30 | 0.0774 0.0649 0.0559
(0.000297768) (0.0000618655) (0.0000894938)
40 | 0.0758 0.0635 0.0546
(0.000183947) | (0.0000108589) (0.0000746716)
50 | 0.0749 0.0628 0.0540
(0.00016021) | (8.06386 10-°) 0.0000829731)
Table (2)

n | Rt) |[R(t) [R({)

10 | 1.3809 [ 1.1018 [ 0.9170
20 | 0.4353 | 0.2765 | 0.2305
30 | 0.2746 | 0.1252 | 0.1506
40 | 0.2159 | 0.0524 | 0.1375
50 | 0.2014 | 0.0452 | 0.1450

The Monte Carlo study indicates that

1- From table (1) the MSE of R(t), R(t), (t) decrease as n increases.
Also the bias of 2(t), R(t) decrease as n increases.

2- From table (3) and n==10, n=20, MLE is more efficient than the two
approixmate Bayes estimators.
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3- From table (3) and n> 30, Bayes estimator under squared error loss
frine tion is more efficient than those of maximum likelihood and our estima-

tol.

Table (3)
”";]_" RE R(R(t RER(R(t RER(R(t)) | RER(R(t))
RER(IY(t)) | RER(R(t)) | RER(R(t)) | RER(R(t))

10 — — | 1.5059 1.2015
20 — — | 1.8885 1.996
30 ] 2.1933 1.2029 — —
40 | 4.1202 2.6240 — —
50 | 4.4558 3.2080 — —

4 Conclusions

[For small samples MLE more efficient than the two approximate Bayes esti-
malors uf the reliability distribution function under Cauchy distribution. But
for n>30 Bayes estimator of Howlader and Weiss (1988b) is more efficient
than thuse of MLE and our estimator which under a predictive approach of
Sinha and Guttman (1988).
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