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SUMMARY

There is a number of testing Lack-of-Fit procedures available in the literature,
each being proposed to deal with a particular situation. While these existing tests
might do a reasonable job, their disadvantages and drawbacks have also been
acknowledged. In this paper, we propose an exact F-test that applies to any situation
even if replicates or near replicates are not present. Its implementation is easy, and
found to be extremely powerful compared with other tests. Its use is also developed
when multidimensional covariates occur.
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1. INTRODUCTION

In the context of regression analysis, violation of the linear structure for the
mean response may result in misleading or wrong conclusions. ‘

In some instances, a straight line should not have been fitted because the
response function may be quadratic in X or any other non-linear function in X.
Suppose that we want to detect if lack-of-fit occurred. A graphical analysis of the
- residuals may reveal information regarding the potential violation of assumptions than
any other techniques. Draper and Smith (1981) and Graybill (1976) discuss graphical
approaches. The disadvantage of a graphical approach is also obvious. First, it is
subject to visualizing and different observers may draw different conclusions on the
same graph. Second, graphics become cumbersome or even impossible when
multidimensional covariates occur. Therefore, a formal statistical inference about
lack-of-fit is desirable and necessary sometimes.

A well-recognized and accepted method for testing lack-of-fit to linear
regression in the case that exact replicates are present is the classical lack-of-fit test.
This test is only applicable to exact replicates. Consequently, an experimenter is
always advised to consider exact replicates in his design. Sometimes though, an
experimenter cannot produce exact replicates even when he is establishing the design,
for example in chemical kinetic experiments, or some historical data that cannot be
reproduced. In these cases the researcher is faced with a harder problem to manage,
since replications are not possible.

A lot of work has been done on near replicates mimicking the classical case.
Neill and Johnson (1984) presented an informative and lengthy review. In particular,
the works by Green (1971), Lyons and Proctor (1977), Shillington (1979), Daniel and
Wood (1980), Draper and smith (1981) and Utts (1982) were cited. Recently, Neill
and Johnson (1985, 1989), Christensen (1989, 1991), and Joglekar, Schuenemeyer
and LaRiccia (1989) developed procedures in the case of no replicates but under
existence of near replicates. The power of these tests is highly dependent on the
choice of clusters. -

Su and Wei (1991) proposed a new test using a supremum-type statistic, based
on partial sums of residuals. The proposed test does not need a partition of the space
of covariates to handle the case without replications. This test has good power and
was shown by simulations to be even more powerful than the classical test in the case
that replicates are present. The test though has a drawback if the hypothesized link
function and the true link function intersect too often in the covariate space. Also for
cases with high dimensional covariates and large sample sizes, a large computation
time is required to calculate the observed test statistic value and the critical values as
pointed out recently by Cheng and Wu (1994). Cheng and Wu in their paper,
proposed a new test which seems to be as good as Su and Wei's test and their test
needs less computations as claimed in their paper.

We suggest in this article a natural idea to detect lack-of-fit which is done by
compaﬁng the overall linear fit with piecewise linear fits. First we split the covariate
space into two or more portions. We then calculate the piecewise linear fits. The
exact lack-of-fit test is to test the equality of the coefficients of the piecewise linear
fits. The advantage of this test for revealing occurrence of any lack-of-fit or
ﬁjnctional misspecification associated with the deterministic portion of a proposed
lmea.r regression model is that it does not rely on a grouping method and does not
require near replicates. This test is simple, easy to understand and has good power.
Simulation reveals that it is even more powerful than the classical test statistic in the
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case of exact replicates. In particular, we find that the new test is rather sensitive to
detect a non-linear regression. Moreover this test is an exact F-test, which is an
advantage since one uses the exact critical values obtained from the F-table. The test
requires partitioning the covariate space. The issue of partitioning is discussed in
Section 5.5

2. CLASSICAL LACK-OF-FIT TEST

An ideal experimental situation is that there are replicating observations
available for analysis, i.e., at some sampling points, more than one response are
independently obtained. In this case, lack-of-fit to a linear regression function can be
easily tested in the light of analysis of variances. A linear regression model with
replicates can be written as

j)
YUZZ‘:XWﬂk +Ey, 2.1

wherei=1,.,M,j=1,..,n and n, > Ifor at least one i. Here n, is the number of '
replicates at the covariate level (X, 1,.”,le). For example, if two independent
responses are collected at the same covariate vector (X,},...,.X, ), thenn, =2. Let the

M
total number of observations be denoted by N = "n, . For each fixed i, Y“,A..,Yi"i,
i=1
are n, independent responses corresponding to the covariates X,,, k=1,...,p, and
B=(B,,.., B,,) is an unknown parameter vector. The random errors Y, are assumed to
be independently, identically, and normally distributed with mean zero and unknown
variance o . Throughout this dissertation, it is assumed that M > p.
The classical lack-of-fit test compares model (2.1) against general alternatives
Y= ut e, 22
Where,i=1,..,M, j=1,.,n, and p, are any real numbers, but unknown. Here g
are assumed the same as in the model (2.1). Given X, model (2.2) is reduced to model

(2.1) when y; ischosentobe p;= Y X, fB,,i=1,.M
k
Under model (2.2), o2 can be estimated by

RO R <1 < P
o —_.—N—MZZ(Y"’ vy (2.3)

=1 =1
and under model (2.1), o7 can be estimated by

I’ M »
a; =ﬁ22(¥., —iX:k B

[EE

— 1 & ~

Here ¥, = n—ZY,] and S, is the least squares estimate of B, under model (2.1),
WEl
k=1,...,p. Then the classical lack-of-fit test is an F-test with the following test
statistic. Let SSR = (N - p) o2 and SSE = (N - M) ? , and define
F = (SSR - SSEY/(M - p)
o SSE N -M)

When model (2.1) is true, F, follows an F-distribution with (M - p, N - M)

degrees of freedom. Therefore, the F-test rejects the adequacy of model (2.1) at level

249
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o in favor of model (2.2), whenever F¢ > F (o; M-p, N-M), where F (o; M-p, N-M) is
the 100(1-0.)% percentile of the F-distribution with (M-p, N-M) degrees of freedom.

3. MODEL

Consider a full rank linear regression model
Y =X +¢, 3.1
where Y’ = (Y,,...,Y,) is an n dimensional observable random vector and € is a
corresponding n dimensional unobservable random error vector. € is assumed to be
N(0, 0% 1) distributed, where 0 is an nx1 zero vector, I is an nxn identity matrix,
and o? is an unknown variance parameter. B'= (B, S Bp-l) 1s a p dimensional
vector of unknown parameters defined in R, and X is an nxp matrix with rank p.
A lack-of-fit test is to test model (2.1) against the general alternative model
Y =nuX) +e, (3.2)
where Y and € are as defined before and p is any function of X.

4. MOTIVATION

Our aim is to find a procedure that detects non-linearity of the mean function,
le, to test )
Ho: p(X)=XB
versus . (4.1)
Ha: u(X) = XB.
For simplicity let us consider the case of p =2. Our procedure is to partition the
covariate space into two portions. At the moment, let us assume that the two (m=2)
portions are cut off at the midpoint of the range of X values or just near it. Suppose
that the first group is of size n, and the second group is of size n, =n-n;. Then
model (3.1) is split as
Y;=XB,+e,i=1,2, (4.2)
Where Y is n;x1 vector, X, is n,xp matrix of rank p, B, is px1 vector, and g, €, are
i_ndepgndently and normally distributed as N (0, o*I). If the mean response were
linear in X, then the mean response of each portion would also be linear with
coefficients, B, = B,. On the other hand, if 8, = B, then the mean response must be
nonlinear over the whole range of X.

5. DEVELOPMENT OF THE TEST STATISTIC AND MAIN SESULTS

5.1 Development of the Test

To determine whether or not the two fitted lines are approximately the same,
one would reduce the problem to testing
Ho: B, =8,
versus (5.1.1)
Hj: Bl E= BZ'
Although ti}is model is not the same as the one described in (4.1), we can notice from
the motivation and the development of the procedure that it is quite close to that.
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To test (4.2) one would apply the least squares theory to the two (m=2) portions
to get estimates of 3;:

ﬁ._(XX) XY, fori=1,2. (5.1.2)
Under the null hypothesis in (4.1),
B ~N(B,o* (X, X))
By ~N(B, 0 (X,X,)™),
and ﬂhl is independent of ﬂ; since Y, is independent of Y,. It follows that under the
null hypothesis,
Bi- By ~ N(B.o (X, X)) +(X,X,)7D),
and so
(X)) +(X,X)"T (ﬂ. B,)1o ~N@O,D)
Thus under the null hypothesis,
(Bi=B) X, X)) + (X, X )T (B - Ba) o ~ 27,
where ;(: is the chi-square distribution with p degrees of freedom. Since o’ is

unknown, we estimate it by the pooled sample variance

o =[5! +871n-2p),

where

SE=Y(I-X(XX)' X))y, i=12. (5.1.3)
Since

Srlo? ~ y¥(n, - p),i=12
and clearly S? and S} are independent, we have

(n-2p)o 1a? ~ g (n-2p).
To establish an F-test, we need the independence of

) 3 "
(X)) + (X, X)) 2(B,— B,) and S? + S}
52 Lemma

Under model (2. l) with the partition of (4.2),

XX +(X,Xx,)" (ﬂ ﬂz)and S + 8} are independent, where ﬂ and S}
are defined as in (5.1.2) and (5.1.3), respectively.

The exact F-test statistic is defined as

(ﬂ ﬂ;)[(XX)"W(X X )"]"(ﬂl ﬂz)/P
( +S)/(n 2p)
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5.3 Theorem

When the null hypothesis in (2.1) is true, I, is distributed as an F-distributiom
with (p, n-2p) degrees of freedom.

By the theorem, we would reject the null hypothesis at level o whenever
ch>F(av p! n - 2p)

5.4 Generalizations and Matrix Notation

In general, model (5.1.1) can be expressed in a linear model by matrix notation.
This expression will be convenient when we extend the test to a general consideratior -
of partitions. Assume that we partition the observations into m portions according to
the covariate values. Thus, we will be testing,
Ho: CBZO
versus
H.: CB=0.
The exact test for testing for lack-of-fit can be written as:
Y X(XX)'CIC(X X)"'C'T'C(X X)"' XY /[ p(m-1)]
Y{I-X(X X)X /(n-mp)
where f' = (Bro: B> Bros Bavsss Bruos B ], and

ch =

1 0
1 0 -1 O 1 0 0 0 -1
C= , whenm=2, and C = , when m=3,
01 0 -1 01 0 -1 0
01 0 0 0 -1
and so on.
r Yl 7
) 4
The vector of observations can be written as, ¥ =| @ ,
Yn,+,,.+n 1+l
1 x, 0 0 ]
1 X, 0 0
and the X matrix, as X =| & : LT
0 0 1 mt4n,  +1
o - 0 1 X

The proposed test rejects the adequacy of model (2.1) at level o in favor of
model (2.2), wheneyer Fex> F (o; p(m-1), n-mp), where F (a; p(m-1), n-mp) is the
100(1-a)% percentile of the F-distribution with (p(m-1), n-mp) degrees of freedom.
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It is clear that the number of degrees of freedom in the denominator is
decreasing by mp (multiple of p). Therefore, an increase in the number of portions
reduces the power of the test at certain situations, say at a quadratic non-linear
alternative. From this point of view, we suggest to have only at most two or three
portions. In the course of simulation study not reported here, it shows that with two
portions, the testing powers of quadratic and cubic alternatives are higher than with
three. Of course, fewer alternatives can be detected when smaller number of portions
is used instead. This is really a trade-off that an experimenter should make.

5.5 Partitioning the Covariate Space

When p = 2 we have a one-dimensional covariate space. To partition the
covariate space, we would first arrange the X covariates in an increasing order, then
the first n; of the X's sorted consist the first portion and the next n,= n- n, of the X's
the second portion. It is noted that the partition is a matter of X values, so it does not
affect the independence of the responses.

When p > 2, we have a multidimensional covariate space. Partitioning the
covariate space becomes cumbersome, since we do not have a natural method to sort
X vectors. For illustration and without loss of generality, let us consider the p =3
case. In this case we have a two-dimensional covariate space.

One possible method to split the data is to fit a convex hall in the shape of a
hyper ellipsoid. Find its major axis, and project each point perpendicularly on that
axis. Then partitioning is implemented by these projections that are one-dimensional.
Arrange these projections into an increasing order and the first portion consists of the
n, points corresponding to the first n, values of the projections, and so on.

Using results from linear algebra and multivariate statistical analysis we can
describe this method as follows. Let k=p-1 and write
(VI ) | . L
V=i " i) wherev, =n——1,z,:(X'l =X, )X, - X,), with X, =;ZX,, .

= =

Vv, Vv,

kk
The matrix V comprises the information about the variance and covariance of X;
values, when X;;’s are deemed randomly designed.

Note that V is symmetric and non-negative definite, and so has non-negative
eigen values. Suppose A,,.., 4, are the eigen values of V. Let A" = max A,, and let

e beits corresponding eigen vector with length one, called the major axis. The
projection of covariate vector X, along e is given by X;e", ie., the inner product of

X;and e’. Then we sort these projections, since those inner products are just values
ona real line. Afterwards, the first partition is realized by picking n, points from the
covariate space corresponding to the n, first sorted projections, and so on.

5.6 Remark

A partition of covariate values to construct the exact test F,, test has been made
free of the responses, so free of random errors From a practical point of view, F,,
seems to be easy, as it is inevitable for one to refer to a scatter plot to make a
preferred partition, especially in one-dimensional case where people often rely on a
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scatter plot to make a diagnostic modeling analysis. For example, if the scatter plot
shows a rainbow pattern with the vertex appearing around the lower quartile of the X
values (assume dimension is one), then one may tend to split at the lower quartile and
have a one third versus two thirds partition. As for this aspect, we do not criticize
such a practice, but hope that practitioners keep in mind that the conclusions drawn
from this test based on data-related partition of covariate values are conditional and
the interpretations of the conclusions should be confined and applicable to the
partition used.

6. DESCRIPTION OF SIMULATION AND COMPARISON OF F, AND F_

Simulations are carried out to compare the powers of the exact lack-of-fit test
and the classical lack-of-fit test. For the purpose of comparison, the same Monte
Carlo samples were utilized for the model used in the simulation. In each
comparison, 10,000 Monte Carlo trials were performed, so the bound on the estimated
errors of simulated powers is 1%. The nominal significance level for all comparisons
was 5%. All Monte Carlo data were generated through the RNLNL subroutine in the
IMSL.

Simulation results are tabulated and put in the appendix. Entries in the table are
the simulated testing powers of the suggested lack-of-fit test F,,_and the classical test

F.. The null hypothesis is E (Y)=B,+X and the alternative is E (Y)=B0+X+BZX2- The
standard deviation used is c=1. The X values are -5 (1) 5 each being replicated three
- times. To perform the exact test F_, the covariate space was partitioned into, n; = 15
and n, = 18 for the first and the second portion respectively.

The exact test F_, is compared with the classical test F_ only, because the

classical test when exact replicates are present is accepted to be the most desirable test
in practice. The suggested lack-of-fit test turns out to be twice as powerful as the
classical test.

7.  SUMMARY

The exact test was introduced and its F-distribution was derived. This test is
applicable as showed under any circumstances, but can be deficient under certain
alternatives. The test relies on splitting the covariate space into portions, and so its
power depends on the portions chosen and their number. Simulation study was
performed in the case of exact replicates to compare the powers of the suggested test
with the classical lack-of-fit test. It was shown that the proposed test is more
powerful than the classical lack-of-fit test.

8. APPENDIX
8.1 Proofoflemnia

) 2
We use the result that if Z ~ N (u,6'1), then AZ and BZ are independent if and
only if A’B = 0. Henceforth, §, and S} are independent, for i=1,2. It is clear that

(B,,S7)and (B,,82)are independent since (,[},,S,.Z) depends on Y; only, i = 1,2 and
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Y, and Y, are independent. Thus, we conclude that ,é, , B, Stand S} are
independent. The lemma follows. ®

8.2 Proof of the theorem

Proof follows from the lemma @

8.3 Table
Ba Power of Fex Power of F,
0.00 0.051 . 0.049
0.01 0.066 0.054
0.02 0.123 0.073
0.03 0.221 0.109
0.04 0.359 0.167
0.05 0.531 0.252
0.06 0.699 0.369
0.07 0.834 0.509
0.08 0.922 0.647
0.09 0.969 0.764
0.10 0.989 0.864
0.11 0.997 0.929
0.12 0.999 0.967
0.13 1.000 0.986
0.14 1.000 0.995
0.15 1.000 0.998
0.16 1.000 0.999
0.17 1.000 1.000
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