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Summary

This research work is concerned with deriving a test statistic
for testing the null hypothesis that a complete random sample was
drawn from a uniform distribution with unknown parameters. Thev
derivation is based on some ideas used first by Shapiro & Wilk
(1965). In addition, this derived test has been compared in terms

of power with some other well known tests for uniformity.
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1 Introduction

In 1965, Shapiro & Wilk gave their test for normality. The
principles underlying the construction of their test statistic can
be applied to any distribution with location and scale parameters
such as exponential and uniform distributions.

Let X,, X,,...., X, represent a random sample of size n from a
continuous distribution, where the sample mean is X, and let this
sample be arranged in order of increasing magnitudes to get the
order statistics ¥,€Y,<.....<Y,. It is required here to investigate

the null hypothesis that this sample was drawn from a uniform
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distribution, U(A;,4,), where A; and A, can be either known or

unknown parameters.

2 Construction of the Test

It follows from section 1 that the probability density function

(p.d.f.) under consideration is

Lol by v hy) = Aisx<h, ¢ KA KA K

1
A,

It is of interest to reparameterise this equation by setting

Ai=p-y30 , A,=p+/30 ; -o(puc® , 030 .
Then the p.d.f. above becomes

, B-V/30sxsp+/30

Ly(x;p,0)=

It is easy of course to realize that p and ¢ are respectivels

? are the mean

location and scale parameters. In addition, p and o
and variance of X.

It is well known that Y, and Y, are jointly sufficient and
complete for p and o. It is possible to construct unbiased
estimators of p and o, or A, and A,, that are functions of the
complete sufficient statistics. These estimators are uniformly

minimum-variance unbiased estimators (UMVUE) . One can check that

’ﬁ=—$— (Y,+Y,)

and
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o= ntl - -Y,)
2y/3(n-1)

are indeed UMVUEs of p and o respectively.

Let S? be the usual estimator of (n-1)c® where

n
52=% 1x;,- X172

i=1

The comparison between S® and the estimator G can be applied to

test whether the ordered sample Y;,..... ,Y, was taken from a uniform

distribution. This follows the ideas of Shapiro & Wilk (1965,1972).
The proposed statistic for testing for uniformity is

sZ
Wk =g
(Y,-1,)

’

where k, depends only on n. This test statistic is location and
scale invariant. In addition, its distribution does not depend on
the parameters of the uniform distribution (Ferguson, 1967, pp.242-
247). Therefore, when the time comes to calculate the moments of W,
it is possible to assume that the uniform distribution is ‘U(0,1).
According to the fact that W as given above is distributed
independently of its denominator and using the mathematical
expectation of this denominator (Basu, 1955 and Lloyd, 1952), it

can be shown after some elementary algebra that

E(w) =i A031) (n+2)
izn

Thus the mean of W is equal to 1 if the numerical coefficient k, is
{12n/{n+1) (n+2)] . This choice is made for the following reason: if
the mean of W does not depend on n, then the tabulation of the
percentage points of the test should be made more easily and also

the interpolation in the table should be easier. Therefore, the
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final formula of W is

12nS?
() (n+2) (¥, -¥, )2

3 The Percentage Points and Bounds of W

The approximate percentage points‘of W can be obtained by
fitting Pearson Curves (Johnson et.al., 1963) wusing the
standardised third and fourth central moments of W. To get these
two moments, the derivation of E (W) haslto be explained first. It
has already been mentioned that Y, and Y, are jointly sufficient ani
complete statistics, and W is distributed independently of th=
parameters of the uniform distribution. Then, W is distributed
independently of Y, and Y, (Basu, 1955, .page 378). (Y,-Y,)? is a
function of Y, and Y,. Therefore, W is independent of (Y,-Y,)%. The
general formula of E(W®), where r=1,2,3,4,..., can be concluded as

follows

take W to the power r,

o 12n j S27
(n+1) (n+2) (- 1) F

multiply both sides by (Y,-Y,)?" to get

12n 1t

- 2r r_
(Yo W=l a2y

2
s,

then, the mathematical expectation of both sides is

12n )*

_ 2r N2 — =
E((Y,~1) " Wi =[Sy

E[s?*]

hence, because of the fact that W and (Y,-Y,)? are independent,
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EL(Y,-Y,)%) ElW%)=[—328 )7 E[s%]

(n+1) (n+2)
therefore,
£y = i2n b E(S5?%7)
B =y ey UEl(y,-v,)

Considering the fact that the sample range (Y,-Y;) has a beta
distribution (David, 1981, pp.11-13), it can be proved that E(W)=1.
The r-th central moment of W gbout its mean is p,=E{(W-1)7]. Then,
the standardised third and.fourth central moments B, and B, are

B.- B2 _ 40(2n3+n?+83n-296)2
: ¥

B> 49 (n-2) (2n%+n-13)3

p,- e _3(280°-36n'-4170n°-3160+119950-25450)
2,2 7(n-2) (2n%+n-13)2

B, and B, tend to have the values 0 and 3 respectively for large
sample sizes. Indeed it is reasonable to suppose that the limiting
distribution of W is normal with mean 1 and variance given only in
terms of n. Table 1 shows how quickly the convergence occurs. The
resulting non-standardised percentage points of W are given in
Table 2 for several sample sizes.

In regard to the lower and upper bounds of W, Pearson and

Table 1

The value convergence of B, and B, for several
sample sizes

n 10 30 50 100 200 500

B, 0.093 0.016 0.009 0.004 0.002 0.0008

B, 2.879 2.967 2.982 2:991 2.996 2.999
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Table 2
The approximate percentage points of W

Area
n 0.01 0.05 0.10 0.50 0.90 0.95 0.99
4 0.800 0.822 0.844 0.971 1.198 1.276 1.433
5 0.744 0.775 0.802 0.972 1.239 1.320 1.468
6 0.693 0.742 0.779 0.978 1.253 1.335 1.482
i/ 0.658 0.722 0.767 0.982 1.258 1.339 1.486
8 0.636 0.712 0.762 0.985 1.258 1.338 1.485
9 0.623 0.707 0.760 0.987 1.257 1.335 1.481
10 0.616 0.706 0.761 0.989 1.254 1.331 1.475
15 0.619 0.718 0.774 0.993 1.234 1.304 1.437
20 0.640 0.737 0.791 0.995 1.215 1.280 1.401
25 0.661 0.754 0.805 -0.996 1.200 1.259 1.371
30 0.681 0.769 0.817 0.997 1.187 1.242 1.346
40 0.712 0.792 0.836 0.998 1.167 1.216 1.308
S0 0.736 0.810 0.851 0.998 1.152 1.196 1.280
100 0.804 0.860 0.890 0.8999 1.111 1.143 1.204
150 0.837 0.884 0.909 0.999 1.092 1.118 1.168
200 0.858 0.899 0.921 1.000 1.080 1 1.146

.103

Stephens (1964) found that

= Y =¥
2| &=L e S0 1 2T

n SV
if n is even, and
Y
LI Mt N,y v |
n+l SV
if n is odd, where
n
[Xl" X ]2
Sy)y2=421
(sV) )

Using this result together with the formula of W, the bounds are

6n 3n?
(1) (n+2) - (n+1) (n+2)
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if n is even, and
6n 3(n-1)
(n+1) (n+2) s n+2

if n is odd.

4 The Distribution Function of W

The technique used here to derive t’?he exact dist.ribution
function of W under the null hypothesis of uniformity is similar to
those used by Currie (1978;1980) and Samanta (1985). The derivation.
of the distribution function takes advantage of the location and
scale invariance property of W and the possibility of assuming that
X-U(0,1).

By using the following set of variable transformations

G,=Y, , Gy=Y;~Y,, , i=2,....,n,
- a iGl :
U= G; ., UfT e i=2,....,0-1 ,
1=2 1
Zee——r _(1-U-....-U) , i=2,....,0-1,
VIl

the test statistic W and its distribution function can be given as

12 pe] ) .
W= 2 o " = o
) (a2 [—2 +n E Z.2) , where -e<z;<eo , i=2,...,n-1 .

n-1
= _ 1
F(w) =Pr (W<w) _(T——!Pr(gzizs"z)

2)

=F15)_! Joo e f Bl eor Byl Py vdzsg -

n-1

EZI»ZSVZ

1=2

Then, after performing several probability integral

! transformations, the resulting exact distribution function is given
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as follows:
Enn-z Vn-2
F(w): :___2—_11__—— i
I
( 2)
6n 8n
when (n+1) (n+2) sws (n+1) (n+2)
3
F(w) =0-y/2nll"? [ 21_"3 - o 5
r(ﬁz_ JEF(H—Z—)
8n on
when < may <" TarD) (n+2)
F(w)=1-R ,
- on 3n?
when n=4 . <oy WS Tnn) (ne2)
In addition,
2.
R=J/2h?v2-2h*- (—6"7—1)—+J§ vz[sin'l(g)
_Sin-l“—]- -E‘i ’2 ’

ho-V/6+/288 v-48

18

’

15:[ Jvi-r?2 4 dr , where n:24 ,

1
b=vi-= ,
6

p2on*l) (n+2) w_1
12 n 2
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After deriving the exact distribution function for some regions
of W, it is possible to obtain some exact percentage points using
the values in Table 2 together with the application of Newton-
Raphson method. Table 3 shows the exact percentage points for some
sample sizes. It is easy to notice the closeness between the values

in Tables 2 and 3.

Table 3
The exact percentage points of W
Area
n 0.01 0.05 0.10 0.50 0.90 0.95 0.99
4 0.804 0.818 0.836 0.980 1.189 1.289 1.769
5 0.733 0.769 0.802 0.970
6 0.687 0.741 0.782
7 0.657 0.724 0.769
8 0.639 0.714 0.761
9 0.627 0.707
10 0.620

5 The Power Comparison

Power comparison of several tests designed all to test for a
null distribution depend on sample size, alternative distributions,
and the existence and method of estimation of the unknown
parameters contained in the null distribution. In addition, tﬁe
modified veésions of some tests can play a role in power
improvement . Considering these points, the W test proposed in this
article was compared in terms of power with some other well known
powerful tests for uniformity. These known tests used here include
some modified EDF goodness-of-fit tests for uniformity when limits
are unknown. They were recommended by Green & Hegazy (1976).

Again, let Y,, Y,,..., Y, denote the ordered sample. Put
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Y;-a*® .
Xu)=b‘—a‘ y 2=1,...,00,

where a° and b’ are the best linear unbiased estimators (BLUE) of
the unknown parameters a and b respectively of the null U(a,b)

distribution. - These two BLUEs have respectively the following

formulas:
Y -Y.
a‘=Y,-—2-1 ,
n-1
brey + o N1,
7 n-1

The modified EDF tests used in this article are [see Durbin &
Knott (1972) and Green & Hegazy (1976)]:
1. Th2 Anderson-Darling test statistic:
n
A=—n-—j‘; Z (2i-1) [log X(1)+lOg (1-‘){(n-i»1)):| :

i=1
2. Tha Cramer-Von Mises test statistic:

n
. 21-1
W=y [X4-
=1

3. The Kolmogorov-Smirnov test statistic:

‘n

1
D. = IX(’)-— ’
1 = 1 n
n l"'%
D,= Z K T+l

According to the transformation from Y; to X, above, together with
the fact that the distributions of A, W', D,, and D, do not depend

on a and b under H,, there is no loss in generality by assuming

that a=0 and b=1.
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The power comparison here includes some non-EDF tests. According

x o .

to Schader & Schmid (1997), let X, =Y,/ (Y,-Y,), where i=1,...,n-2.
oL = . .

Define VR as VR=Y,/(Y,-Y,). Let Y,,,=X,-VR, where i=1,...,n-2, and

Yy Yiayr oY qy are jointly distributed as an ordered sample of

size (n-2) from U(0,1). Using this ordered sample, Hegazy & Green
(1975) proposed the following two test statistics for uniformity:
"i IY _d-1
(i) m-1

m

1=2
P Bl

’

and
n-1 .
1-172
S ...
1X=:2[ [F3] m_1]
=2 -
£ m

where m=n-2.

The power comparison performed here used a broad range of
possible alternative families of distributions. They were proposed
by Quesenberry & Miller (1977). These families are:

1. The J-shaped family of distributions, such as the exponential
distribution.

2. The Bell-shaped family of distributions, such as the normal
distribution.

3. The U-shaped family of distributions.

4. The V-shaped family of distributions.

To compare the power of the W test against the other tests
mentioned in this article, a Monte Carlo simulation study was done
in which 1000 samples were generated for the sample size n=5, 10,
20, 40, and 80. The significance level considered was 5 percent.

Random numbers following a U(0,1) were generated and then the
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alternative distributions were obtained by transforming the uniform
distribution to them. The W test has two téils, lbwer and upper.
Hence, it seemed better to consider its two tails separately in the
power study. The results, the proportions of 1000 Monte Carlo
samples declared significant, are given in Table 4. The numbers
given in this table become powers if they are just divided by 1000.
The most extreme case away from U(0,1) is reported here for every
family of alternative distributions.

Table 4 shows that 1in regard to the first family of
alternatives, the W test in its two tails is dominated by all the
other tests included in the table, in particular, D, and D, in the
case of small samples. For the second and third families, the W
test outperforms the other tests in its lower tail for all sample
sizes. For the fourth family, the W test seems to be more powerful
in its upper tail than the other tests especially for the small
sample sizes such as n=5, 10, and 20, -while for n=40 and 80 the
performance of the other tests is compafable to that of W;
According to Table 4, in the case of testing for uniforﬁity-with
unknown parameters and the availability of a complete sample, the
non-EDF tests such as W, T,, and T, seem to be more powerful than
the EDF tests. But it 1is worth it to mention that the most
comparable EDF test here is A.

Another point in favour of the W test statistic is that it can
be easily calculated compared to all the other tests considered
here. Its calculation does not depend on any parameters which have
to be estimated. As a conclusion, the W test represents a powerful

and easily calculated test for examining the composite hypothesis
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of uniformity for a wide class of alternative distributions.

Table 4

1000 x Power for testing H,: Uniform at the 5-percent level

H, n Wo.os Wo 55 A W D, D, T, T,

Family 1 5 8 106 479 450 565 565 386 408
10 10 101 921 889 934 932 876 869
20 - 213 75 999 939 999 998 996 997
40 376 27 1000 1000 1000 1000 1000 1000
80 595 10 1000 1000 1000 1000 1000 1000

Family 2 5 79 26 S1 49 51 S1 51 47
10 193 8 62 63 S5 52 75 81
20 562 1 144 154 128 114 178 185
40 921 0 523 495 427 360 537 548
80 1000 0 948 900 900 874 930 935

Family 3 5 94 28 50 49 55 55 56 51
10 181 10 73 71 66 62 81 82
20 543 2 147 169 138 120 180 192
40 910 0 498 470 423 352 523 523
80 1000 ] 955 926 918 895 942 945

Family 4 5 2 416 311 312 157 157 303 312
10 1 807 545 375 219 272 210 285
20 0 986 949 892 824 914 678 576
40 0 1000 1000 1000 1000 1000 1000 1000
80 0 1000 1000 1000 1000 1000 1000 1000
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