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 ABSTRACT  

 
Intelligent Traffic Control System (ITCS) is an integral part of modern transportation 

system, helping to maintain smooth and safe traffic flow while reducing pollution. In this 

paper, we propose an intelligent traffic control system for multi-intersection networks 

that aims to improve traffic control systems by adjusting signal light timings to reduce 

waiting times and considering vehicle types and priorities. The model combines 

Reinforcement Learning (RL) to obtain optimal control policies, Graph Convolutional 

Networks (GCN) to capture spatial dependencies, Long Short-Term Memory (LSTM) 

to capture temporal dependencies, and Genetic Algorithms (GA) to enhance the deep 

network weights quickly and escape local optima. The experiment evaluates the 

effectiveness of various RL-based models in traffic management by evaluating the 

impact of GA and prioritization on ITCS models. Models are trained/tested using 

synthetic traffic data generated with the SUMO tool on three different-sized networks: 

Manhattan, Suzhou, and Cairo, with various vehicle types. The results demonstrate the 

distinct improvements of the LSTM-GCN-GA model in reducing waiting times. When 

compared with traditional models such as the Pre-Time model as in the Manhattan 

network, it reduced the waiting time by up to 84.81% for all vehicles and by up to 

92.46% for priority vehicles. The genetic algorithm integration reduced the waiting time 

by up to 26.39% for all vehicles and by up to 80.21% for priority vehicles. Adding vehicle 

priority reduced the waiting time by up to 33.1% for all vehicles and by up to 83.82% 

for priority vehicles. Applying this model in real-world applications can enhance neural 

network efficiency, which optimize traffic flow, reduce congestion, and improve road 

safety. 
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 الملخص

 وأمان،   بسلاسة  المرور  حركة  تدفق  على  الحفاظ  في  يساهم  حيث  الحديث،   النقل   نظام  من   يتجزأ  لا  جزء  هو(  ITCS)   المرور  حركة  في  الذكي  التحكم  نظام

 حركة  في  التحكم  أنظمة  تحسين  إلى  يهدف  التقاطعات  متعددة  لشبكات  المرور  حركة  في  للتحكم  ذكياً  مركزياً  نظامًا  نقترح   الورقة،   هذه  في.  التلوث  تقليل  مع

 المعزز   التعليم   بين  النموذج  يجمع.  المختلفة  وأولوياتها   المركبات  أنواع  مراعاة  مع  الانتظار  أوقات   لتقليل  المرور  إشارات  توقيتات  ضبط  خلال  من  المرور

(RL  )البيانية  التلافيف  وشبكات  المثلى،   التحكم  سياسات  على  للحصول  (GCN  )المدى  والقصيرة  الطويلة  والذاكرة  المكانية،   التبعيات  لالتقاط  (LSTM )

 التجربة  تصميم  تم(.  Local Optima)  المحلي  الأمثل  وتجنب  بسرعة  العميقة  الشبكة  أوزان  لتعزيز(  GA)  الجينية  والخوارزميات   الزمنية،   التبعيات  لالتقاط

  تم   اصطناعية  المرور  حركة  بيانات  باستخدام  النماذج  اختبار  /تدريب  تم.  المختلفة   النماذج  على  الأولوية  وإعطاء  الجينية  الخوارزمية  تأثير  فعالية  لتقييم

  شبكات  ثلاث  على  مختلفة  مغادرة  وفترات  بأوقات  توليدها   تم  المركبات  من  مختلفة  أنواع  تشمل(  SUMO)  الحضري  التنقل  محاكاة  أداة  بواسطة  إنشاؤها

 نموذج   بالمقارنة.  الانتظار  أوقات  تقليل  في  LSTM-GCN-GA  لنموذج  ملحوظة  تحسينات  النتيجة  أظهرت.  والقاهرة  وسوتشو  مانهاتن:  الحجم  مختلفة

LSTM-GCN-GA  لجميع  %84.81  إلى  تصل  بنسبة  الانتظار  وقت  من  قلل  فقد  مانهاتن،   شبكة  ففي  الثابت  الوقت  نموذج  مثل  التقليدية  التحكم   نماذج  مع  

 لجميع   %26.39  إلى  تصل  بنسبة  الانتظار  وقت  تقليل  إلى  الجينية  الخوارزمية  اضافة  أدى  وقد.  الأولوية  ذات  للمركبات  %92.46  إلى  تصل  وبنسبة  المركبات

  % 33.1  إلى  تصل  بنسبة  الانتظار  وقت   تقليل   إلى  بالاعتبار  المركبات  أولوية  إخذ  أدى  كما.  الأولوية  ذات  للمركبات  %80.21  إلى  تصل  وبنسبة  المركبات

  الشبكة   كفاءة  يعزز  أن  يمكن  الحقيقي  العالم  في  تطبيقات  في  النموذج  هذا  تطبيق  إن.  الأولوية  ذات  للمركبات  %83.82  إلى  تصل  وبنسبة  المركبات  لجميع

 .   الطرق سلامة وتحسين  الازدحام،  وتقليل المرور،  حركة تدفق تحسين إلى يؤدي مما العصبية، 

 .مرور تحكم نظام الجينية،  الخوارزمية ، LSTM ، GCN متعددة،  تقاطعات  والمكانية،  الزمانية التبعيات المركبات،  أولويةالكلمات المفتاحية : 

 

1. INTRODUCTION 

Traffic congestion is a critical problem for the large and developing cities worldwide. With 
economic growth and rapid urbanization, traffic congestion levels have increased, leading to 
negative impacts on city growth, development, and the environment. Moreover, longer travel times, 
increased risk of road accidents, and high fuel consumption. 

Traditionally, efforts to reduce congestion have focused on expanding transportation 
infrastructure such as adding lanes and extending road construction. However, this strategy is not 
only costly but might also prove inefficient within vast road networks. Therefore, there is a need to 
develop intelligent traffic control systems that can be implemented on existing road networks to 
reduce congestion more efficiently. The Intelligent Traffic Control System (ITCS) includes many 
systems, such as Incident Management [1], Traffic Flow Prediction [2-3], and Traffic Signals 
Control [4]. 

In this paper, we focus on a traffic control system to adjust signal light timings. The traffic 
signal control system's main aim is to reduce traffic congestion and its impacts by optimizing traffic 
signal parameters, including: Phase Sequence arranges signal phases in the cycle, Green duration 
(or signal timing/split control) sets the seconds for a specific traffic movement, Cycle Length 
determines the time for a signal's single cycle, and Offset coordinates nearby intersections [4-5]. 

Signal timing control approaches are classified into three categories: Pre-time (fixed-time), 
actuated, and adaptive. This classification is mainly based on the data type and algorithms utilized 
to enhance traffic signal planning. Pre-time relies on fixed green splits determined by historical 
traffic demand, lacking real-time adjustment and effective control. Actuated uses sensors like 
induction loops and cameras to detect requests for green time, with the controller adapting cycle 
length based on historical data and extending green time for detected vehicles up to the maximum 
predefined green time. Adaptive approaches also use sensors but dynamically optimize signal 
timing with real-time traffic data [4-6]. 

In recent years, increasing the traffic volume on the roads has led to a rise in traffic 
congestion, delays, and accidents. These problems have not only inconvenienced commuters but 
have also increased economic losses. In response to these issues, Intelligent Traffic Control 
Systems (ITCSs) have been developed and designed to resolve these challenges. They aim to 
enhance the efficiency and safety of traffic flow at intersections. 

Many techniques have been used to optimize traffic control, such as the adaptive linear-
quadratic regulator (LQR) [4], the scheduling algorithm [7], fuzzy logic [8-10], and IoT [11-14]. 
Among these techniques, reinforcement learning (RL) [15-18], RL with graph convolutional neural 
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networks (GCN) [19-21], RL with recurrent neural networks (RNN) [22-23], GCN with RNN [2, 
24-25], and genetic algorithms (GA) [26] have demonstrated the possible to enhance and optimize 
traffic control systems. 

Many research studies focus on managing traffic flow at individual intersections and rely 
only on lane density, neglecting the impact of neighboring roads, as in [8-9]. In urban areas, the 
network is more complex, and designing an effective ITCS is a challenging task, requiring 
consideration of various factors such as the number and density of intersections, road 
configurations, and pedestrian movements. Furthermore, the ITCS should be scalable, adaptable, 
and capable of managing dynamic and uncertain traffic conditions. Therefore, researchers have 
been developing new algorithms and models to enable ITCSs to optimize traffic flow, reduce 
congestion, minimize delays, and improve multiple intersections safety, as in [19-20]. 

These studies have demonstrated that the proposed approaches are effective in real-world 
traffic scenarios, resulting in significant improvements in traffic prediction and flow. However, 
several challenges remain to be resolved. These challenges include enhancing model efficiency to 
facilitate the learning process and developing more efficient training algorithms for managing 
traffic lights with diverse vehicle types across the network. 

This paper handles the inefficiencies of current multi-intersection traffic control systems, 
such as high waiting times and traffic flow issues, which do not considering traffic density and 
vehicle types. The objective is to develop an intelligent traffic control system that optimizes signal 
timing by integrating traffic density and vehicle types, taking into account the complex spatio-
temporal dynamics dependencies in networks. 

Here are some of the key contributions of this paper: 

• Propose an intelligent traffic control system based on RL integrating GCN, LSTM, and GA. 

• Demonstrating the effectiveness of integrating RL, GCN, LSTM, and GA for enhancing 
traffic control systems. 

• Evaluating the proposed approach in simulated traffic networks, demonstrating a significant 
reduction in congestion compared to alternatives, while considering various vehicle types. 

• Executing experiments on three diverse networks with varying intersection and road 
topologies, specifically Suzhou, Manhattan, and Cairo. 

 

2. METHODOLOGY AND DESIGN 

2.1. Intelligente Traffic Control (ITC) 

This paper focuses on an intelligent control method for managing traffic in a multi-intersection 
network, as illustrated in Fig. 1. The model collects traffic data from the roads within the network 
into a centralized unit. Then it processes this data and transmits the appropriate phase for each 
traffic light at the intersection, as illustrated in Fig. 2, which shows the ITC model input and output. 
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Fig. 1: Intelligent Traffic Control Model 

 

Fig. 2: Input and Output of Intelligent Traffic Control Model 

2.2. ITC Model Design 

The intelligent traffic control model architecture, illustrated in Fig. 3, includes three primary 
components: Deep Reinforcement Learning, Graph Convolution Long Short-Term Memory 
Network, and Genetic Algorithm. These approaches are utilized to train the model to observe and 
provide optimized traffic phases. 

 

Fig. 3: Intelligent Traffic Control Architecture 
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2.2.1. Reinforcement Learning  

Reinforcement Learning (RL) is a branch of machine learning that is based on a Markov Decision 
Process (MDP), which is defined by a (S; A; P; R; γ) tuple, where S is a set of discrete states in the 
environment, A is a set of actions that the agent can act, P is the state transition probability matrix, 
R denotes the reward function, and γ∈[0,1] is a discount factor that is used to balance the 
importance of immediate and future rewards. The RL agent learns by interacting with the 
environment through a trial-and-error process, by using its own actions and experiences as 
feedback. This feedback can be positive or negative, as rewards or punishments, and its main 
objective is maximizing the reward function. RL is used in traffic control systems to interact with 
non-structured environments, improve responsiveness to unexpected events, continuously improve, 
and learn from experience. 

The proposed model can control large-scale traffic intersections through a central agent. 
The agent obtains real-time traffic state observations through road sensors as GPS [10], video 
image processors [12], wireless [13], Google Traffic Map [14], ultrasonic sensors [18], or inductive 
loops [19]. In this study, statistical data generated by a simulation program was used for data 
collection. The agent then estimates the best reward based on the appropriate actions taken. The 
state space S, action space A, and reward R are defined as follows : 

The state space S consists of the essential information required for traffic signal control, 
including the current signal, number, type, and waiting time of vehicles on all lanes entering the 
intersection. Equation 1 demonstrates the state space of the model. 

𝑠𝑡𝑎𝑡𝑒(𝑡) = {((𝑣,  𝑤𝑡 ∗  𝑝)1, … , (… )𝑙,  𝑇𝐿𝑐𝑢𝑟𝑟𝑒𝑛𝑡)1
, … ,  (… )𝑛} Eq. (1) 

Where l is the total number of lanes at the n intersections in the network, v is the total 
number of vehicles in each lane i at time t, wt is the average waiting time at lane i, and p is the 
priority of the vehicle based on its type. For instance, in a network consisting of 12 intersections, 
the state space S represented as a vector of size 12×21, where each row corresponds to an 
intersection and each column corresponds to the vector of the total vehicles, the average wait time, 
and the current traffic light signal at each lane of the intersection. 

The action space A consists of different phases that the agent can act after observing the 
intersection's state at time t. For instance, a four-phase traffic light controller has an action space 
with four different phases represented by numbers from 0 to 3, as shown in Fig. 4. The different 
phases allow for various traffic flows to pass the intersection without collisions. 

 

Fig. 4: An Example of Traffic Lights Actions 

As in [19], we enable control of all intersections with a unified decoder-to-decoder action 
structure. An action probability matrix with dimensions m×n is used, where n represents the 
number of intersections and m represents the number of phases of each signal. This matrix satisfies 
∀a ∈ A and is multiplied by a mask matrix to ensure correct control of each signal, even when 
different traffic lights have different phase numbers. 

The reward R is determined by evaluating the agent’s action after observing the state at time 
t. It is defined as the reduction in the average waiting time Rwt calculated using Equation 2, and the 
average emergency waiting time Rwt_em calculated using Equation 3. 
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𝑅𝑤𝑡 =  ∑ 𝑎𝑣𝑔_𝑊𝑇(𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑖
𝑡−1) −  ∑ 𝑎𝑣𝑔_𝑊𝑇(𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑗

𝑡) 

𝑗𝑖

 Eq. (2) 

𝑅𝑤𝑡_𝑒𝑚 = ∑ 𝑎𝑣𝑔_𝑊𝑇𝑒𝑚(𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑖
𝑡−1) − ∑ 𝑎𝑣𝑔_𝑊𝑇𝑒𝑚(𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑗

𝑡) 

𝑗𝑖

 Eq. (3) 

Intuitively, if the agent performs a “correct” action, the total accumulative average waiting 
time from the last step will be reduced, that is a large Rwt reward. On the other hand, if the action 
is “not correct”, a small Rwt reward will be returned. Similarly, for the total accumulative average 
emergency waiting time Rwt_em. The total reward is calculated using Equation 4: 

𝑅𝑡 =  𝑅𝑤𝑡 +  𝑅𝑤𝑡_𝑒𝑚  Eq. (4) 

We have chosen Double Deep Q-Networks (DDQN) as our RL algorithm for optimization. 
To improve training efficiency and stability, we used techniques such as experience replay, target 
networks, and genetic algorithms. Mathematically, the DDQN was calculated using Equation 5: 

𝑄(𝑠, 𝑎, 𝜃́) = 𝑄(𝑠, 𝑎, 𝜃) +  𝛽[𝑟𝑡 +  𝛾 max 𝑄(𝑠́, 𝑎,́ ∅) − 𝑄(𝑠, 𝑎, 𝜃)] Eq. (5) 

Where θ, ́θ and ∅ denote different learnable weights, while β represents the learning rate. 
The term rt denotes the instant reward at time t, and Q (·) represents Q networks. 

The loss function L is defined as the mean square error. Using Equation 6, we calculated 
the loss function: 

𝐿(𝜃) = ((𝑟𝑡 + 𝛾 max 𝑄(𝑠́, 𝑎,́ ∅𝑡𝑎𝑟𝑔𝑒𝑡)) − (𝑄(𝑠, 𝑎, 𝜃𝑝𝑟𝑒𝑑)))
2

 Eq. (6) 

 

2.2.2. Edge Weight Graph Convolution Long Short-Term Memory Network (EW- LSTM 

GCN): 

Capturing both spatial and temporal features is essential for optimizing traffic. Since the spatial 
relations between intersections form a non-Euclidean graph, traditional approaches may not be 
sufficient. Graph Neural Networks (GNNs) provide a more generic framework to encode these 
topology node relations. Therefore, we apply edge-weighted GNNs to integrate spatial and distance 
information, capture cross-intersection relations, and traffic flow patterns. While LSTM is applied 
to capture the temporal dependencies of traffic data, such as the relationship between traffic flow 
at different time intervals. To capture both the spatial and temporal dependencies simultaneously, 
we utilize a combination of GCN and LSTM networks as in [2]. 

The proposed model consists of three GCN layers, followed by an LSTM layer. In the initial 
phase, the input data series are used as the network states, while the GCN is utilized to capture the 
topological structure of the urban road network, that enabling the extraction of spatial features. In 
the second phase, the LSTM is provided with the time series enhanced with spatial features, which 
facilitates the information exchange between the units to capture the temporal features, and 
subsequently determine the appropriate action. To prevent the risk of overfitting of neural networks, 
dropout layers are applied after each GCN layer. 

For layer-wise representations, the functioning of Graph Convolutional Networks in the 

multi-intersections traffic optimization problem is shown as follows: 

𝐹(𝑙+1) = 𝑓(𝐹(𝑙), 𝐴), 𝑙 ≥ 1 Eq. (7) 

where F(l) denotes the feature map of layer l, which corresponds to an N × F(l) feature matrix. 
Each row of this matrix represents a feature representation of a node, N number of intersections, 
and A represents the adjacent matrix of all junctions. As illustrated in Fig. 5, the network structure 
takes the current layer's features and adjacent matrix as input and produces the features of the next 
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layer, then the spatial features of GCN feed into the LSTM to capture the temporal features and 
determine the appropriate action. The initial input of the network is denoted by X, where F(0)= X.  

Additionally, we implemented an edge-weighted graph convolutional encoder, following 
the approach in [19], which assigns specific weights to edges based on the lane length.  

 

Fig. 5: GCN and LSTM Network Architecture for Traffic Control 

The cells in LSTM are responsible for storing information from GCN output, which is then 
transmitted to an LSTM layer. The gates regulate the memory. The LSTM has three gates: the 
Forget Gate, which is responsible for discarding irrelevant data from the cell block, the Input Gate, 
which is responsible for determining which new information from the input should be stored in the 
cell state, and the Output Gate, which is responsible for determining which information to transmit 
from the cell state to the next hidden state in traffic control. The Output Gate also determines which 
information is no longer relevant and should be discarded, such as information on vehicles that 
have already passed through the intersection. 

2.2.3. Genetic Algorithm 

Genetic Algorithm (GA) is an adaptive heuristic search algorithm and a type of evolutionary 
algorithm (EA). It operates on the concept of passing the weights of two good neural networks, 
would be a better neural network. Based upon on the natural selection's ideas and genetics that keep 
the fittest. In such as this process keeps the strongest weights while the weakest are eliminated. GA 
is used in optimization and search problems to generate high-quality solutions. Utilizing GA for 
optimizing neural network weights offers several benefits: GA explores a broad solution space 
simultaneously, possibly discovering the best weight configurations. Its population-based approach, 
using crossover and mutation helps escape local optima. 

We have integrated the GA into our traffic control model to accelerate the search for optimal 
phases and reduce overall waiting time in the network, as illustrated in Fig. 6. The model 
automatically uses GA when the total waiting time exceeds a predefined threshold. This constraint 
on GA utilization accelerates the network's training process, as GA demands a large amount of time. 
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Fig. 6: Genetic Algorithm for LSTM-GCN Network’s Weights Enhancement 

In genetic algorithms, the initial population of possible solutions is referred to generation 0, 
and subsequent populations are denoted as generation 1, generation 2, and so on. The process of 
generating new generations continues until a specific condition is met, such as the maximum 
number of generations. The process to generate a new generation involves several stages. The 
different stages are: 

Initialization: The GA process begins with generating a group of individuals called 
population, each represented by a vector of weights called a chromosome. In Generation 0, the first 
chromosome takes the weights from the online network of DDQN, and the rest generated randomly. 
From Generation 1 until Generation i, the individuals are taken from old parents and new children. 
These individuals are characterized by a group of parameters known as Genes. 

Fitness: The individuals are evaluated using a fitness function that provides a fitness score. 
Individuals with higher fitness scores have a better chance of being selected for reproduction . 

Selection: Individuals with the best fitness score are chosen for reproduction to enhance 
the weights of a deep neural network, then replaced the individuals with their offspring . 

Reproduction: This phase involves creating offspring using two functions: 

Crossover: create new weights to improve the network's performance by exchanging the 
weights of the two individuals at a random point. 

Mutation: introduces random genes into the offspring (new children) to maintain population 
diversity by flipping bits in the chromosome to produce new offspring. This helps to resolve early 
convergence and enhance variety. 

  The objective of RL is to develop models that can navigate complex environments 
effectively, and make decisions based on learned knowledge, that enabling the agent to perform 
optimally. In this learning process, the loss as a metric to evaluate how well the model approximates 
the optimal values or actions. As illustrated in Fig. 6, when using GA to enhance the weights of a 
neural network, the vector of weights of the best solution obtained from GA that has best fitness, 
will used to update the weights of the online network. This update occurs only if only the loss 
between the GA model and the target network is lower than the loss of the online network of DDQN 
and the target network. This means that the GA model performs better in learning and predicting 
the optimal values or actions compared to the online network of DDQN. 

 



Intelligent Traffic Signal Control Using Spatio-Temporal Data and Reinforcement Learning 

             519    JAUES, 20, 75, 2025 

3. EXPERIMENTS 

This section presents the evaluation of integrating RL with various deep network models, including 
GCN and LSTM-GCN. It explores the impact of GA on deep networks learning, and the effect of 
considering vehicle priority at traffic control systems design. This evaluation is a critical measure 
in evaluating the model's performance and effectiveness. 

3.1. Simulaton Settings 

Simulating realistic traffic flows is critical for the optimal traffic reduction, especially during major 
events or in public areas like airports, schools, and hospitals. Additionally, simulating the impact 
of vehicles and intelligent transportation technologies is better for understanding their capability in 
reducing traffic flows. The Simulation of Urban Mobility (SUMO) platform, is designed for 
modeling and managing traffic flows in large microscopic networks. We utilize the SUMO platform 
to simulate three different types of networks: Suzhou with 12 intersections, Manhattan with 22 
intersections, and Cairo with 57 intersections. Fig. 7 shows the netwoks structures. Synthetic traffic 
data is applied during the simulation process for all networks. 

 

Fig. 7: Experiment Networks Structures 

3.2. Software Tools and Environment 

In our experiment, we used the Python programming language and various Python libraries, 
including torch and pygad.torchga. Google Colab, was used for machine learning training. The 
central control agent interacted with the traffic environment using the TraCI package of SUMO. 

The proposed model and other competing models are trained for 500 epochs and tested for 
20 epochs. Each epoch comprising 1000 simulation steps executed at a rate of 10 steps per second 
(the total time is approximately 10000 seconds). For all RL-based approaches, the buffer size of 
experience replay is 2000, the batch size is between 50 and150, and the target network weights are 
updated every 100 steps. The learning rate is 0.0001, the discount factor γ is set to 0.9. The 
exploration rate of the agent starts from 0.5 and gradually decreases at each learning step until it 
reaches 0.01. In the GCN models, there are 2 hidden layers with 128 neurons in Layer 1 and 64 
neurons in Layer 2. The LSTM-GCN models include 3 hidden layers: Layer 0 with 256 neurons, 
Layer 1 with 128 neurons, and Layer 2 with 64 neurons. A dropout of 0.3 is applied after each layer, 
and ReLU is employed as the activation function. For the GA models, the total number of 
generations is set to 100, with 5 parents. GA is employed when the wait cost exceeds 50 thousand 
seconds. The agent acts action every a second, and every 20 seconds the wait time is calculated. 

During the training/testing process, three distinct types of networks were used: Suzhou, Manhattan, 
and Cairo. For each network, vehicles with different priorities were generated with varying 
departure times and periods, Table 1 shows the vehicle details during the training/testing process. 
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Table 1: Priority and Probability of Vehicle Types in Simulation 

Vehicle Type Priority Generating a Vehicle Probability at Each Time Step 

Training Test-1 Test-2 Test-3 

Normal 1 0.8 0.4 0.7 1.0 

Emergency 10 30.0 20.0 25.0 30.0 

VIP 7 - 30.0 35.0 40.0 

 

3.3. The Evaluation Methodology 

The proposed traffic optimization model uses the average wait time cost of each vehicle type at 
each traffic light as the evaluation metrics to measure various algorithms. When a suitable action 
is executed, the average waiting time cost at time step t will decrease, leading to a reduced wait 
time at intersection. Conversely, the model will receive a higher average waiting time cost if an 
unsuitable action is executed. Reducing wait-time cost means effective model learning. 

 

3.4. Performance Evaluation 

In our experiment, we conducted the performance evaluations of RL with various deep network 
models. We evaluated the impact of the GA and the vehicle type on RL model. Then we compared 
the performance of the LSTM-GCN-GA with priority model to the LSTM-GCN with priority, the 
LSTM-GCN-GA without priority, the GCN-GA with priority, and Pre-Time models. 

 

3.4.1. Genetic Algorithm (GA) 

The integration of GA with RL models achieved significant reductions in the average waiting time. 
For example, in the Manhattan network as shown in Fig. 8, the GA models reduced the average 
wait time of vehicles by 65.29% for the GCN model, and by 23.72% for the LSTM-GCN model, 
as shown in Fig. 8A. Additionally, as shown in Fig. 8B the GA models reduced the average 
emergency wait time by 13.36% for the GCN model, and by 80.21% for the LSTM-GCN model.  

  

Fig. 8: RL with GA Models Average Wait Time in Manhattan Network: (A) All Vehicles; (B) Emergency 

Vehicles 

3.4.2. Vehicle Priority 

Taking the priority of the vehicle into account achieved significant reductions in the average 
waiting time. For example, in the Manhattan network as shown in Fig. 9, the models with priorities 
reduced the average wait time of vehicles by 64.85% for the GCN model, and by 21.07% for the 
LSTM-GCN model as shown in Fig. 9A. Additionally, as shown in Fig. 9B the models with 
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priorities reduced the average emergency wait time by 22.28% for the GCN model, and by 83.82% 
for the LSTM-GCN model. 

  

Fig. 9: RL models with/without Priority Average Wait Time in Manhattan Network: (A) All Vehicles; (B) 

Emergency Vehicles 

3.4.2. The Testing 

During the testing process which was performed on three distinct types of networks: Suzhou, 
Manhattan, and Cairo. For each network, the vehicles were generated with three varying departure 
times and periods: Test-1, Test 2, and Test-3. In Test-1, the test was implemented with heavy traffic; 
in Test-2, with moderate traffic; and in Test-3, with light traffic. The evaluation compares the 
performance of the LSTM-GCN-GA with priority model to the LSTM-GCN with priority, the 
LSTM-GCN-GA without priority, the GCN-GA with priority, and Pre-Time models. 

Table 2 shows the testing results of the LSTM-GCN-GA model enhancement percentages 
compared to the different models. The results of Test-1 in Suzhou, Manhattan, and Cairo networks 
are shown in Fig. 10, Fig. 11, and Fig. 12, respectively.  While Fig. 13 , Fig. 14, and  Fig. 15 are 
the results of Test-2 in Suzhou, Manhattan, and Cairo networks, respectively.  And   

Fig. 16 ,  

 

 

 

 

 

 

 

 

Fig. 17, and Fig. 18 are shown the results of Test-3 in Suzhou, Manhattan, and Cairo networks, 
respectively. 

The experiment results showed that the LSTM-GCN-GA model significantly reduced 
waiting times compared to the Pre-Time model in various scenarios in the mid-sized network such 
as Manhattan. The model also showed pretty effectiveness in both smaller and larger networks, like 
Suzhou and Cairo, respectively. When comparing the LSTM-GCN-GA model to the LSTM-GCN 
and LSTM-GCN-GA-NO-PRIORITY models, the LSTM-GCN-GA model achieved significant 
reductions in average waiting times in various scenarios in the mid-sized network, such as 
Manhattan, and limited effectiveness in smaller and larger networks, such as Suzhou and Cairo, 
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respectively. On the other hand, the GCN-GA model achieved pretty reductions in average waiting 
times in the mid-sized network as Manhattan under light traffic conditions and slight reductions in 
larger networks like Cairo under moderate traffic conditions. However, in the other scenarios, the 
LSTM-GCN-GA model proved more effective with slight reductions compared to the GCN-GA 
model. 

Table 2: The Testing Results of The Enhancement of the LSTM-GCN-GA Model Compared to Different 

Models in Suzhou, Manhattan, and Cairo Networks.  (-Reduce, + Increase) % 

Model Suzhou Manhattan Cairo 

Test-1 Test-2 Test-3 Test-1 Test-2 Test-3 Test-1 Test-2 Test-3 

Pre-Time - 28.84 - 29.71 - 30.28 - 46.14 - 80.86 - 84.81 - 30.28 - 33.24 - 37.0 

GCN-GA - 3.52 - 1.65 - 4.34 - 13.72 - 17.21 +23.95 - 2.35 + 1.41 - 0.93 

LSTM-GCN - 2.33 - 2.25 - 3.56 - 18.17 - 26.39 - 23.72 - 3.58 - 2.2 - 5.35 

LSTM-GCN-GA-

NO-PRIORITY 

- 3.45 - 1.96 - 8.16 - 33.1 - 27.32 - 21.07 - 2.4 - 1.76 - 7.7 

Fig. 10: Test-1 Average Waiting Time in Suzhou Network 
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Fig. 11: Test-1 Average Waiting Time in Manhattan Network 

 

Fig. 12: Test-1 Average Waiting Time in Cairo Network 

Fig. 13: Test-2 Average Waiting Time in Suzhou Network 
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Fig. 14: Test-2 Average Waiting Time in Manhattan Network 

 

 

Fig. 15: Test-2 Average Waiting Time in Cairo Network 
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Fig. 16: Test-3 Average Waiting Time in Suzhou Network 

 

 

 

 

 

 

 

 

Fig. 17: Test-3 Average Waiting Time in Manhattan Network 

 

Fig. 18: Test-3 Average Waiting Time in Cairo Network 

CONCLUSION AND FUTURE WORK 
This paper aimed to develop an intelligent traffic control system to optimize traffic lights, and 
minimize waiting times, while considering the vehicle type priority, and maximizing their passage 
through the network, and avoid collisions. The model combines RL, GCN, LSTM, and GA . 

The experiment results showed the effectiveness of the LSTM-GCN-GA with priority 
model significantly reducing waiting times in various scenarios and enhancing overall 
transportation efficiency . 

In the future,  we will focus on deploying the LSTM-GCN-GA algorithm in real-time 
scenarios, considering factors such as weather and accidents, applying it in large and complex 
intersections, and integrating the autonomous vehicles into the network. Additionally, the model 
may be expanded to detect accidents and suggest the best pathways. 
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