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ABSTRACT 

    The aim of this study is to highlight how specific parameters, especially nonlinear feedback 

control, can enhance system stability and optimize vibration control. Our findings contribute to 

the ongoing development of advanced strategies for managing vibrations in nonlinear dynamic 

systems. In this research paper, we investigate the reduction of vibrations in a hybrid Rayleigh-

van der Pol-Duffing oscillator using negative cubic velocity feedback control. This system is 

modeled as a single-degree-of-freedom oscillator that incorporates both cubic and fifth-order 

nonlinear terms, along with an externally applied force. To derive a solution from the initial 

approximation, the multiple scales method was utilized, providing an effective analytical approach 

for examining the nonlinear behavior of the system. We conducted a comprehensive analysis both 

graphically and numerically, examining the system’s behavior before and after implementing 

negative cubic velocity feedback, with a particular focus on the primary resonance condition

( ) = . MATLAB was used as the main computational tool to explore the effects of different 

parameters, including the impact of negative cubic velocity feedback on the primary system’s 

response.  
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1. Introduction 

           Many applications in engineering and physical sciences, the Duffing oscillator is one of 

most important models. It is utilized in optical stability, plasma oscillations, electric circuits, and 

buckling beams, as demonstrated by Siewe et al.(2006) and Trueba et al.(2003). Huang (2018) The 

Van der Pol oscillator's vibrations were suppressed using a nonlinear time-delayed feedback 

controller, and the impact of the feedback gain at the bifurcation point was evaluated. Amer et al. 

(2022) the vibration analysis and dynamic responses of a hybrid Rayleigh -Van der Pol- Duffing 

oscillator were studied using a proportional-derivative (PD) controller. The average method was 

employed to obtain the approximate solution of the vibrating system. Barron (2016) provided a 

numerical explanation for the behavior of a ring of coupled Van der Pol oscillators' stable and 

unstable responses. Barron showed that the Van der Pol oscillator's amplitude rises when the 

stability requirements are not satisfied. Comprehensive bifurcation investigations of the Van der 

Pol, Duffing, and Rayleigh oscillators were carried out by Kumar et al. (2016, 2017, and 2018), 

revealing and clarifying their modulating. Amer et al. (2020) two separate time delays, one for 

displacement and the other for velocity, were used to control the oscillator's vibrations. It was 

discovered that the vibrations were reduced by nearly 94% compared to their value without control, 

and the effectiveness of the time delay controller was approximately 17. Kandil et al. (2022) 

applied negative cubic velocity feedback control to manage, reduce, or stabilize a coupled pitch-

roll ship model. Kamel (2009) studied multi-force stimulated coupled Van der Pol oscillators. He 

examined the stability of this system at two notable resonances using frequency response 

equations. Sayed et al.(2018) modulated the harmonic and parametric force-induced vibrations of 

the Van der Pol oscillator by means of negative acceleration feedback control. This simplified 

example demonstrates the basic steps of the Method of Multiple Scales. In the actual research 

(Amer et al., 2024), the system and the analysis would be more complex, involving multiple 

degrees of freedom, forcing terms, and potentially additional scales. 

       A tuned damper, or passive control, was used by Wang et al. (2018) to lessen the Van der Pol 

oscillator's vibrations. Through time-delay analysis, EL-Sayed (2020) demonstrated the 

effectiveness of positive position feedback (PPF) controllers with time delays in reducing 

vibrations in linked Van der Pol oscillators. Amer et al.(2020) investigated the stability of a one-

degree-of-freedom Van der Pol-Duffing-Rayleigh oscillator with cubic nonlinear terms and an 

external force, incorporating a nonlinear integral positive position feedback controller. In order to 
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reduce vibrations in a vertical conveyor system, Hamed et al.(2020) used a nonlinear proportional-

derivative controller (NPD). The amplitudes of two modes were reduced by roughly 95.33% and 

82.45% when compared to their values prior to the use of NPD control. Amer et al. (2020) 

investigated the numerical and stability aspects of a hybrid Rayleigh-Van der Pol-Duffing 

oscillator controlled by Nonlinear Integral Positive Position Feedback (NIPPF). When Sadeghi et 

al. (2021) investigated the optimization of particle swarms (PSO), they found that adding more 

terms to the selected trial functions could reduce inaccuracy even more. In this paper, we use 

negative cubic velocity feedback control to suppress the vibrations of a hybrid Rayleigh-Van der 

Pol-Duffing oscillator excited by external forces. We solve for the one approximation of hybrid 

Rayleigh-Van der Pol-Duffing oscillator using the multiple scales method. We numerically 

modelled the behavior of the system both with and without negative cubic velocity feedback 

control. We used the MATLAB program to model the effects of different parameters and the 

negative cubic velocity on the main beam. Analytical and numerical examples are used to illustrate 

the effects of some selected coefficients. The convergence of the numerical and analytical 

solutions is proposed. 

Table 1. List of symbols. 

𝒖̈, 𝒖̇, 𝒖 
Acceleration, velocity, and displacement of the main system respectively. 

𝝎 
The natural frequency of the main system. 

Ω 
The excitation frequency 

𝝁 
The damping coefficients of the main system. 

𝜼, 𝜷, 𝜹, 𝜽, 𝒌, 𝝀 
Nonlinear coefficients of the main system. 

𝑭 
External excitation force is the amplitude-frequency of the external force. 

𝐆 
The gain of control signal. 

𝜺 
Small perturbation parameter. 

 

2. Mathematical modelling 

     A hybrid Rayleigh-Van der Pol-Duffing oscillator's one degree of freedom Nayfeh (1973): 

( )2 2 3 2 2 2 3 5 22 2 0u u u uu u u u ku u u


       


 
− − − − − + + + = 

 
.                                      (1) 
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To suppress the vibrations of the investigated system, the negative cubic velocity feedback 

controller will be used as shown in the closed-loop of the controlled system. Then Equation (1) is 

written as follows: 

 

The Closed-loop control system 

 

We reduced the vibrations of a hybrid Rayleigh-Van der Pol-Duffing oscillator by using the 

negative cubic velocity as follows: 

( )2 2 3 2 2 2 3 5 2 32 2 cos( )u u u uu u u u ku u u f t Gu


         


 
− − − − − + + + =  − 

 
.      (2) 

Where the position of the Hybrid Rayleigh– Van der Pol–Duffing oscillator offered by u  . We 

used   as the damping coefficient of the hybrid Rayleigh–Van der Pol–Duffing oscillator. The 

coefficients of nonlinear terms offered by ,  , ,  , k  and  . The Van der Pol oscillator's 

frequency response is .The excitation's frequency and amplitude are f and    .  The negative 

cubic velocity feedback indication is G . 

 

3. The multiple scales method 

Nayfeh claims (1973), for the first scale, we applied the multiple scales method. As support for 

this, we see that the general solution of equation (2) is 

1 1 1( ; ) ( , ) ( , )u t u T T u T T   = + .                                                                                                                                (3) 
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First and second derivatives use the following forms. 

1 ...
d

D D
dt

 = + +                                                                                                                                                          (4) 

2
2

12
2 ...

d
D D D

dt
 = + +                                                                                                                                                      (5) 

The derivatives 
n

n

D
T


=


(n=0, 1).The first approximation solution, we conducted two time scales

nT nt= where (n=0, 1). Substitute in equation (2) from (3), (4), (5) and the coefficients of the 

same power of . 

0( ) :O   

2 2( ) 0D u + = .                                                                                                                                                    (6) 

( ) :O   

2 2 2 2 3 2 2

1 1 0

2 3 5 3

( ) 2 2 ( ) ( ) ( ) ( )

2 cos( ) ( )

D u D D u D u D u D u u D u u D u

ku u f t G D x

             

   


     



 

 
+ = − − − + + + + 

 

 − + +  − 

.                                   (7) 

Solve equation (6) 

0 0

0 1 1 1( , ) ( ) ( )
i T i T

u T T A T e A T e
 



−
= + .                                                                                                                        (8) 

It is a homogeneous differential equation of the second order, where A is a complex function in 1T  

and A is a complex conjugate function 1T . Substitution in equation (7) from (8). 

0

0

2 2 2 2 2 2 2 2 2 2 3 2 3 2

1 1( ) ( 2 2 2 6 6 20 3 )

.
2

i T

i T

D u i D A i A i A A i A A k A A A A iG A A e

f
e c c



         



+ = − + − − − − −

+ +

.                (9) 

Such that .c c are the complex conjugate terms. 

4. The Periodic Solution 

In this section, we present a detuning parameter  to check the stability of the system in the 

primary resonance state as follows: 

  = + .                                                                                                                                                                           (10) 

Substitution in (9) of (10) and eliminating coefficients of all secular terms, yields: 

2 2 2 2 2 2 2 2 3 2 3 2 12 2 2 6 6 20 3 0
1 2

f i T
i D A i A i A A i A A k A A A A iG A A e


       − + − − − − − + = .            (11) 



ERURJ 2025, 4, 2, 2630-2643 

 

2635 
 

After converting the function A to the polar form, we have: 

( )1

1( )

1
.

2

Ti

TA a e


= .                                                                                                                                                                   (12) 

1

1
( )

2

iD A a ia e  = + .                                                                                                                                                  (13) 

Where the motion's steady state phases are   and a. Introducing (12) and (13) in (11) and by 

equating the real and imaginary parts, we obtain: 

3 2 31 3
( 3 ) sin

4 8 2

f
a a a G a     


= − + − + .                                                                         (14)                                                                                         

3 53 5
cos .

4 8 2

f
a a k a a     


= − − +                                                                                    (15)                                                                        

Where 1T  = − . 

5. Fixed-point solution 

For stable-When state solution happens 0, 0a = = , the stable state solution is presented by: 

3 53 5
cos

2 4 8

f
a k a a    


= − + + .                                                                                                                  (16) 

3 2 31 3
sin ( 3 )

2 4 8

f
a a G a     


= − + + + .                                                                                                  (17) 

By squaring each of equations (16) and (17) and then adding, we get 

2 22
3 5 3 2 3

2

3 5 1 3
( 3 ) .

4 4 8 4 8

f
a k a a a a G a        



   
= − + + + − + + +   
   

                         (18)                  

6. Nonlinear solution 

As you move to develop the stability of the steady-state solution, begin with the following: 

0 1a a a= + . 

0 1  = + .                                                                                                                                                                          (19) 

Where 0a  and 0  are solutions to equations (16) and (17). The disturbances 1a  and 1  are 

infinitesimal compared with 0a  and 0 so, substitute in Equations (14) and (15) of Equation (19) 

we simply maintain the linear terms of 0a  and 0 .This process yields the following system: 



ERURJ 2025, 4, 2, 2630-2643 

 

2636 
 

2 2 2

1 0 0 1 0 1

3 3
( 3 ) cos .

4 4 2

f
a a G a a      



   
= − + − +   
   

                                                     (20) 

3

1 0 0 1 0 1

0 0

9 25
sin

4 8 2

f
k a a a

a a


     



   
= − − −   
   

 .                                                               (21) 

The real part of the eigenvalues in the solution of the above system must be negative in order for 

it to be stable. 

7. Numerical effect 

We applied the MATLAB program to numerically examine the system's results. Moreover, we use 

the multiple scales method to examine the stability of the hybrid Rayleigh-Van der Pol–Duffing 

oscillator, and the effects of various parameters on the behavior of the controlled system were 

demonstrated. We will compare between the numerical solution and the approximate one produced 

by the multiple scales method. Using parametric values: 

=1 , =0.01 , =1.5 , =3 , =1 , =1/3 , =2 , f=0.5 , G=10 .         

7.1. Time History 

In order to observe the hybrid Rayleigh-Van der Pol-Duffing oscillator's behavior both before and 

after applying negative cubic velocity feedback control, we looked into the primary resonance 

situation. The time histories of the main system for the open and closed-loop designs are shown in 

Figures 1a and 1b. The main system's numerical differential solutions are shown by the solid red 

line, while the multiple scales approach's solutions are shown by the dotted blue line. The regulated 

system exhibited an amplitude reduction of approximately 83% in relation to the uncontrolled 

system. The aforementioned indicates that the control's performance (Ea the difference between 

the main system's stationary amplitude before and after the controller was used) is equal to 5. The 

convention of approximating solutions using multiple scales approach and numerical solutions 

using RK-4 method was also discussed from these figures. From Fig. 2 We can determine the 

appropriate values for the cubic velocity coefficient G  where 10G = . 
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Fig. 1: The main system amplitude (a) without negative cubic velocity controller and (b) with                                                             

negative cubic velocity controller. 

 

Fig.2: The effect of the cubic velocity coefficient G  when f=0.5 

7.2. Response curves 

               In this section, we explored the frequency response curves and the impact of the cubic 

velocity coefficient G , the damping coefficient  and the excitement force f . We give the steady-

state amplitude versus the detonation equation using (18) a parameter . From Fig. 3a in the main 

system, the regions of stability will increase with increasing the value of f , and the regions of 

stability will decrease with decreasing f . So we used  negative cubic velocity controller  to 

suppress vibrations of the main system as shown in Fig. 3b. From this figure we record down that 

the frequency response curve presented by one summit drown by black line. The results of using 

RK-4 are shown by green circles. These is a perfect an agreement between two results. 

The response curves of the main system a  versus the detuning parameter is presented for 10G =

.Such that the black line expresses the stability of the solution while the blue line expresses the 

instability of the solution as shown in Fig. 4a. In Fig. 4b  the solution is stable for large values of

G and the main system’s amplitude is monotonic decreasing function on the negative Cubic 

velocity feedback coefficient G the solution is stable for large values of G While the stability region 
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decreases at small values. For the external force, the main system’s amplitude is monotonic 

decreasing function and the solution is stable for large values of f  as exhibit in Fig. 4c. The 

amplitude increasing for small values of the natural frequency   the solution is stable for little 

values of  as seen in Fig. 4d. 

 

Fig. 3: (a) impact the external force without control (b) the response curve after control. 
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Fig. 4: (a) the response curves of the controlled system where 10G = . (b) The response curves 

for different values of cubic velocity coefficient G . (c) The external force action. (d) The natural 

frequency   action. 

 

Fig. 5: (a), (b) and(c) They show cubic velocity coefficient G  at different values forsuch that f   

0 =  

 

Fig. 6: The time histories of the main system for different values for f  such that 0 = .(a) 

corresponds to point A in Fig. 5a and(b) corresponds to point B in Fig. 5b and(c) corresponds to 

point C in Fig. 5c . 
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Fig. 5, 6: present the time-domain responses of the primary system under three distinct parameter 

settings, corresponding to the representative operating points A, B, and C identified in the previous 

analysis. 

(a) The first plot illustrates the system’s dynamic behavior at operating point A. The simulation 

covers a duration of 300 time units, where the blue curve represents the numerical integration 

results, and the red curve corresponds to the approximate analytical solution derived using the 

method of multiple scales. 

(b) The second plot shows the time response at point B, using a different set of parameter values. 

As before, both the numerical and analytical solutions are displayed for comparison over the same 

time interval. 

(c) The third plot corresponds to point C, capturing the system’s temporal evolution under another 

parameter configuration. The alignment between the numerical and analytical solutions over the 

300 time-unit span further validates the effectiveness of the adopted analytical approach. 

These time history plots provide a visual representation of the system's response for the 

specific parameter values indicated by the corresponding points in the previous figures. The 

comparison between the numerical solution and the multiple scales solution allows for an 

assessment of the accuracy of the approximation methods used. 

From these physical interpretations, we can observe how the values of the cubic velocity 

coefficient parameters G  and   affect the stability and temporal behavior of the system.  

The key points are: We notice that the values match between images fig. 5 and fig. 6, and 

this indicates the efficiency of the negative cubic velocity feedback control. The time history plots 

visualize the system's response for specific parameter values. Comparing the numerical and 

multiple scales solutions allows for evaluating the accuracy of the approximation methods. The 

increase in G  and   values causes the system to transition from linear to nonlinear and chaotic 

temporal behavior, highlighting the critical role of these parameters in determining the system's 

stability and dynamics. 
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8. Conclusion 

The oscillator is one of the most important models in physics and engineering, where the Duffing 

equation finds many uses. Examined were the Van der Pol – Duffing – Rayleigh oscillator's 

dynamic responses and vibration analysis when subjected to an external force. We employed the 

multiple scales approach to get the vibrating system's approximate solution. To reduce the hybrid 

Rayleigh-van der Pol-Duffing oscillator's large amplitudes, the negative Cubic velocity control 

feedback was incorporated. The negative cubic velocity feedback control was added to decrease 

the high amplitudes of the hybrid Rayleigh–van der Pol–Duffing oscillator .The analytical solution 

up to first-order approximation is obtained by using the method of multiple scales. In comparison 

to the uncontrolled system, the controlled system's amplitude was reduced by about 83%. This 

means that the control aE  performance is about 5 .From this research we will present some 

important outputs for the influence of the vibrating system's parameter such that: 

i. The amplitude of the system increases as the external forces acting increase. 

ii. The amplitude of controlled system decreases as the cubic velocity coefficient G 

increases and the solution is stable at large values. 

iii. The amplitude of the system decreases with decreasing value of the natural frequency

 . 

iv. The response curves, the FRC Solution and RK-4 Solution have a good agreement. 
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