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ABSTRACT 

 
Artificial neural networks (ANNs) are adaptive systems employed in many applications such 

as solving complex nonlinear mathematical functions, identification, data classification, control, 

and others. The utilization of ANNs in the field of control systems has significantly enhanced the 

performance of controllers, surpassing that of traditional controllers such as proportional-integral-

derivative (PID) controllers. This advancement has transformed these controllers into adaptive 

control. These adaptive controllers are utilized to control the mobile robot and handle its 

nonlinearity property and friction uncertainty in its mobility area. Therefore, this paper aims to 

introduce the comparison of various types of ANNs-based controllers used to practically control 

the dynamics of the mobile robot. Moreover, multiple experimental tasks are applied to the mobile 

robot to investigate the performance of each adaptive controller through two performance indices 

namely; integral absolute error (IAE) and mean absolute error (MAE). The experimental tasks 

included the set-point change, parameter uncertainty, and measurement error disturbance. 
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1. Introduction 

ANNs are computing systems that are constructed based on biological neural networks and 

human brain emulation [1]. The infrastructure of ANNs is the artificial neuron, which is a 

processing node. In other words, it is a microcomputer. Each artificial neuron simulates the 

behavior of the biological neuron cell, so it can be considered a digitized model of a biological 

neuron [2]. Several artificial neurons can be interconnected in the neural structure of ANNs to 

emulate the human brain processing way. The order that gives ANNs the advantage of power 

processing. Each neural network can be distinguished by three major issues namely; the activation 

function, the learning rule of the weights, and the way of connection of the neurons to each other 

[3]. The capability of ANNs to learn, adapt, and control has rendered them a primary choice for a 

myriad of applications such as signal classification, function approximation, nonlinear system 

identification, and control of nonlinear systems [4 and 5]. ANNs are broadly categorized into two 

main types [6]: conventional neural networks, such as radial basis function neural networks 

(RBFNNs), and advanced neural networks, which include recurrent neural networks [7], 

polynomial recurrent neural networks (PRNNs) [8], deep learning neural networks (DNNs) [9], 

convolutional neural networks (CNNs) [10], long short-term memory neural networks 

(LSTMNNs) [11], and quantum neural networks (QNNs) [12]. 

From a control engineering perspective, the two-wheel differential mobile robot falls under 

the category of nonlinear dynamical systems and belongs to the family of nonholonomic wheeled 

mobile robots (NHWMRs). In addition, mobile robots are widely used in many applications such 

as autonomous vehicles, military operations, planetary exploration, and factory automation [13 

and 14]. Furthermore, their application in logistics services such as library services [15], and 

hospital logistics [16, and 17]. These systems are crucial in industrial processes requiring robust 

controllers capable of addressing the challenges posed by nonlinearity, parameter uncertainty, and 

load disturbances [18-20]. Historically, conventional controllers such as PID controllers were 

employed to manage these systems; however, their fixed and non-adaptive parameters rendered 

them insufficient in the face of plant uncertainties and disturbances [21].  

Several previously published researches proposed ANN-based controllers for controlling the 

mobile robot, for example, in [14], a radial basis function neural network (RBFNN)-based 

estimator was implemented to estimate lumped uncertainties in a small-wheeled mobile robot, 

using feedback linearization control for trajectory management. In [22], the model predictive 
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control (MPC) method was integrated with a primal-dual neural network (PDNN) to control the 

trajectory of a two-wheel-driven mobile service robot. In [23], a neural network-based kinematic 

controller (NNKC) was combined with a model reference adaptive controller (MRAC) to control 

the trajectory of a two-wheel differential mobile robot. The NNKC used one input layer with 6 

neurons, two hidden layers with 25 neurons, and one output layer with 2 neurons, i.e., (6-25-25-2) 

neural network (NN) structure, with a sigmoid activation function. In [24], A neural network 

controller was designed to identify the output of an improved conventional PID controller for 

trajectory tracking of a two-wheel differential mobile robot. This controller utilized a (3-4-4-2) 

neural structure with a tan-sigmoid activation function, employing the backpropagation method 

for weight learning.  

In this paper, a comparison of six adaptive and learnable controllers that are previously 

published among of them two previously published controllers for the authors. The reason behind 

that is that the two previously published controllers for the authors used advanced neural networks 

and stable learning algorithms.   The six adaptive controllers are applied practically to the mobile 

robot and multiple experimental tasks are performed in this work. The six adaptive controllers are 

explained as follows: 

      In [25], a PID controller with neural network error identification (PIDC-NNEI) was introduced 

using a (15-15-1) neural structure and hyperbolic tangent activation function, employing gradient 

descent with a momentum term for parameters update. Also, in [26], an RBFNN-PID controller 

with a (3-5-3) neural structure was presented, with all parameters learned using gradient descent 

with a momentum term. In addition, in [27], a neural network PID controller based on LM 

(NNPID-LM) with plant identifier was introduced, with a (2-5-1) NN structure using a log-sigmoid 

activation function, and the gradient descent method is employed for network parameters update. 

In [28], a smart optimized PID controller based on a neural network (SOPIDNN) was proposed to 

control the dynamics of a two-wheel differential mobile robot. This method employed a (4-18-3) 

neural structure with a tan-sigmoid activation function, updating adjustable weights using the 

gradient descent algorithm. In addition to the two proposed controllers for the authors that were 

published in the last two years and can be explained as follows: 

      In [29], a polynomial weighted output recurrent NN-based adaptive PID controller (APIDC-

PWORNN) with a 3-2-3 NN structure using a stable learning algorithm based on Lyapunov 
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stability criterion and adaptive learning rate. The APIDC-PWORNN was used to control two 

nonlinear dynamical systems. 

       In [30], an adaptive PID controller based on quantum neural network (APIDC-QNN) with a 

3-6-3 NN structure and stable learning algorithm. In addition to Wiener type identifier is proposed 

to identify the wheel's velocity and generate the sensitivity function. The APIDC-QNN is proposed 

to control the NHWMR and nonlinear numerical system. 

Hence, the novelty and contributions of this paper can be concluded as follows: 

1. Reviewing the recent adaptive controllers for mobile robot 

2. Comparing various learning algorithms 

3. The comparisons in this paper included advanced neural networks like a quantum neural 

network and a polynomial neural network for controlling the mobile robot.   

4. Implementing the six adaptive controllers to the Arduino Mega 2560 microcontroller to 

control the mobile robot 

5. Performing multiple experimental tasks on the mobile robot to distinguish the performance 

of each controller 

        The rest of this article is structured as follows: Section 2 introduces the NN structure and the 

learning rule used with each controller. Section 3 presents the position-speed control system 

scheme. Section 4 presents the experimental setup of the mobile robot. Followed that the 

experimental results and comparisons are introduced in section 5. Finally, the conclusions are 

presented in section 6. 

2. Neural network structure and learning rule comparisons 

This section introduces the NN structure and the learning rule of each controller from the six 

controllers mentioned above. In addition, a comprehensive comparison is presented in Table 1. 

2.1 PIDC-NNEI [25] 

This controller used a 5-5-1 NN structure as shown in Figure 1.  
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Figure 1. PIDC-NNEI NN structure [25]. 

 

     As indicated in Figure 1, five input neurons are employed for the input layer, five hidden 

neurons are employed for the hidden layer, and one output neuron is utilized for the output layer. 

Where, 𝛤  is the sample number, 𝑋𝛾(𝛤) = [𝑌𝑑(𝛤)  𝑌𝑑(𝛤 − 1)  𝑌𝑝(𝛤)  𝑌𝑝(𝛤 − 1) 𝑢(𝛤 − 1)] is the 

online input data vector that is entered into the neural network at every sample, 𝑌𝑑(𝛤) is the desired 

output,  𝑌𝑝(𝛤) is the actual plant output measured at every sample, 𝑢(𝛤 − 1) is the past value of 

the control signal, 𝑤𝛾𝑗 is the connecting weight between the 𝛾𝑡ℎ input neuron and 𝑗𝑡ℎ  hidden 

neuron, 𝑤𝑗𝑘  is the connecting weight between the 𝑗𝑡ℎ  hidden neuron and 𝑘𝑡ℎ  output neuron,  𝑏𝑗 

is the bias parameter of the 𝑗𝑡ℎ  hidden neuron,  𝑏𝑘 is the bias parameter of the 𝑘𝑡ℎ  output neuron. 

In addition, the utilized activation function for the hidden neurons is a tan-sigmoid function. The 

output of this network is the identified error signal (𝑒𝑛𝑛 ) between the desired output and the plant 

output. This NN structure yields 39 adjustable weights. In this paper, this NN structure is utilized 

for each wheel controller separately which yields 78 adjustable weights total for the two wheels.        

     Next, the learning rule will be explained to the proportional gain of the PIDC-NNEI as an 

example and can be generalized to the integral and derivative gains as follows [25]: 
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 𝑑𝑒 (𝛤)

𝑑𝐾𝑃(𝛤)
=

𝑑𝑒𝑛𝑛(𝛤)

𝑑𝑢(𝛤)

𝑑𝑢(𝛤)

𝑑𝐾𝑃(𝛤)
 

(1) 

where, 𝑒 (𝛤) is the error signal between the desired wheels' velocity ( θRd 
̇  , θLd 

̇ ) and the actual 

wheels' velocity ( θR 
̇  , θL 

̇ ), 𝑒𝑛𝑛(𝛤) is the identified error signal, 𝐾𝑃(𝛤) is the proportional gain, 

and 𝑢(𝛤) is the control signal. 

 
𝛥𝐾𝑃(𝛤) = 𝜌 |

𝑑𝑒𝑛𝑛(𝛤) 

𝑑𝑢(𝛤)

𝑑𝑢(𝛤)

𝑑𝐾𝑃(𝛤)
| + 𝛿𝛥𝐾𝑃(𝛤 − 1) 

(2) 

where, 𝜌 is the fixed learning rate, and 𝛿  is the momentum coefficient. 

 𝐾𝑃(Γ) = 𝐾𝑃(Γ − 1) − ΔK𝑃(Γ)  (3) 

2.2 RBFNN-PID [26] 

This controller utilized a 3-5-3 NN structure as depicted in Figure 2.  

  

 

Figure 2. NN Structure of the RBFNN-PID controller [26]. 
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     This NN structure uses three input neurons, five hidden neurons, and three output neurons as 

shown in Figure 2. In addition, two activation functions are employed the 1st one is the RBF 

activation function with the hidden neurons and the 2nd activation function is the sigmoid function 

utilized with the output neurons. Where, 𝑋𝛾(𝛤) = [𝑒(𝛤 − 1) 𝑌𝑝(𝛤 − 1) 𝑢(𝛤 − 1)] is the online 

input data vector. The outputs of this network are the adaptive PID gains namely; the proportional 

gain (𝐾𝑃(Γ)), the integral gain (𝐾𝐼(Γ)), and the derivative gain (𝐾𝐷(Γ)). This NN structure yields 

25 adjustable weights. In this work, this NN structure is utilized for each wheel separately which 

yields 50 tunable parameters total for the two wheels.  

     Moreover, the learning rule of this controller was described as follows [26]:       

 
𝐸 =

1

2
𝑒2 

(4) 

where, E is the cost function. The network weights; 𝑤(Γ) can be updated using the following 

gradient descent formula: 

where, 𝛼 is the momentum factor. 

2.3  NNPID-LM [27] 

     A 2-5-1 NN structure is used to identify the plant output for each controller as shown in 

Figure 3.  

 𝛥𝑤(𝛤) = −𝜌
𝑑𝐸(𝛤)

𝑑𝑤(𝛤)
  (5) 

 𝑤(𝛤) = 𝑤(𝛤 − 1) + 𝛥𝑤(𝛤) − 𝛼(𝑤(𝛤 − 1) − 𝑤(𝛤 − 2))  (6) 
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Figure 3. NN structure of the plant identifier [27]. 

In Figure 3, tow input neurons, five hidden neurons, and one output neuron are employed for 

the plant identifier. Where, 𝑋𝛾(𝛤) = [ 𝑢(𝛤) 𝑌𝑝(𝛤 − 1)]  is the utilized training data vector, 

𝑌𝑝(𝛤 − 1) is the past value of the plant output, and 𝑌𝑛𝑛(𝛤) is the identified plant output, i.e., the 

network output. A log-sigmoid activation function is used with the hidden neurons. This structure 

yields 24 tunable parameters for one wheel controller and 48 tunable parameters for the two 

wheels' controllers.  

Next, the LM update rule is used for this controller as follows [27]:  

 
𝑋𝑤(Γ + 1) = 𝑋𝑤(Γ) − [𝐽𝑐𝑜(𝑋𝑤(Γ))

𝑇
𝐽𝑐𝑜(𝑋𝑤(Γ) ) + 𝜆𝑑 𝐼]

−1

𝐽𝑐𝑜(𝑋𝑤(Γ)) 𝑒(Γ)  
(7) 

where, 𝑋𝑤(Γ) is the weights vector of the network, 𝜆𝑑 is the damping factor, and 𝐽𝑐𝑜(𝑋𝑤(Γ))  is 

the Jacobian matrix of all weights. 

2.4  SOPIDNN [28] 

A 2-18-3 NN structure is used for each wheel controller. The NN structure of this controller 

is depicted in Figure 4. 
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Figure 4.  NN Structure of the SOPIDNN controller [28]. 

     In Figure 4, two input neurons, eighteen hidden neurons, and three output neurons are employed 

for the SOPIDNN controller. In this structure, a tan-sigmoid activation function was utilized in the 

hidden layer and a pure line function at the output layer. Where, 𝑋𝛾(𝛤) = [ 𝑒(𝛤) 𝑢(𝛤 − 1)] is the 

online input data vector. In addition, the outputs of this network are the PID adaptive gains. 

Consequently, this structure results 90 adjustable weights for each wheel controller and 180 

adjustable for the robot two wheels. Moreover, this controller used the gradient descent learning 

method as follows: 

 
𝑤(𝛤 + 1) = 𝑤(𝛤) + 𝜌

𝑑𝐸(𝛤)

𝑑𝑤(𝛤)
 

(8) 

where, 𝐸(Γ) is the cost function defined as in Eq. (4). 

 

2.5  APIDC-PWORNN [29] 

In previously published paper, the authors used a 3-2-3 NN structure for each wheel controller. 

This NN structure is indicated in Figure 5. 
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Figure 5. NN Structure of the APIDC-PWORNN [29]. 

 

     As shown in Figure 5, three input neurons are employed for the input layer, two hidden neurons 

are used for the hidden layer, and three output neurons are employed for the output layer.  Where, 

𝑋𝛾(𝛤) = [𝑌𝑝(𝛤 − 1) 𝑒(𝛤)  𝑢(𝛤 − 1) ] is the online training input data vector, 𝑤𝑗𝑃(𝛤)  is the 

connecting weigh between the 𝑗𝑡ℎ hidden neuron and the proportional node (P), 𝑤𝑗𝐼(𝛤) is the 

connecting weight between the 𝑗𝑡ℎ hidden neuron and the integral node (I), and , 𝑤𝑗𝐷(𝛤) is the 

connecting weight between the 𝑗𝑡ℎ hidden neuron and the derivative node (D). Moreover, the 

hidden neurons process the unweighted input data by mathematical summation. Following that, 

the output neurons process the weighted outputs delivered from the hidden neurons by multiplying 

them. Therefore, the activation function of this network was called a polynomial function that 

results from the product of sum process. This polynomial weighted output recurrent NN 

(PWORNN) uses only six adjustable weights for each controller and twelve adjustable weights for 

the right and left controllers. 

     Next, this controller used a stable learning rule derived based on the Lyapunov stability 

criterion as follows [29]: 
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where, 𝐿1 = (2𝑏∆𝑒(𝛤) + 2𝑏𝑒(𝛤) + 2𝑐𝑤(𝛤)), 𝐿2 =  (2𝑎∆𝑒(𝛤) + 2𝑎𝑒(𝛤) + 2𝑏𝑤(𝛤)) , a, b, c 

are the coefficients of the Lyapunov function [29], 𝑤(𝛤) is the weights vector, ∆𝑒(𝛤) = 𝑒(𝛤) −

𝑒(𝛤 − 1) is the difference of the error signal,  and 𝜌(Γ) is the adaptive learning rate derived 

based on the Lyapunov theory as follows [29]: 

 

(11)    0 ≤ 𝜌(𝛤) ≤ ‖
‖ 𝑐𝑒(𝛤)

[[
𝜕𝑌𝑃(𝛤)
𝜕𝑤(𝛤)

]
2

(𝑏𝑤(𝛤) − 𝑎𝑒(𝛤)) +
𝜕𝑌𝑃(𝛤)
𝜕𝑤(𝛤)

(𝑏𝑒(𝛤) − 𝑐𝑤(𝛤)]
‖
‖ 

 

where, 𝑌𝑃(𝛤) is the actual plant output i.e., the actual wheel velocity, and 𝑒(𝛤) is the error 

signal. 

2.6  APIDC-QNN [30] 

In previously published work, the authors used a 3-6-3 NN structure with quantum neurons 

in the input and hidden layers as shown in Figure 6.  

 

(9) 

 

 𝑤(𝛤) = 𝑤(𝛤 − 1) + 𝜌(𝛤) ∆𝑤(𝛤)  

 

(10) 

 

 

 ∆𝑤(𝛤) = −
1

𝑐
[𝐿1 +

𝜕𝑒(𝛤)

𝜕𝑤(𝛤)
𝐿2] 
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Figure 6. NN Structure of the APIDC-QNN [30]. 

     In Figure 6, three input quantum neurons are employed for the input layer, six hidden quantum 

neurons namely; 𝑄𝑁1, 𝑄𝑁2, …., 𝑄𝑁6  are used for the hidden layer, and three neurons are 

employed for the output layer. Where, 𝑋𝛾(𝛤) = [𝑌𝑑(𝛤)  𝑢(𝛤 − 1) 𝑌𝑝(𝛤) ]  is the online training 

input data vector, 𝑌𝑑(𝛤) is the desired plant output. These input data are transformed into quantum 

states namely; 𝑋𝑞1
𝐶𝑟(𝛤), 𝑋𝑞2

𝐶𝑟(𝛤) , and  𝑋𝑞3
𝐶𝑟(𝛤) using quantum transformation function 

explained in [30]. Then, a quantum processing technique is utilized for each hidden quantum 

neuron in the hidden layer. The quantum processing in each hidden quantum neuron is performed 

through five stages namely; the input stage, phase rotation stage, aggregation stage, reverse 

rotation stage, and output stage. These stages are described in detail in [30]. The output neurons 

process the delivered quantum states from the hidden layer by mathematical multiplication. Then, 

these network outputs are considered the PID adaptive gains.    

Moreover, the learning rule of this controller is derived using the Lyapunov stability theory 

as follows [30]: 

(12) 

 
 𝑤(𝛤) = 𝑤(𝛤 − 1) + 𝜌 ∆𝑤(𝛤)  
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where, 𝜌 is a fixed learning rate in this work. 

     Next, a systematic comparison that summarizes the key attributes of each controller, for 

example, the NN structure, number of tunable parameters, activation function, learning method, 

and learning rate, are listed in Table 1. 

Table 1. Systematic comparison of the utilized six adaptive controllers. 

 

     In Table 1, the NN structure of each controller is calculated only for one wheel, while the 

number of tunable parameters is calculated for the two wheels. Obviously from Table 1, the 

APIDC-PWORNN used the minimum number of tunable parameters (only 12), while the 

SOPIDNN used the largest number of tunable parameters (180). Furthermore, the controllers that 

are learned using the gradient descent method such as PID-NNEI, RBFNN-PID, and SOPIDNN 

didn't guarantee learning stability and could fall in the local minima. On the contrary, the 

 

(13) 

 
   ∆𝑤(𝛤) =

− [𝑤(𝛤) + 𝑒(𝛤)
𝜕𝑒(𝛤)
𝜕𝑤(𝛤)

]

[1 + ‖
𝜕𝑒(𝛤)
𝜕𝑤(𝛤)

 ‖
2

]
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controllers learned based on the Lyapunov stability criterion guarantee learning stability such as 

APIDC-PWORNN and APIDC-QNN.  

3. Position-Speed Control Scheme 

In this paper, each controller from the six controllers is employed as the dynamics controller 

for the mobile robot, to control the right and left wheel velocity. In addition, the position-speed 

control block diagram of the mobile robot is represented as shown in Figure 7. 

 

Figure 7. Position-Speed control block diagram. 

 

In Figure 7, 𝑷𝒅
𝑰 = [𝑋𝑑 𝑌𝑑  𝜃𝑑 ] is the desired positions vector of the desired trajectory 

in the inertial frame,  𝑷𝒓
𝑰 = [𝑋𝐼 𝑌𝐼 𝜃𝑜𝑟] is the actual positions vector of the controlled mobile 

robot in the inertial frame. Also, Figure 7 shows two main controllers. The first controller 

is the kinematics controller utilized in [31-33] and the second controller is the dynamics 

controller where the APIDC-PWORNN in Figure 7 is an example that can be replaced by 

each controller from the six controllers used for comparisons.  

. 
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4. Experimental Setup 

In this section, the experimental setup of the NHWMR is presented. The mobile robot is 

powered by two differential wheels (i.e., left wheel and right wheel) through two actuators (i.e., 

two 9 v DC motors with gearbox). So, it is considered a multi-input-multi-output (MIMO) system 

as shown in Figure 8. The caster wheel, which is shown in Figure 8, is an unpowered wheel is 

utilized to achieve the mobile robot balance. Moreover, a low-speed microcontroller (Arduino 

mega 2560) is utilized with a16 MHz clock speed and a small flash memory of 2560 KB to execute 

all experimental tasks. In addition, an L298N dual channel H-bridge driver for driving the two DC 

motors, two optical sensors for speed measuring are employed in this work, an HMC5883 

electronic compass is used to measure the robot heading angle, and a micro-SD module is used to 

record all sensors data. The physical parameters of the mobile robot used are listed in Table 2. 

 

Table 2. Physical parameters of the mobile robot. 
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Figure 8. Mobile robot. 

5. Experimental results and discussion 

In this section, three practical tasks are applied to the mobile robot such as the desired 

trajectory change, mass uncertainty, and measurement error disturbance. All data are collected at 

every sample using optical sensors for measuring wheels' velocity, a digital compass for measuring 

the robot position, and a micro-SD card module is employed to record all sensor readings. The 

experimental results are listed in two tables considering the integral absolute error (IAE) and the 

mean absolute error (MAE) for the robot position error. 

5.1 Task 1: Desired trajectory Change 

In this task, the desired trajectory starts with a 2 m diameter circle and then changes into a 3 m 

diameter circle to examine the controllers' performance under the set-point change. Based on the 

desired trajectory position, the kinematics controller determines the desired wheels' velocities ( θRd 
̇  

, θLd 
̇ ) automatically. Then the speed sensors measure the actual wheels' velocities ( θR 

̇  , θL̇) at 

every sample and feedback to the dynamic’s controller. Also, the electronic compass measures the 

actual robot position and feedback to the kinematics controller. The desired and actual trajectories 

are shown in Figure 9, and the control signal is depicted in Figure 10. From Figure 9, each 

controller's performance can be observed by minimizing the trajectory deviation. 
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Figure 9. Circle trajectory in the X-Y plane (Task 1). 

 
(a) 
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(b) 

Figure 10. Control signal (Task 1) a) Right wheel b) Left wheel. 

 

5.2 Task 2: Mass Uncertainty 

This task examines the processing uncertainty for each controller by adding an additional mass 

to the mobile robot during the motion suddenly at the half of the circle trajectory at 𝑡 = 8.5 𝑠𝑒𝑐. 

Figure 11 shows the circle trajectory in the X-Y plane and Figure 12 shows the control signal 

(motor voltage). Still the two previously proposed controllers APIDC-PWORNN, and APIDC-

QNN are the superior controllers to other controllers for handling the mass uncertainty. 
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Figure 11. Circle trajectory in the X-Y plane (Task 2). 

 
(a) 

 
(b) 

Figure 12. Control signal (Task 2) a) Right wheel b) Left wheel. 
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5.3 Task 3: Measurement Error Disturbance 

Sensor measurement error can be expressed by adding -15% of the measured velocity to the 

measured velocity of each wheel to examine the ability of each controller to handle this 

disturbance. The circular trajectories under this disturbance are depicted in Figure 13, and the 

control signal is shown in Figure 14. The two previously proposed controllers (APIDC-PWORNN, 

and APIDC-QNN) show the best tracking and have the minimum deviation. 

 

Figure 13. Circle trajectory in X-Y plane (Task 3). 
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(a) 

 

(b) 

Figure 14. Control signal (Task 3) a) Right wheel b) Left wheel. 

 

    Moreover, the values of performance indices (IAE and MAE) of the position error are 

calculated as in [23] for all experimental tasks of the six controllers. And then listed in Tables (3, 

and 4). 
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           Table 3. IAE and MAE Values (Task 1, and Task 2). 

 

 

 

 

 

 

 

 

 

 

 

                   Table 4. IAE and MAE Values  (Task 3). 

 

 

 

 

 

 

 

 

 

 

       From the obtained experimental results, the APIDC-QNN recorded the minimum values of 

IAE and MAE for all tasks as indicated in Tables (3, and 4) which indicates the superiority and 

the powerful processing of this controller over other controllers. The reason behind that is the 

advanced neural network used with this controller (quantum neural network) and the stable 

learning rule derived based on the Lyapunov stability criterion. Moreover, the computation time 

of every controller is computed and the average of one thousand readings is considered and listed 

in Table 5.  

Algorithms 

 

NN structure Task 1 

 IAE               MAE 

 Task 2 

IAE                 MAE 

PIDC-NNEI [25] 5-5-1 3.0959 0.0734 1.9811 0.0966 

RBFNN-PID [26] 3-5-3 2.9761 0.0706 2.6431 0.1289 

NNPID-LM [27] 2-5-1 3.6726 0.0871 2.7187 0.1326 

SOPIDNN [28] 2-18-3 3.4215 0.0812 1.8789 0.0917 

APIDC-PWORNN [29]  3-2-3 2.6365 0.0626 1.5210 0.0742 

APIDC-QNN [30]  3-6-3 2.0459 0.0485 1.1957 0.0583 

Algorithms 

 

NN structure Task 3  

IAE                MAE 

PIDC-NNEI [25] 5-5-1 2.2617 0.1103 

RBFNN-PID [26] 3-5-3 2.5154 0.1227 

NNPID-LM [27] 2-5-1 1.8699 0.0912 

SOPIDNN [28] 2-18-3 2.0927 0.1021 

APIDC-PWORNN [29]  3-2-3 1.5474 0.0755 

APIDC-QNN [30]  3-6-3 1.1825 0.0577 
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                Table 5. Computation Time. 

 

 

 

From Table 5, the APIDC-PWORNN controller has the minimum computation time (89.3290 

ms). Although the APIDC-QNN controller based on the quantum NN has no complex neural 

structure and no large number of tunable parameters compared with other controllers, it scored a 

large computation time. This is because mathematical trigonometric functions used with quantum 

processing take a long time to process. 

6.Conclusions 

This article introduced a review of the ANN-based adaptive controllers for controlling the 

two-wheel differential mobile robot. The comparisons included six ANN-based adaptive 

controllers two of them are previously published for the authors. All controllers are implemented 

practically on the microcontroller Arduino Mega 2560 to control the mobile robot. Three 

experimental tasks are applied to examine the controller performance and two performance indices 

(IAE, and MAE) are considered. The experimental results show that the APIDC-QNN is superior 

to other controllers in that it records the minimum values of IAE and MAE as a result of using 

Quantum as an activation function and using a learning rule for updating weights based on 

Lyapunov theory. In future work, these controllers can be developed to control an autonomous 

vehicle and mobile robot manipulators.   
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Controller NN 

Structure 

No of 

parameters 

Computation time 

(ms) 

PIDC-NNEI [25] 5-5-1 78 97.5840 

RBFNN-PID [26] 3-5-3 50 98.5970 

NNPID-LM [27] 2-5-1 48 99.2510 

SOPIDNN [28] 2-18-3 180 102.2560 

APIDC-PWORNN [29] 3-2-3 12 89.3290 

APIDC-QNN [30] 3-6-3 86 136.5840 
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