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The use of metaheuristic algorithms in optimization has recently gained 

significant attention from researchers, often referred to as new or novel 

algorithms. These algorithms aim to efficiently solve complex optimization 

problems by mimicking natural processes or behaviors. This study explores 

the implementation of several recent meta-heuristic algorithms, such as the 

Hippopotamus Optimization Algorithm (HO), Puma Optimizer (PO), Spider 

Wasp Optimizer (SWO), Mountain Gazelle Optimizer (MGO), A Sinh Cosh 

Optimizer (SCHO), Kepler Optimization Algorithm (KOA), and Seahorse 

Optimizer (SHO). A comprehensive comparison is made between these 

meta-heuristic approaches using a set of 23 standard test functions, 

including both unimodal and multimodal functions that vary in complexity. 

The evaluation criteria include accuracy, convergence speed, and 

robustness. The results indicate that the Spider Wasp Optimizer (SWO) 

consistently outperforms other algorithms in terms of optimization 

performance. Additionally, two non-parametric statistical tests, the 

Friedman and the Wilcoxon Signed-Rank tests, have been employed to 

rigorously rank the performance of the algorithms. The findings provide 

valuable insights into the strengths and weaknesses of each algorithm and 

demonstrate the potential of SWO for addressing real-world optimization 

challenges. 

 

 

mailto:amirahm@science.aun.edu.eg


Alaa M.Asklany et al  

 

359 

1. INTRODUCTION  

 

Optimization is critical in solving complex problems across various fields, including 

engineering, medicine, decision-making, and agriculture. Optimization problems may be 

used for a variety of real-world challenges, including engineering, health, decision-

making, and agriculture.[1]. These types of problems are very challenging to solve. 

Several deterministic methods have been proposed to address such problems; however, 

these methods are not suitable for An extensive variety of real-world optimization 

problems due to challenges such as falling into local minima, requiring gradient 

information, and being time-consuming. [1], [2]. To overcome these challenges, 

metaheuristic algorithms have emerged as powerful tools for solving complex global 

optimization problems. These algorithms are designed to efficiently explore and exploit 

the search space without requiring gradient information, making them particularly 

suitable for non-differentiable, nonlinear, or multimodal problems [33]. Metaheuristics 

are stochastic in nature, relying on random processes to guide their search, which enables 

them to prevent being captured in local optima. Over the last few decades, a wide variety 

of metaheuristic algorithms inspired by natural phenomena, biological systems, and 

physical processes have been developed and applied successfully to a broad range of 

optimization problems [34]. Consequently, in recent decades, modern stochastic methods, 

referred to as metaheuristic algorithms (MAs), have been developed to deal with these 

challenges [3], [4], [5], [1] and [6]. In general, global optimization problems are essential 

in various application areas such as industry, engineering, and business. The main goal of 

optimization is to minimize or maximize specific objective functions. Mathematically, 

the continuous nonlinear global optimization problems described in this paper are 

represented as follows:  

 

 

Where:  is the objective function to be minimized, and  

represents the vector of decision variables that can take any real values. The goal is to 

find  such that:  

 

 

 

In this paper, seven recently representative metaheuristic algorithms have been selected 

and utilized to evaluate the performance of these metaheuristic algorithms. These 

algorithms include the Hippopotamus Optimization Algorithm (HO): Inspired by the 
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aggressive behavior of hippopotamuses and their ability to navigate through water and 

land [7], Puma Optimizer (PO): Based on the hunting behavior of pumas, this algorithm 

focuses on speed and stealth, which helps in quickly narrowing down the search 

space.[8], Spider Wasp Optimizer (SWO): modeled after the predatory strategies of 

spider wasps. [9], Mountain Gazelle Optimizer (MGO): Inspired by the fast movements 

and survival strategies of mountain gazelles. [10], A Sinh Cosh Optimizer (SCHO): based 

on mathematical hyperbolic functions, providing a unique approach to optimization. [11], 

Kepler Optimization Algorithm (KOA): Inspired by Kepler’s laws of planetary motion, 

this algorithm uses orbital mechanics to guide the search process. [12] and Sea-horse 

optimizer (SHO): Modeled after the social and hunting behavior of sea-horses. [13]. This 

study focuses on analyzing and comparing recently proposed metaheuristic algorithms 

advancements in optimization techniques. However, we would like to highlight that each 

of these algorithms has been previously compared with traditional optimization methods, 

such as the Genetic Algorithm (GA) particle swarm optimization (PSO) [35] in the 

original studies where they were introduced. Therefore, the main objective of this study is 

not to repeat these comparisons but rather to explore the specific advantages, challenges, 

and performance characteristics of these newer algorithms in a variety of benchmark 

problems. This kind of comparison is essential to identify which algorithm is best suited 

for different types of problems, especially when dealing with high-dimensional, 

multimodal, or complex problem landscapes. The primary objective of this work is to 

study in-depth characteristics and behaviors of each representative algorithm for an 

empirical study to gain a deeper understanding of them. Additionally, this study provides 

a methodology for effectively evaluating and comparing the performances of the different 

mentioned algorithms. For a fair comparison, all seven algorithms are implemented on 

the same platform and tested on the same set of benchmark problems with the same 

conditions and stopping criteria. The remainder of the paper is organized as follows: the 

next section provides related works and a brief discussion of the algorithms, outlining the 

advantages and disadvantages of each. Section 3 presents empirical performance 

comparisons of all the representative algorithms on the 23 continuous benchmark 

functions, their mathematical defections can be found in [11] and the summary is 

represented in Table 2. which is followed by a comprehensive discussion of the final 

results and statistical analysis. Section 4 concludes with final remarks. 

 

 

2. Review of Related Work and the Apllied Algorithms 

 

This section reviews the related work that inspired the current study. It also 

highlights the key achievements of the comparative methods in this paper by outlining the 

advantages, disadvantages, and design inspirations of the representative algorithms.  
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2.1 Related work 

Many recent studies in this domain have focused on comparing the performance of 

various metaheuristic algorithms, especially regarding convergence speed, solution 

accuracy, and resilience in diverse optimization problem types. The use of statistical 

methods, such as the Friedman test and Wilcoxon Signed-Rank test, to rank the 

performance of algorithms, has become a standard practice. 

• In [18] twelve global optimization metaheuristic algorithms’ performances are 

investigated. These algorithms demonstrated a thorough numerical evaluation of twelve 

stochastic algorithms on specific continuous global optimization test problems, including 

particle swarm optimization (PSO), ant colony optimization (ACO), symbiotic organisms 

search (SOS), cuckoo search (CS), firefly algorithms (FA), artificial bee colony (ABC), 

and bat algorithms (BA). 

• In [19], Several well-known evolutionary algorithms’ characteristics were 

examined. To evaluate the optimization capabilities of genetic algorithms (GA), 

biogeography-based optimization (BBO), differential evolution (DE), evolution strategy 

(ES), and particle swarm optimization (PSO) on a set of real-world continuous 

optimization problems, the authors compared their basic and advanced versions. One of 

the main findings drawn from the experiment was that, under certain conditions, 

traditional versions of BBO, DE, ES, and PSO are equivalent to the genetic algorithm 

with global uniform recombination (GA/GUR). However this conceptual equivalency, 

their main contribution emphasizes that modifications to algorithms result in significantly 

differing performance levels. This result highlights the need for additional investigation, 

including a thorough examination and evaluation of the effectiveness of several 

metaheuristic algorithms, as explored in the current study.. 

• In a similar context, [20]compared the algorithmic equivalence of particle swarm 

optimization (PSO) with several more recent swarm intelligence algorithms, such as the 

artificial bee colony (ABC), firefly algorithm (FA), gravitational search algorithm (GSA), 

group search optimizer (GSO), and shuffled frog leaping algorithm (SFLA). The authors 

used combinatorial problems and continuous benchmark functions to quantitatively 

compare the basic and advanced versions of these algorithms. The research found that the 

standard versions of SFLA, GSO, FA, ABC, and GSA are algorithmically similar to basic 

PSO under certain experimental circumstances. However, the actual results also 

demonstrated how the basic and advanced algorithms performed differently for each of 

the two problem categories. 

• A comparative analysis is demonstrated in [19] by evaluating the run-time 

complexity and the required function-evaluation number for obtaining the global 

minimizer of algorithmic ideas for many benchmark functions of continuous optimization 

problems including particle swarm optimization (PSO), artificial bee colony (ABC), 

differential evolution (DE), and cuckoo search (CK). According to empirical results, the 

CK algorithm and the DE algorithm have an extremely similar capacity for problem-

solving. 

• This study is motivated by the recent, and implementation of several new 

metaheuristic algorithms by different researchers such as [14], [15], [16], [18], and [17], 

They argue that their motivation is based on the widely accepted understanding that no 

one metaheuristic optimization algorithm can solve all types of optimization problems 

with varying structures. Therefore, there is a continuous need to improve existing 
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algorithms or develop new metaheuristic optimization techniques capable of tackling 

increasingly complex and large-scale global optimization problems. Therefore, in line 

with this common belief, the current study seeks to investigate the algorithmic 

performance superiority of seven selected recent metaheuristic algorithms mentioned in 

subsection 2.2 and to also ascertain whether this set of algorithms has any similarity in 

their performance behaviors under the same experimental conditions. The next section 

provides a brief overview of the advantages and drawbacks of each representative 

algorithm to justify the selection of the aforementioned popular algorithms. 

 

2.2 Representative Algorithms: Inspirations, Benefits and Challenges  
Each of the seven metaheuristic algorithms that were previously described has a 

variety of advantages and disadvantages. However, the majority of these methods still 

have challenges, such as the inability to guarantee optimal solutions, the need for many 

iterations, and poor performance in the absence of adequate parameter tuning, they offer 

numerous advantages, such as flexibility and the ability to handle complex optimization 

problems. 

 
Algorithm 1 General Metaheuristic Optimization Algorithm 

 

1. Initialize the population (solutions) randomly within the defined search 

space. 

2. Evaluate the fitness of each solution. 

3. While the stopping condition is not met (e.g., max iterations or convergence 

threshold): 

a. Select the best solutions based on fitness. 

b. Update the position of the solutions using the algorithm-specific 

update rules. 

c. Evaluate the new fitness values of the updated solutions. 

d. Repeat until stopping condition is satisfied. 

4. Output the best solution found.Output the best solution found. 

 

 

 
Table 1 Abbreviationsa and the key characteristics of the seven algorithms 

 

Algorithm 

 

Inspiration Selection 

Mechanism 

Updating 

Strategy 

Special 

Feature 

Hippopotams 

Optimization 

Algorithm (HO) 

Hippopotamus 

social 

behavior 

Best fitness-

based 

Water 

movement 

strategy 

Balances 

exploration & 

exploitation 
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Puma Optimizer 

(PO) 

Puma hunting 

strategy 

Adaptive 

selection 

Distance-

based updates 

Dynamic 

learning 

mechanism 

Spider Wasp 

Optimizer (SWO) 

Spider wasp 

predatory 

behavior 

Prey-tracking Attack-based 

movement 

High local 

search 

efficiency 

Kepler Optimization 

Algorithm (KOA) 

Kepler’s 

planetary 

motion 

Gravity-based Orbital 

trajectory 

updates 

Avoids local 

optima 

Mountain Gazelle 

Optimizer (MGO) 

Mountain 

gazelle escape 

behavior 

Fittest 

individual 

tracking 

Speed-based 

updates 

Exploits 

survival 

instincts 

A Sinh Cosh 

Optimizer (SCHO) 

Sinh Cosh 

function 

properties 

Rank-based Logarithmic 

adjustments 

Inspired by 

mathematical 

functions 

Sea-horse optimizer 

(SHO) 

Seahorse 

migration 

patterns 

Group-based Ocean current 

modeling 

Strong 

adaptive 

mechanism 

 

 

3. The Experimental Results 

 

In this section, we investigate the efficiency of the proposed algorithms. 

Hippopotamus Optimization Algorithm (HO) [7], Puma Optimizer (PO) [8], Spider Wasp 

Optimizer (SWO) [9], Mountain Gazelle Optimizer (MGO) [10], A Sinh Cosh Optimizer 

(SCHO) [11], Kepler Optimization Algorithm (KOA) [12] and Sea-horse optimizer 

(SHO) [13] on unconstrained benchmark functions 23 benchmark functions at different 

dimensions. The algorithms are implemented in MATLAB, and their performance is 

evaluated against the 23 benchmark functions at different dimensions to determine their 

strengths and weaknesses. This suite comprises a diverse set of functions including 

unimodal, multimodal, hybrid, and composition functions. To statistically analyze the 

results obtained, two nonparametric statistical tests, Wilcoxon’s rank sum test, and the 

Friedman test, are performed at the 5% significant level [32]. The statistical tests of the 

algorithms based on the results of Wilcoxon’s rank sum test ( ) are reported in 

tables  and the symbols (+, - , ) indicate that a given algorithm performed significantly 

better (+), significantly worse (-) or not significantly different ( ) compared to our 
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algorithm SWO. Friedman rank test (Rank) is reported in the last row of each test 

problem 5. Table 3 details the parameter settings for the proposed algorithm, including 

population size, maximum iterations, dimension of the problems, and eps (acceptable 

error margin). To ensure a fair comparison, all algorithms are configured with a uniform 

population size of 30, and the termination criteria are an error gap smaller than  or 

the maximum allowable function evaluations are reached.   

 

Table 2 Summary of Test Functions 

 

Function Range Dimension Global Minimum 

F1 [−100, 100] 30 0 

F2 [−10, 10] 30 0 

F3 [−100, 100] 30 0 

F4 [−100, 100] 30 0 

F5 [−30, 30] 30 0 

F6 [−100, 100] 30 0 

F7 [−1.28, 1.28] 30 0 

F8 [−500, 500] 30 -418.9829 

F9 [−5.12, 5.12] 30 0 

F10 [−32, 32] 30 0 

F11 [−600, 600] 30 0 

F12 [−50, 50] 30 0 

F13 [−50, 50] 30 0 

F14 [−65.536, 65.536] 2 1 

F15 [−5, 5] 4 0.00030 

F16 [−5, 5] 2 -1.0316 

F17 [−5, 10] × [0, 15] 2 0.3983 

F18 [−2, 2] 2 3 

F19 [0, 1] 3 -3.86 

F20 [0, 1] 6 -3.32 
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F21 [0, 10] 4 -10.1532 

F22 [0, 10] 4 -10.4028 

F23 [0, 10] 4 -10.5363 

 
 

 

Table 3: Parameter settings. 

 

Parameters Definitions Values 

Num Population size 30 

f_count Maximum function 

evaluation 

24000 

Max_it Maximum number of 

iterations 

800 

dim Problem dimension 30 

eps The accepted error E⁻ ⁶  

 

 

 

Figure 1 shows the performance of the compared algorithms over 8 functions with 

different features, these comparisons provide a clear view of how each algorithm 

handles problems helping to guide their selection and potential modifications for 

specific optimization tasks. The sub-figures of  and  show that Ho and SCHO 

algorithms demonstrated outstanding performance with rapid initial convergence. It 

consistently showcased rapid initial convergence, maintaining superior function value 

reduction across evaluations maintaining superior function value reduction. 
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Fig. 1 The performance of the seven Algorithms 
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This highlights their robust exploitation capabilities, making it a reliable choice for 

unimodal problems where the global minimum is reached quickly. SWO and SHO 

displayed moderate convergence in both tests. These algorithms were consistent in 

reaching near-optimal solutions but with a more gradual approach compared to SCHO 

and HO. Their balanced exploration and exploitation capabilities make them dependable, 

although not the fastest solutions for unimodal optimization tasks. PO and MGO showed 
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variable behavior, often starting strong but plateauing at certain points in both  and . 

KOA exhibited step-like convergence patterns, characterized by periods of stagnation 

interspersed with sudden improvements. This behavior indicates strong exploration 

capabilities but limited exploitation, leading to longer times to reach optimal solutions. 

The Behavior of the algorithms on Multimodal Test Functions  and  shows that 

SCHO and HO consistently exhibited rapid initial convergence and maintained superior 

performance throughout the optimization process for both F8 and F10 with better 

performance for SCHO. This highlights its strong exploitation capabilities, making it an 

effective choice for multimodal problems where finding and maintaining optimal 

solutions amid many local optima is critical. SWO and SHO maintained consistent 

performance with gradual convergence. Their balanced approach allowed them to 

steadily approach lower function values without significant late-stage changes. KOA 

demonstrated a step-like convergence indicating strong exploratory behavior but slower 

overall progress. This suggests that KOA can explore effectively but struggles to refine 

solutions quickly after initial exploration. MGO and PO were able to make Early 

Convergence and rapid early progress but tended to plateau soon after. This suggests that 

these algorithms need enhancements to maintain steady progress throughout the 

optimization process, especially in complex landscapes. The performance of the 

algorithms across these four complex multimodal functions reveals varied strengths in 

exploration, exploitation, and long-term convergence. These functions, characterized by 

their numerous local optima, provide a challenging landscape for them. HO and SCHO 

are the top-performing algorithms, they showcase a strong balance between rapid initial 

convergence and steady long-term performance, effectively navigating multimodal 

landscapes and maintaining progress without prolonged plateaus. Especially noted for 

SCHO the robust initial exploitation capabilities. While it occasionally encounters 

plateaus (e.g., in  and ), it demonstrates the potential for significant late-stage 

improvements, highlighting its strong exploratory nature. SWO and SHO (Sea-horse 

Optimizer) maintain steady convergence patterns without aggressive improvements after 

the initial phase. Their behavior suggests a balanced approach to exploration and 

exploitation, making them reliable but not the fastest algorithms. SHO shows early 

convergence with limited further progress, whereas SWO maintains a consistent, 

moderate pace. PO and MGO exhibit strong early-stage convergence, rapidly reducing 

the function value but stabilizing quickly and often plateauing before reaching optimal 

solutions. This behavior indicates effective early exploitation with limited adaptability for 

continued progress. KOA is the exploration-oriented algorithm over all algorithms that 

stands out for its step-like convergence pattern, indicating strong exploration capabilities. 

However, its incremental improvements come at the cost of slower overall convergence. 

This makes KOA ideal for tasks that prioritize thorough exploration and global search but 

less suitable for situations demanding rapid results. To conclude the performance of all 

algorithms: SWO and SHO have a Balanced behavior, they are reliable for moderate 
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optimization needs, providing stable performance without aggressive changes after the 

initial phase. While MGO and PO the initial fast convergence with quick early-stage 

optimization is needed, enhancements are recommended to sustain their performance 

over longer evaluations. HO and SCHO lead in terms of effective performance across 

multimodal functions with fixed dimensions, showcasing a strong balance of exploration 

and exploitation. KOA remains notable for its thorough exploration capabilities, though it 

lags in speed. We gave the average error, mean, the best solution , the worst solution 

, and standard deviation (std) for all algorithms over 30 runs. The results in tables 4 

and 5 demonstrate that the SWO algorithm exhibits the best performance and shows a 

lower average rank across the majority of functions, it can be considered a top performer.  

 

Table  4:Statistical Results with Friedman’s Rank Test for the proposed algorithms 

 

Functions  KAO MGO PO SWO SCHO SHO HO 

F1 mean 2.3E-06 7.5E-07 5.1E-07 4.3E-07 9.1E-07 6E-07 2.8E-07 

 f_best 8.9E-07 4.8E-07 1.5E-07 1.3E-07 8.2E-07 3.5E-07 1.8E-10 

 f_worst 7.7E-06 9.8E-07 9.9E-07 9.2E-07 9.9E-07 9.7E-07 8.8E-07 

 std 2.1E-06 1.8E-07 2.8E-07 2.9E-07 5.3E-08 2E-07 3.4E-07 

 rank 7 4 4 2.75 4.5 3.5 2.25 

F2 mean 0.00054 7.5E-07 7.5E-07 5.9E-07 9.6E-07 8E-07 5.5E-07 

 f_best 0.00023 3.7E-07 5E-07 4E-07 9.3E-07 5.7E-07 8.2E-08 

 f_worst 0.00208 9.6E-07 9.8E-07 8.1E-07 1E-06 9.1E-07 1E-06 

 std 0.00055 1.7E-07 1.5E-07 1.4E-07 1.8E-08 1.1E-07 3E-07 

 rank 7 3.5 3.75 2.25 4.5 3.5 3.5 

F3 mean 460.293 0.04417 4.5E-07 4.5E-07 3.5E-07 6.9E-07 3.5E-07 

 f_best 206.834 3.5E-06 1.6E-07 6.8E-08 1.6E-11 4.9E-07 9.2E-09 

 f_worst 814.951 0.41452 8.1E-07 8.2E-07 9.9E-07 9.2E-07 9E-07 

 std 195.279 0.13022 2.6E-07 2.7E-07 4.4E-07 1.6E-07 3.1E-07 

 rank 7 6 2.75 2.75 3 3.75 2.75 
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F4 mean 6.73214 7.6E-07 7E-07 6E-07 1.1E-07 7.7E-07 5.3E-07 

 f_best 2.44092 4.3E-07 3.8E-07 2.9E-07 1.4E-09 4.2E-07 8E-08 

 f_worst 12.4358 9.9E-07 9.5E-07 9E-07 3.1E-07 9.5E-07 9.4E-07 

 std 3.05879 2.1E-07 2.1E-07 1.9E-07 1.1E-07 1.7E-07 3E-07 

 rank 7 5.5 4.25 2.75 1 4.25 3.25 

F5 mean 86.4129 1.4E-06 23.139 23.1845 27.8069 28.3353 0.13044 

 f_best 31.1901 6.8E-07 0.00045 22.9331 26.2393 27.2813 0.02251 

 f_worst 166.424 5.6E-06 26.183 23.6702 28.8272 28.8846 0.35617 

 std 40.7119 1.5E-06 8.1403 0.26019 0.87245 0.50875 0.10728 

 rank 7 1 3.75 3.5 5 5.5 2.25 

F6 mean 1.8E-06 0.00105 2.1E-06 9.9E-07 1.18896 4.19554 0.0519 

 f_best 7.1E-07 4.5E-05 7.2E-07 9.7E-07 1.8E-05 3.4762 0.00109 

 f_worst 4.1E-06 0.00371 6.1E-06 1E-06 2.77861 4.75476 0.08094 

 std 1.2E-06 0.00124 1.9E-06 1E-08 1.21751 0.3522 0.02932 

 rank 1.75 4.25 2.75 1.5 5.75 6.75 5.25 

F7 mean 0.03884 0.00167 0.00016 0.00066 4.5E-05 0.00013 0.00028 

 f_best 0.02519 0.00041 5.5E-06 0.0003 2.8E-06 1.3E-05 7.9E-05 

 f_worst 0.0531 0.00398 0.00032 0.00103 0.00016 0.00033 0.00076 

 std 0.0097 0.00119 0.00011 0.00028 4.8E-05 9.8E-05 0.0002 

 rank 7 6 2.5 5 1 2.5 4 

F8 mean 0.0367 0.12012 1956.06 16.9621 0.09527 1.15761 8.66013 

 f_best -418.98 -418.97 -1821.7 -419.66 -418.98 -419.03 -418.81 

 f_worst -418.88 -418.51 -3191.2 -363.25 -419.26 -414.55 -385.81 

 std 0.04708 0.1945 456.224 23.9156 0.13895 1.75083 13.1728 

 rank 2.5 4 4 5.25 2.5 4 5.75 

F9 mean 74.8427 7.1E-07 6.4E-07 5.9E-07 4.9E-08 5.9E-07 2.2E-07 
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 f_best 59.3395 4.9E-07 2.7E-07 8.8E-08 1.1E-10 2E-07 5.4E-09 

 f_worst 98.3301 9.6E-07 9.2E-07 9.9E-07 2.8E-07 8.9E-07 9E-07 

 std 11.6854 1.8E-07 2.2E-07 3E-07 8.6E-08 2.4E-07 2.8E-07 

 rank 7 4.75 4.25 4.75 1 3.25 3 

F10 mean 4.83773 8.6E-07 8.2E-07 8E-07 5E-07 7.8E-07 5.7E-07 

 f_best 1.0193 4.8E-07 7.3E-07 6.1E-07 2.9E-09 3.9E-07 1.1E-07 

 f_worst 18.3187 9.8E-07 9.6E-07 9.5E-07 9.9E-07 1E-06 9.5E-07 

 std 5.37113 1.5E-07 6.6E-08 1.1E-07 5.1E-07 1.9E-07 2.7E-07 

 rank 7 4.25 3.75 3.25 3.25 4 2.5 

F11 mean 0.00888 7.1E-07 4.7E-07 5.6E-07 3.6E-07 6.9E-07 3.5E-07 

 f_best 1.4E-06 3.1E-07 2E-07 8.8E-08 5.8E-10 3.7E-07 1.1E-09 

 f_worst 0.04421 9.6E-07 9.3E-07 9.5E-07 9.7E-07 9.2E-07 9.1E-07 

 std 0.01414 2E-07 2.3E-07 3.4E-07 4.7E-07 1.9E-07 3.4E-07 

 rank 7 4.5 3.25 3.75 3.75 3.5 2.25 

F12 mean 0.67213 1.7E-06 9.3E-07 9.7E-07 0.03169 0.42645 0.00331 

 f_best 2.6E-06 4.3E-09 7.5E-07 9E-07 1.7E-08 0.36452 0.00249 

 f_worst 3.69997 4.6E-06 1E-06 1E-06 0.31687 0.52747 0.00594 

 std 1.21224 1.7E-06 7.2E-08 3.4E-08 0.1002 0.05077 0.00105 

 rank 6.5 2.5 2 2 4.5 6 4.5 

F13 mean 0.29082 7.2E-07 0.0022 9.6E-07 0.9494 2.4726 0.05777 

 f_best 2.5E-06 3.4E-07 8.6E-07 8.8E-07 2.3E-07 2.23933 0.00105 

 f_worst 2.90612 9.5E-07 0.01099 1E-06 2.05649 2.71279 0.13332 

 std 0.91892 2.2E-07 0.00463 4.4E-08 0.86658 0.151 0.04299 

 rank 6 1.5 3 2.25 4.5 6.25 4.5 

F14 mean 6.6E-07 5.3E-06 0.00112 0.00024 4.09579 3.91257 0.19826 

 f_best 1 1 1.00013 1.00007 1 0.99991 1 
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 f_worst 1 0.99999 0.998 0.99902 12.6705 12.6705 2.98211 

 std 9E-07 7.2E-06 0.00103 0.00032 5.29815 4.58832 0.62679 

 rank 2.5 3 4 3.5 6 4.75 4.25 

F15 mean 0.0001 0.00022 9.9E-05 7.5E-06 2.6E-05 0.00212 8.9E-06 

 f_best 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 

 f_worst 0.00074 0.00073 0.00122 0.00031 0.00038 0.02081 0.00032 

 std 0.00017 0.00019 0.00029 7.5E-19 2.1E-05 0.00646 3.7E-06 

 rank 4.25 4.75 4.5 1 3.75 7 2.75 

F16 mean 2.8E-07 6.4E-07 9.1E-06 8.1E-07 4.9E-07 1.7E-06 5.1E-07 

 f_best -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 

 f_worst -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 

 std 3.5E-07 7.4E-07 1.2E-05 8.9E-07 5.8E-07 2.4E-06 6.1E-07 

 rank 2.75 4 5 4.75 2.75 5 3.75 

F17 mean 5.9E-07 5.1E-07 4.2E-05 2.4E-06 1.6E-06 0.00184 8.3E-07 

 f_best 0.398 0.398 0.398 0.398 0.398 0.398 0.398 

 f_worst 0.398 0.398 0.39791 0.39801 0.398 0.40807 0.398 

 std 6.4E-07 5.7E-07 5.1E-05 2.8E-06 2.1E-06 0.00305 9.8E-07 

 rank 2.25 2.25 5 4.25 4.75 5.75 3.75 

F18 mean 5.1E-07 4.8E-07 4.3E-07 6.2E-07 35.1669 8.1E-07 4.5E-07 

 f_best 3 3 3 3 3 3 3 

 f_worst 3 3 3 3 84.0001 3 3 

 std 2.9E-07 3.5E-07 2.5E-07 3E-07 39.8283 9.2E-07 1.8E-07 

 rank 3.75 3.5 1.5 4.5 7 5.25 2.5 

F19 mean 6.9E-07 3.1E-06 0.00094 5.1E-05 2.6E-06 0.00324 1.8E-05 

 f_best -3.86 -3.86 -3.8601 -3.86 -3.86 -3.86 -3.86 

 f_worst -3.86 -3.86 -3.8623 -3.8602 -3.86 -3.853 -3.8601 
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 std 6.7E-07 4E-06 0.0012 8.3E-05 3.2E-06 0.00336 3E-05 

 rank 2.5 4 3.5 3.5 3.25 6.75 4.5 

F20 mean 3.32 3.32 4.67776 3.32046 3.32057 3.78893 3.32125 

 f_best -3E-08 -3E-08 -0.922 -3E-05 -3E-07 -0.0078 -6E-05 

 f_worst -3E-08 -3E-08 -2.2766 -0.0018 -0.0051 -1.6179 -0.0034 

 std 3.5E-24 3.5E-24 0.36567 0.00063 0.0016 0.65583 0.00132 

 rank 4 4 3.75 3.75 4.25 4.25 4 

F21 mean 1E-06 8.5E-07 7.6E-07 7.7E-07 0.51243 5.74508 1.6E-05 

 f_best -10.153 -10.153 -10.153 -10.153 -10.153 -5.0823 -10.153 

 f_worst -10.153 -10.153 -10.153 -10.153 -5.0552 -0.8799 -10.153 

 std 7.3E-07 1.5E-07 1.7E-07 1.4E-07 1.61121 1.25126 1.8E-05 

 rank 3.5 3 1.5 2 6.25 6.75 5 

F22 mean 5.4E-07 5.5E-07 0.76372 0.53151 2.65433 5.57419 2.7E-06 

 f_best -10.403 -10.403 -10.403 -10.403 -10.403 -5.549 -10.403 

 f_worst -10.403 -10.403 -2.7659 -5.0877 -5.0876 -4.3436 -10.403 

 std 6.4E-07 6.2E-07 2.415 1.68079 2.79639 0.31742 5.6E-06 

 rank 2 2.5 4.75 3.75 6 6 3 

F23 mean 2.4E-05 9.6E-05 0.02855 0.00151 2.26072 6.28442 0.5289 

 f_best -10.403 -10.403 -10.407 -10.403 -10.403 -5.0899 -10.403 

 f_worst -10.403 -10.403 -10.473 -10.407 -2.8705 -0.945 -5.1285 

 std 2.8E-05 0.00015 0.03613 0.00164 3.63777 1.6811 1.6675 

 rank 2.75 2.75 2.5 2.75 5.25 6.75 5.25 

 Av_rank 4.782609 3.717391 3.478261 3.282609 4.065217 5 3.673913 
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Compared to the other algorithms in this category, While these algorithms showed 

potential in breaking out of local optima, their slower convergence suggests the need for 

better exploitation mechanisms to enhance performance on unimodal functions. When 

examining the multimodal benchmark functions, the exploration abilities of the KAO 

algorithm demonstrated superior performance, particularly on functions 

, especially in the fixed-dimension test cases. Its exploration 

capability makes it a strong candidate for problems that require extensive search space 

coverage at the expense of speed. Although SWO only achieved the best function 

evaluation on , it provided steady and reliable performance without aggressive 

convergence and consistently ranked highest among all algorithms due to its stability and 

effective balance between exploitation and exploration processes. The convergence 

speeds of SCHO and HO emerging are the most efficient in both test functions due to 

their swift descent toward optimal values. SWO and SHO provided steady, reliable 

performance without aggressive convergence, while MGO and KOA required more time 

to achieve comparable results. that indicates SCHO and HO excel at exploitation, 

capitalizing quickly on promising areas of the search space. In contrast, MGO and PO 

showed stronger exploratory behavior, beneficial for more complex problems but less 

effective in the unimodal test cases analyzed, and could benefit from adaptive strategies 

that reintroduce exploration after reaching a plateau to avoid stagnation. KOA and SHO 

could incorporate mechanisms that encourage more aggressive exploitation once a 

promising region is found, improving their speed of convergence.   

 

Table  5: Summary of Wilcoxon’s rank sum at 5% significance level 

 

SWO vs. + (better) = (no sig.) - (worse) 

KOA 14 0 9 

MGO 12 0 11 

PO 17 0 6 

SCHO 13 0 10 

SHO 19 0 4 

HO 8 0 15 
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From the Wilcoxon test results in Table 5, it can be observed that SWO has a 

higher + count than the other algorithms, particularly against SHO and SCHIO, 

suggesting that SWO is more effective in certain scenarios when compared to these 

algorithms. However, while SWO performs worse most of the time against HO, it 

achieves a better average rank than HO. This suggests that HO might be more robust or 

effective on certain functions in terms of average error, but not across all majorities. 

4. CONCLUSION 

 

In this study, a comparative analysis of seven recent metaheuristic algorithms; 

Hippopotamus Optimization Algorithm (HO), Puma Optimizer (PO), Spider Wasp 

Optimizer (SWO), Mountain Gazelle Optimizer (MGO), Sinh Cosh Optimizer (SCHO), 

Kepler Optimization Algorithm (KOA), and Sea-Horse Optimizer (SHO) were performed 

using 23 standard test functions. These functions included both unimodal and multimodal 

benchmark problems, allowing for a comprehensive evaluation of each algorithm’s 

exploitation and exploration capabilities. The results demonstrated that for unimodal 

functions, the HO and SCHO algorithms excelled, indicating stronger exploitation 

abilities in navigating simpler landscapes. On the other hand, the KAO algorithm 

performed best on several multimodal functions, particularly those with fixed 

dimensions, showcasing its robust exploration abilities. Despite only achieving the best 

function evaluation on , the Spider Wasp Optimizer (SWO) consistently maintained the 

highest overall rank due to its balanced performance across both unimodal and 

multimodal functions. Its stability and effective balance between exploitation and 

exploration highlight its potential as a versatile optimization tool. Statistical validation 

through the Friedman test and Wilcoxon Signed-Rank Test confirmed the significance of 

the differences in performance across the algorithms. These findings suggest that while 

certain algorithms may excel in specific problem types, a balance between exploration 

and exploitation is crucial for overall success across diverse optimization landscapes. 

Future research could focus on hybridizing these algorithms to leverage the strengths of 

multiple approaches, or exploring their performance on constrained optimization 

problems and real-world applications in areas like logistics, machine learning, energy 

systems, and engineering design. 

 
A. Benchmark Functions 

 

In this appendix, we present the mathematical expressions of the seven benchmark 

functions used in this study.  

A.1 Sphere 
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A.2  Schwefel 2.22 

  

 

A.3  Shifted Schwefel’s Problem 

  

 

A.4  Schwefel 2.21 

  

  

 

 

 

A.5  Rosenbrock 

  

  

 

 

A.6  Step 

  

  

 

A.7  Quartic 
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A.8  Schwefel 

  

  

 

A.9  Rastrigin 

  

  

 

A.10  Ackley 

  

 

 

 

A.11  Shifted Rotated Griewank’s without Bounds 

  

  

 

A.12  Penalized 1 
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A.13  Penalized 2 

  

  

 

  

 

A.14  Foxholes 

  

  

 

A.15  Kowalik 

  

  

 

A.16  6 Hump Camel Back 

  

  

 

A.17  Branin 

  

  

 



Alaa M.Asklany et al  

 

381 

A.18  Goldstein Price 

  

 

 

 

 

A.19  Hartman3 

  

  

 

A.20  Hartman6 

  

  

 

A.21  Shekel5 

  

  

 

A.22  Shekel7 

  

  

 

A.23  Shekel10 
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