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1. INTRODUCTION  

 

The Weibull distribution is frequently employed for lifetime data analysis in reliability 

inference and survival analysis because the hazard function (HF) and probability density 

function (PDF) are flexible. More study has been conducted using the Weibull 

distribution from both frequentist and Bayesian perspectives. Johnson et al. [1] offer a 

superb analysis, while reliability sampling plans and Bayesian inference are examined by 
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A lower record sample is utilized to derive E-Bayesian (EB) estimates 

for the rate parameter of the inverse Weibull distribution. These estimates 

are developed under two different error loss functions: the scaled squared 

error loss (SSE) function and the linear exponential error loss (LINEX) 

function. The expected mean squared errors (E-MSEs) of these EB 

estimates are computed in order to evaluate the accuracy and dependability 

of these estimates. An exhaustive Monte Carlo simulation research is carried 

out in order to carry out a detailed comparison of the performance of 

different estimators. This simulation can be used to better understand how 

the estimators behave and how resilient they are under different scenarios 

and sample sizes. The analysis of two real-world data sets offers a further 

illustration of how the presented approaches can be used in practice. These 

examples further validate the usefulness of the EB estimates in statistical 

inference and decision-making processes by demonstrating how well they 

simulate real-life data. 
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Kundu [2] for Weibull distribution. Depending on the value of the shape parameter, the 

HF may be decreasing or increasing, and the PDF may be declining or uni-modal. When 

a mortality study based on data sets indicates that the lifetime distribution may have a 

non-monotone hazard function, the Weibull distribution might not be appropriate for data 

analysis (Kundu and Howlader [3]; Singh et al. [4]). Consequently, selecting a suitable 

probability model for examining such data sets is essential. Another possibility for a 

probability model is the inverse Weibull distribution (IWD). The IWD's PDF and 

cumulative distribution function (CDF) are given, respectively, by 

                                  (1) 

and 

(2) 

where the rate parameter is denoted by δ and the shape parameter by γ. 

The IWD has been investigated and implemented in a variety of industries, including 

engineering and medicine. The IWD, for instance, was developed by Keller and Kamath 

[5] and Keller et al. [6] as a useful model to explain mechanical component deterioration 

phenomena, such as the dynamic components of diesel engines. Erto [7] showed how the 

IWD matches a number of data sets found in the literature, such as the breakdown 

durations of an insulating fluid under the influence of a constant tension. Using 

fundamental mathematics' derivative, it is possible to demonstrate that although IWD 

hazard function is unimodal, it is not monotone.  

In Bayesian estimation process, the joint prior distribution of population parameters 

frequently depends on the choice of hyper-parameters. In order to address this problem, 

Lindley and Smith [8] first introduced the hierarchical Bayesian technique. Han [9] 

conducted research on the hierarchical Bayesian technique and introduced the concept of 

EB estimation. The hierarchical Bayesian technique requires the establishment of a joint 

prior in two separate steps. As a result, the Bayesian estimate is less affected by the 

choice of hyper-parameters. By using a joint prior distribution that is well-suited to the 

hyper-parameters, the EB estimate method reduces the impact of arbitrary choice. 

Numerous researchers have examined the EB estimation method. For instance, Han [10] 
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employed the EB estimation in the case of exponential distribution to calculate the failure 

rate estimator. Based on the binomial distribution, Han [11] developed the formulas for 

EB and hierarchical Bayesian dependability assessments. Han [12] examined the EB and 

hierarchical Bayesian estimations of the shape parameter of the Pareto distribution when 

the scale parameter is known. In order to obtain the estimates of the exponential 

distribution parameter and the corresponding expected mean square errors (E-MSEs) with 

a conjugate prior distribution under the scaled square error (SSE) loss function, Han [13] 

looked into the EB estimation approach. Based on Pareto model, Han [14] examined EB 

estimates and E-MSEs under squared error (SE), weighted squared error (WSE), and 

precautionary loss functions. Okasha et al. [15] formulated the EB estimates for the 

parameter, using a progressive-type-II censored sample from the Weibull distribution.  

Gupta and Gupta [16] conducted a comparison between Bayesian and EB estimators for 

the exponentiated IWD rate parameter. They used gamma prior and evaluated the 

estimators using Degroot, Al-Bayyati, and lowest expected loss functions. It was assumed 

that the shape parameter was known. The EB estimate employed a uniform prior 

distribution throughout the interval (0,1) for the shape hyper-parameter, and three distinct 

priors for the rate hyper-parameter. Nevertheless, the uniform prior distribution has 

limited flexibility when applied to random variables inside the range of (0,1). Basheer et 

al. [17] used the LINEX loss function and exponential prior to examine E-Bayesian and 

hierarchical Bayesian estimates for the rate parameter of IWD.  

The Bayes estimator of the parameter  and its related MSE is displayed in Section 2. 

The EB estimator of the IWD rate parameter will be defined in Section 3. Applying a 

number of loss functions and three joint priors for two hyper-parameters, Section 3 will 

discuss the E-MSEs and provide closed-form formulas for the EB estimators of the IWD 

rate parameter. Section 4 discusses the simulation technique and outcomes. Section 5 

provides two application examples to demonstrate how the proposed approaches can be 

applied. Section 6 addresses conclusions and remarks. 
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2. BAYEIAN ESTIMATION  

 

 

Record statistics, according to Chandler [18], is a model for successive extremes in a 

series of independent random variables with the same distributions. A specific dependent 

structure is taken into consideration by the record statistics model. This implies that with 

each component failure, the system's distribution of component life-span may change. 

Only the voltages lower than the previous one can be recorded when a variety of 

equipment voltages are taken into account; this is an example of a lower record. In this 

study, the lower record statistics are taken into account. From the PDF , let  

 be a series of independent random variables with identical distributions. The 

formula is . In this series,  is considered an 

upper (lower) record if  >(<) and . By definition,  is both an upper and 

lower value. The notations  and stand for the th lower and upper records, 

respectively. Thus, we can observe that several attempts are attempted to obtain records, 

and the record is created after one of them is successful. Consequently, we do not obtain 

data with every effort. Records are the source of the information we possess. An interest 

in record values has grown among some academics, who have examined statistical 

findings for several models based on lower and upper record values; for instance, Jaheen 

[19], Baklizi [20] and Mousa et al. [21], among others. 

Based on  lower record values  from IWD  

distribution with PDF given by Eq. (1), consequently, the likelihood function can be 

shown as 

 

                                                                        (3) 

  where  
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where . 

The natural logarithm of the likelihood function given by Eq. (3) is expressed as 

 

 When the parameter γ is known, the likelihood equation for the parameter   can be 

written as 

 

then, the maximum likelihood estimate (MLE) of the parameter  can be obtained as  

                                                                                        (4) 

The following gamma conjugate prior density can be used to calculate the Bayes 

estimator of the parameter δ 

                                        (5) 

 where  and  are two hyper-parameters. The following posterior distribution 

of  given  is  obtained from Eq. (3) and Eq. (5) as  

                                          (6) 

 Using the SSEL function, , which was suggested by Lehmann and 

Casella [22], the Bayes estimator of  can be shown to be  

                                                        (7) 

 where  and  

        (8) 
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In real applications,  and 2, are typically used. When  equals 0, the SSE loss 

function is known as  SE loss function, and the Bayes estimator under the SE loss 

function is denoted by (7) as . For , the SSE loss function is known as the 

WSE loss function, and (7) equals .  The SSE loss function becomes the 

quadratic squared error (QSE) loss function, and (7) equals , if  

.  

Varian [23] developed an asymmetric loss function, 

, for a given real integer, , which is 

commonly known as the LINEX function. The Bayes estimate of δ can be illustrated 

using the LINEX loss function, following the same technique as Varian [23] 

                                  (9) 

where  and  to ensure  in the domain of the logarithm 

function based on .  Furthermore, it can be proven that   with  when 

 by definition and basic calculus; that is, . When  can 

be defined as , resulting in   being a continuous function with respect to  over 

. 

2.1.   Theoretical mean, variance and mean squared errors 

Expectation, variance, and mean square error (MSE) are three often used measures for 

evaluating estimator performance. The transformation approach demonstrates that  has  

gamma density function with parameters .  As a result, the expectations and mean 

square errors for the MLE of  we have  

 

and 
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                                                                   (10) 

And for the Bayes estimation of   when  is known, we can write: 

(i) Based on SSE loss function 

  

  

  

                                                                      (11) 

(ii) Based on LINEX loss function 

  

  

  

                 (12) 

               

It is clear that  Eq. (12) is true for  and Notice that  is 

equivalent to . When , Eq. (12) can be represented 

as 
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where the series  is convergent in every way. When , it is 

definable as  with  based on the 

asymptotic relationship between  and  with  when . When 

, (12) can be represented as 

 .                                

Eq. (12) is a continuous function of  when . Therefore, using a simple 

calculus method, it can be demonstrated that (12) is a continuous function of  over 

 for the specified  and hyperparameters  and . 

Additionally, it should be noted that  and  don't depend on  

and rely on , and  and  don't depend on   but rely 

on hyper-parameters and . 

3. EB AND E-MSE ESTIMATIONS 

 

Han [9] suggests that selecting the prior parameters  and  ensures that the prior 

 in (5) is a decreasing function of . The derivative of  with regard to 

 is 

. 

Thus, for , the prior  is a decreasing function of  because 

 when  and . Assuming independent hyper-parameters 𝑎 and 

𝑏 with density functions  and , respectively, consequently the following is an 

expression for the bivariate density function of  and : 

 

The following is the EB estimate of  for a given  based on the SSE loss function: 
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                                                                 (13) 

and the related E-MSE, given , is  

E-MSE                                (14) 

The expression  represents the Bayes estimator of  , as defined in Eq. (7). The 

term  refers to the MSE of the Bayes estimate of  given by (11). The 

domain  represents the range of values for  and , within which the prior density 

decreases with respect to δ. The EB estimate of δ, given , is defined as when the LINEX 

loss function is utilized. 

                                                                    (15) 

and the associated E-MSE, indicated by , is described as 

E-MSE                                    (16) 

where  is the Bayes estimator of  given by  is  of 

Bayes estimator of  given by (12) and  is the domain of  and  for which the prior 

density is decreasing in . 

3.1. EB estimations of  

The features of EB estimations of  depend on the distributions of two hyper-parameters 

(  and ) in this study. Consider beta density with parameters  and . 

 

and three distributions for  will be provided as follows, 
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and 

  

where , and  represents the beta function. To examine the EB estimations of 

δ, the following three joint distributions,  of    and 

 for , for which the gamma prior,  of (5), is a decreasing 

function of , as shown below 

                                                  (17) 

Using (7), (13) and (17), we can calculate EB estimates of δ given  and  based on  SSE 

loss function. Then  EB estimates of δ based on  and  are as 

follows, 

  

  

                                                     (18) 

                        (19) 

and 

                           (20) 

Using (9), (15), and (17), we can calculate the EB estimates of the parameter under the 

LINEX loss function, given  and . Given  and the LINEX loss function, the EB 

estimates of  based on  and  are, respectively, as follows 
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            (21) 

  

  

  

                                                                                                                                    (22) 

and 

  

  

   (23)                  

3.2. E-MSE estimations of  

The closed forms of the E-MSE estimators for the IWD rate parameter are covered in this 

section. We use (11), (14) and (17), to obtain  E-MSE estimates of the parameter δ, based 

on SSE loss function and  and , respectively, by 

E-MSE  
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,                                         (24)            

E-MSE                     (25) 

and 

E-MSE                 (26) 

From (12), (16) and (17),  we obtain E-MSE estimates of the parameter , based on 

LINEX loss function with and for   and  

respectively by 

   E-MSE  

 

 

 

                  E-MSE ,                                                                    (27) 

E-MSE  
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                E-MSE ,                                                                   (28) 

and 

E-MSE  

 

 

 

               E-MSE                                                                    (29) 

 

4. MONTE CARLO SIMULATION 

 

This section outlines Monte Carlo simulation methodology that will be employed to 

evaluate the efficacy of the suggested estimation techniques across the full population.  

In order to assess the effectiveness of each EB estimator, E-MSE ,  for 

 and E-MSE  for  will be utilized over the sampling 

distribution of sample . Simultaneously, the comparison between Bayesian estimators 

and MLE will be examined. To achieve this objective,  MSE  and 

MSE  for all Bayesian estimators and the expected MSE  for 

MLE computed across the sampling distribution of  and across overall population of , 

utilizing Beta distribution for  and the three distributions of  as stated in Section 3.1. 

We consider for Monte Carlo simulation, the sample size , and 

, three joint distributions,  from Eq.  (17) with 

 or 4 and  or 5, using Matlab, perform the 

following procedures to obtain three SSE loss functions with , or 2 and a 

specified  for the LINEX loss function: 



Heba S. Mohammed et al 

 

267 

 (1) Assign . 

(2)  If , a joint distribution,  is selected as specified in Eq. 

(17), utilizing the provided values of  and ; if not, proceed to Step 6. 

(3)  Give  and  random values by utilizing the beta prior, , and prior, , 

respectively. 

(4) For a given value of , randomly produce a sample, , of size  from IW(δ, γ) as 

defined in Eq. (1). 

(5)  For , compute the values of E-MSE , for k = 0, 1, 2, 

respectively, and  

E-MSE . 

(6)  For , 

   (I)   assess the value of MSE , utilizing  from Step 5 and sample size , and 

   (II) assess the value of MSE   for  and determine the value of 

MSE  utilizing   from Step 3 and the sample . 

(7) Repeat Step 3 to Step 6 for 10,000 times. Calculate and label the average of 10,000 

calculated values for E-MSE , for  and E-MSE as 

E-MSE(  ),   and E-MSE(  ), respectively.  The average of 10,000 

calculated values for MSE  for , MSE(  ) and 

MSE( )(δ) are calculated and labeled as MSE( ) for k = 0, 1, 2,  

MSE(  and MSE( ), respectively. 

(8)  Set   and repeat Steps 2 through 7 until  . 

The simulation results utilizing and  for  , 

 and  are displayed in Tables 1 and 2. To see the impact from the range of 
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, Tables 3 and 4 also provide the simulation results over a wide range, , of  for the 

same sample sizes 5 and 7. Additional simulation results are included in the Appendix 

Section.  

Table 1:  E-MSE of  with  and . 

      

  E-MSE  E-MSE  E-MSE  E-MSE  

 

3 

1 0.0566 0.0637 0.0731 0.1224 

2 0.0730 0.0846 0.0943 0.1579 

3 0.0402 0.0428 0.0519 0.0869 

 

5 

1 0.0286 0.0300 0.0339 0.0496 

2 0.0330 0.0348 0.0390 0.0572 

3 0.0243 0.0251 0.0287 0.0421 

 

7 

1 0.0183 0.0189 0.0208 0.0281 

2 0.0203 0.0211 0.0230 0.0312 

3 0.0163 0.0168 0.0185 0.0251 

 

9 

1 0.0124 0.0127 0.0137 0.0177 

2 0.0133 0.0137 0.0148 0.0190 

3 0.0115 0.0117 0.0127 0.0163 

 

  

 

 

Table  2:   MSE  of   with   and . 

  k = 0 w = 2 k = 1 k = 2 

 
 

 
MSE  
 

MSE  MSE  MSE  
 

MSE  
 

3  
0.6529  0.0893 0.1188 

 
0.1147 

 
0.1909 

5  
0.1523  0.0493 0.0748 

 
0.0583 

 
0.0853 

7  
0.0752  0.0404 0.0690 

 
0.0458 

 
0.0619 

9  
0.0406  0.0226 0.0428 

 
0.0249 

 
0.0320 

 

 



Heba S. Mohammed et al 

 

269 

Table 3:   E-MSE of   with n = 5, γ = 3, u = 3 and . 

      

  E-MSE  E-MSE  E-MSE  E-MSE  

 

25 

1 0.0011289 0.0011316 0.0013368 0.0019607 

2 0.0012998 0.0013036 0.0015392 0.0022575 

3 0.0009580 0.0009596 0.0011344 0.0016639 

 

50 

1 0.0002822 0.0002824 0.0003342 0.0004902 

2 0.0003249 0.0003251 0.0003848 0.0005644 

3 0.0002395 0.0002396 0.0002836 0.0004160 

 

100 

1 0.00007055 0.00007057 0.0000836 0.0001225 

2 0.0000812348 0.00008125 0.00009619 0.0001411 

3 0.00005987 0.00005988 0.00007090 0.0001039 

 

500 

1 0.00000282216 0.00000282218 0.000003342040 0.00000490165 

2 0.00000324939 0.00000324941 0.00000384796 0.00000564 

3 0.000002394 0.000002395 0.000002836 0.00000415 

  

Table 4:  E-MSE of   with  and  

      

 
  E-MSE  E-MSE  E-MSE  E-MSE  

 1 0.0007223 0.0007235 0.0008195 0.0011112 
25 2 0.00079939 0.0008009 0.0009070 0.0012298 

 3 0.00064523 0.00064604 0.00073208 0.00099265 

 1 0.00018058 0.00018066 0.00020489 0.00027781 
50 2 0.00019985 0.00019995 0.00022675 0.00030746 

 3 0.00016131 0.00016136 0.00018302 0.00024816 

 1 0.00004514 0.00004515 0.00005122 0.00006945 
100 2 0.00004996 0.00004997 0.00005669 0.00007686 

 3 0.00004034 0.00004033 0.00004576 0.00006204 

 1 0.00000181 0.00000181 0.00000205 0.00000278 
500 2 0.00000199 0.00000199 0.00000227 0.00000307 

 3 0.00000161 0.00000161 0.00000183 0.00000248 

 

The comparison of EB estimators, as evidenced by Tables 1, 2, 3 and 4 yields the 

following conclusions: 

(1) As the sample size  increases, the simulated average of E-MSE diminishes. 
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(2) For any choice of  from 0, 1, 2, all simulated averages of E-MSEs over the 

population of  under the SSE loss function, E-MSE( ) < E-MSE( ) < E-

MSE( ) for any specified sample . 

(3) Based on the prior , where  = 1, 2, 3, derived from Eq. (17), all four 

simulated averages of E-MSEs associated with three distinct SSE and LINEX loss 

functions, achieve  that  

E-MSE( )(k = 0) < E-MSE( )< E-MSE( )(k = 1)<E-

MSE( )(k = 2) for every specified sample . 

(4) All three simulated averages of E-MSEs under the LINEX loss function achieve that  

E-MSE( ) < E-MSE( ) < E-MSE( ) for any specified . 

(5) Tables 1 and 2 demonstrate that the sample size does not influence the comparative 

results among all E-MSEs. 

(6) Tables 3 and 4 demonstrate that the  value does not influence the comparative results 

among all  

E-MSEs. 

5. ILLUSTRATIVE EXAMPLES  

 

This section will utilize two real data sets to demonstrate the previously discussed 

estimation methodologies for the IWD rate parameter, δ. 

5.1. Example 1. Breakdown Times at Voltage 34 KV 

As supplied by Nelson [24], the 19 documented breakdown times, expressed in minutes, 

for an insulating fluid between electrodes at a voltage of 34 kV are as follows: 0.96, 4.15, 

0.19, 0.78, 8.01, 31.75, 7.35, 6.50, 8.27, 33.91, 32.52, 3.16, 4.85, 2.78, 4.67, 1.31, 12.06, 

36.71, 72.89. Abd Ellahal [25] examined the model's applicability to the provided real 

data set and demonstrated how well the  IWD  fits it. The following lower records values 

are obtained using these data and are represented as  4.15, 3.16,  2.78,  1.31,  0.96,  0.78,  
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0.19. The numerical data presented in Tables 5 to 8 are derived from the previous lower 

records.  

Table 5: Estimates of , where , and  

. 

  

     

Table 6:  Calculated MSE results for . 

MSE( )( ) MSE(  MSE(  

 

1.1175 
               

          1.0998 0.6446 0.7305 0.9884 

 

 
 
 
Table  7:   Calculated  E-MSE results for    using  , , 

 .   

 E-MSE(  

 

E-MSE(  

 

     
1 0.2396 0.1976 0.2243 0.3041 

2 0.3605 0.2891 0.3280 0.4447 

3 0.1186 0.1062 0.1205 0.1634 

 
 
 
 
 

  
 

 
 

 
 

 
 

  
 

 
 

 
 

 
 

          

2.4046 1.7303  2.1987  1.9056 1.6124 

1 0.9502 1.1065 0.9576 0.8086 

2 1.1487 1.3716 1.1870  

3 0.7517 1.2032 1.14123 1.07930 
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Table 8: Calculated E-MSE results of   for different  with u = 3 and v = 4.  

 

5.2. Example 2. Repair Times for An Airborne Communication Transceiver            
The data was initially examined by Von Alven [26]. The data is displayed in Table 9. 

Prior to data analysis, we applied the IW model to this dataset. We employed the 

Kolmogorov-Smirnov (K-S) distance between the fitted empirical distribution functions 

and their related p-values. The K-S statistic and the accompanying p-value for this data 

are 0.0815 and 0.9197, respectively. The IWD demonstrates a strong fit to this data set, 

see Shahrastani and Makhdoom [27]. The highest likelihood estimates for parameters  

and  are 1.011941 and 1.125229, respectively. We regard the lower record values from 

this data as expressed as 0.6, 0.5, 0.5, 0.5, 0.5, 0.3, 0.2. The numerical values are 

presented in Tables 10 to 13.  

 

Table 9: 72 Repair Times for an airborne communication transceiver. 

0.2 0.3 0.5 0.5 0.5 0.5 0.6 0.6 0.7 0.7 0.7 0.7 

0.8 1.0 1.0 1.0 1.0 1.0 1.1 1.3 1.5 1.5 1.5 1.5 

2.0 2.0 2.2 2.5 2.7 3.0 3.3 3.3 4.0 4.0 4.5 4.7 

5.0 5.4 5.4 7.0 7.5 8.8 9.0 10.3 7.5 8.8 9.0 10.3 

 

 

 

      

  E-MSE(  

 

E-MSE(  

 

E-MSE(  

 

E-MSE(  

 

 1 0.0914 0.1085 0.1037 0.1407 

2 0.1504 0.1822 0.1707 0.2314 

3 0.0324 0.0347 0.0368 0.0499 

 1 0.0482 0.0568 0.0547 0.0742 

2 0.0848 0.1013 0.0963 0.1305 

3 0.0116 0.0122 0.0132 0.0179 

 1 0.0248 0.0291 0.0281 0.0381 

2 0.0457 0.0541 0.0519 0.0704 

3 0.0039 0.0040 0.0044 0.0059 

 1 0.0051 0.0059 0.0058 0.0078 

2 0.0099 0.0116 0.0112 0.0152 

3 0.00024709 0.00025301 0.00028035 0.00038013 
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Table 10: Estimates of , where , 

  and  

 

Table 11: Calculated MSE results for . 

MSE( )( ) MSE(  MSE(  

 

0.3798 
    

0.4085 0.2394 0.2713 0.3671 

 

Table  12:  Calculated E-MSE results for   using  

. 

 
 

E-MSE(  
 

E-MSE(  
 

     
1 0.1059 0.0965 0.1095 0.1485 
2 0.1450 0.1302 0.1477 0.2002 
3 0.0668 0.0629 0.0714 0.0968 

 

Table 13:  Calculated E-MSE results of for different  with u = 3 and v = 4. 

 
 

  
 

 
 

 
 

 
 

  
 

 
 

 
 

 
 

          

1.3734 1.1457 1.3400 1.1613 0.9827 

1 0.7241 0.8066 0.6980 0.5895 

2 0.8403 0.9498 0.8220 0.6941 

3 0.6079 0.6634 0.5741 0.4848 

  
    

  E-MSE  E-MSE  E-MSE  E-MSE  

 1 0.0484 0.0523 0.0549 0.0745 

2 0.0744 0.0814 0.0844 0.1144 

3 0.0225 0.0233 0.0255 0.0346 

 1 0.0265 0.0284 0.0300 0.0407 

2 0.0442 0.0479 0.0501 0.0679 

3 0.0088 0.0090 0.0099 0.0135 

 1 0.0139 0.0149 0.0157 0.0213 

2 0.0247 0.0266 0.0280 0.0379 

3 0.0031 0.0031 0.0035 0.0047 

 1 0.0029 0.0031 0.0033 0.0044 

2 0.0056 0.0059 0.0063 0.0085 

3 0.00021431 0.00021655 0.00024316 0.00032971 
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6. CONCLUSION 

 

The EB estimators of the rate parameter of the IWD have been analyzed under the 

SSE and LINEX loss functions. The formulas for the E-MSEs of EB estimators were 

derived. For the purpose of comparing a particular data set, a number of theoretical 

characteristics of E-MSEs were developed. The simulation study further validates the 

properties throughout the entire populations of δ. Two practical examples were employed 

to illustrate the applications. All significant findings are detailed in Sections 4 and 5. 

When the shape parameter, γ, is indeterminate, the maximum likelihood estimate of γ 

cannot be derived in a closed form. There exists no conjugate prior for b, rendering all 

Bayesian estimators of γ complex and intractable in the research. The simultaneous 

application of the EB estimation approach to both parameters of the IWD remains an 

unresolved issue currently under investigation. 
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APPENDIX  

 

 

Table 14:  Simulated E-MSE of  with  and 

  

      

  E-MSE  E-MSE  E-MSE  E-MSE  

 

3 

1 0.0558 0.0627 0.0721 0.1209 

2 0.0719 0.0832 0.0929 0.1559 

3 0.0397 0.0423 0.0512 0.0860 

 

5 

1 0.0282 0.0295 0.0334 0.0490 

2 0.0325 0.0343 0.0385 0.0564 

3 0.0239 0.0248 0.0284 0.0416 

 

7 

1 0.0181 0.0187 0.0205 0.0278 

2 0.0200 0.0208 0.0227 0.0307 

3 0.0161 0.0166 0.0183 0.0248 

 

9 

1 0.0122 0.0125 0.0135 0.0174 

2 0.0132 0.0135 0.0145 0.0187 

3 0.0113 0.0115 0.0125 0.0161 

 

 

Table  15:  MSE  of        with   and . 

  
    

 
 
MSE  
 

MSE  MSE  MSE  
 

MSE  
 

3 
 
0.4798 
 

0.0763 0.1018 0.0978 0.1623 

5 
 
0.1178 
 

0.0489 0.0743 0.0577 0.0842 

7 
 
0.0656 
 

0.0349 0.0598 0.0396 0.0535 

9 
 
0.0371 
 

0.0212 0.0402 0.0234 0.0300 
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Table 16:  Calculated E-MSE results of   for different  with , ,  

and .  

 

 

 

Table 17:  E-MSE of   with . 

      

  E-MSE  E-MSE  E-MSE  E-MSE  

 

3 

1 0.0542 0.0607 0.0701 0.1179 

2 0.0697 0.0804 0.0903 0.1518 

3 0.0386 0.0411 0.0500 0.0841 

 

5 

1 0.0274 0.0286 0.0325 0.0477 

2 0.0315 0.0332 0.0373 0.0548 

3 0.0233 0.0241 0.0276 0.0406 

 

7 

1 0.0175 0.0181 0.0199 0.0270 

2 0.0194 0.0201 0.0220 0.0299 

3 0.0157 0.0161 0.0178 0.0242 

 

9 

1 0.0119 0.0121 0.0131 0.0169 

2 0.0128 0.0131 0.0141 0.0182 

3 0.0110 0.0112 0.0122 0.0157 

 

 

 

      

  E-MSE  E-MSE  E-MSE  E-MSE  

 1 0.00109613 0.00109873 0.00129912 0.00190808 

2 0.00126033 0.00126395 0.00149373 0.00219391 

3 0.00093193 0.00093350 0.00110451 0.00162224 

 1 0.00027403 0.00027420 0.00032478 0.00047702 

2 0.00031508 0.00031532 0.00037343 0.00054848 

3 0.00023298 0.00023308 0.00027613 0.00040556 

 1 0.00006851 0.00006852 0.00008119 0.00011925 

2 0.00007878 0.00007879 0.00009336 0.00013712 

3 0.00005825 0.00005825 0.00006903 0.00010139 

 1 0.00000274 0.00000274 0.00000325 0.00000477 

2 0.00000315 0.00000315 0.00000373 0.00000548 

3 0.00000233 0.00000233 0.00000276 0.00000406 
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     Table  18:   MSE  of     , with   and . 

 

 

Table 19:   E-MSE of   with . 

      

  E-MSE  E-MSE  E-MSE  E-MSE  

 

25 

1 0.00070143 0.00070257 0.00079622 0.00108059 

2 0.00077545 0.00077696 0.00088024 0.00119462 

3 0.00062742 0.00062819 0.00071220 0.00096656 

 

50 

1 0.00017536 0.00017543 0.00019906 0.0002701 

2 0.00019386 0.00019396 0.00022006 0.00029865 

3 0.00015685 0.00015690 0.00017805 0.00024164 

 

100 

1 0.00004384 0.00004384 0.00004976 0.00006754 

2 0.00004847 0.00004847 0.00005502 0.00007466 

3 0.00003921 0.00003922 0.00004451 0.00006041 

 

500 

1 0.00000175 0.00000175 0.00000199 0.00000270 

2 0.00000194 0.000001939 0.00000220 0.00000299 

3 0.00000157 0.00000157 0.00000178 0.00000243 

 

 

  
    

 
 

 
MSE  
 

MSE  MSE  MSE  
 

MSE  
 

3 
 
0.5359 
 

0.0886 0.1180 0.1138 0.1893 

5 
 
0.1208 
 

0.0428 0.0653 0.0505 0.0736 

7 
 
0.0628 
 

0.0294 0.0503 0.0333 0.0449 

9 
 
0.0372 
 

0.0233 0.0442 0.0257 0.0330 


