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Abstract

Wadi Zeidun area is located south of the Qift-Quseir road, along the western boundary of the Central
Eastern Desert (CED). It is covered by a variety of Neoproterozoic rock units, including
metaultramafics (both massive and sheared), metagabbros, metavolcanics, volcanoclastic
metasediments, arc assemblage, gneissose granite, as well as older and younger granites. These units
are unconformably overlain by a post-amalgamation sequence of molasse sediments (Hammamat
Group). Post-Hammamat felsites do exist. This study investigates the effectiveness of remote
sensing techniques, particularly using Landsat-8 data , fieldwork data and existing geological maps,
to map the Neoproterozoic rocks outcropping to the East Wadi Zeidun area. The Landsat-8 data
enabled the identification of Hammamat Molasse Sediment, post-Hammamat felsites and granites
through the decorrelation stretch of the False Color Composite (FCC) 7:6:5 in RGB. The Principal
Component Analysis (PCA) in RGB (PC4, PC3, PC2) successfully distinguished the post-
Hammamat felsites, arc assemblage, younger granite and Hammamat Sediments. Furthermore,
specific band ratio combinations (BRC) such as (7/5, 5/4, 6/7) and (4/2, 6/5, 6/7) in RGB
distinguished ophiolites, metavolcanics, metasediments, Hammamat Sediments, younger granites,
and post-Hammamat felsites. The results obtained from image processing were validated through
field verification and ground truthing..
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between longitudes of 33°40" to 34°10" and
latitudes of 25°35' to 25° 57'. It is found to the

Introduction south of the asphaltic road of the Qift-Quseir
_ _ _ road on the western boundary of the CED and is
The area under consideration lies covered with Precambrian basement rocks (Fig.
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1). Identifying lithological units and producing
geological maps have been achieved through
the utilization of various spaceborne
multispectral data from sources like Landsat 8
(LS8), as well as hyperspectral remote sensing
data (RSD) from instruments such as Hyperion
and AVIRIS (e.g. Abrams et al., 1988;
Ciampalini et al., 2013; Loughlin, 1991). The
digital form of RSD enables image processing
methods to retrieve and enhance information
relevant to mapping activities. Standard
techniques used in remote sensing for
identifying and mapping minerals and rocks
include band ratio analysis and Principal
Component Analysis (PCA) (e.g. Hamimi et al.,
2022). The region of the electromagnetic
spectrum ranging from visible light to infrared
(0.4-14 pm) is generally used to distinguish
different minerals and rocks by analyzing their
spectral reflectance properties (Hunt, 1977).
The spectral differentiation of silicate minerals
is achieved through the thermal infrared
wavelength range (3-20 pum) which provides
additional insights that enhance the information
obtained from the visible and near-infrared
(VNIR) as well as the shortwave infrared
(SWIR) ranges (e.g. Clark, 1999; Gaffey et al.,
1993; Hook et al., 1999; Hunt, 1977).

Wadi Zeidun area has previously been explored
in several studies (e.g. Abd El-Wahed, 2007;
Dixon, 1979; El-Shazly & Khalil, 2016; El-
Shazly et al., 2019; Fowler & Hamimi, 2021,
Fowler et al., 2007; Fowler et al., 2020; Kassem
et al., 2023; Makroum et al., 2001; Sims &
James, 1984) (Figs. 2&3). This research aims to
locate and delineate different lithological units
and geological features within the specified
region by using Landsat-8 Operational Land
Imager (LS8OLI) data alongside field surveys.
A variety of spectral processing approaches,
such as PCA and BRC methods, have been
chosen to identify the established lithological
units within the investigated area.
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Fig. 1. Wadi Zeidun area location map (RGB-742)

Geologic Setting

The Neoproterozoic rocks exposing in
the  study area include  ophiolitic
metaultramafics, metagabbros, metavolcanics
and volcanoclastic metasediments, together
with arc assemblage, gneissose granite, and
older granites, along with the
volcanosedemenatry Hammamat  Molasse
Sediments. Younger granites, trachyte plugs
and sheets, Volcanic rocks cover and not
intrude, and post-Hammamat felsites intrude
these rocks. The ophiolitic formations are
characterized by a lengthy NW-SE belt that
showcases moderate to significant relief. They
are represented as a collection of extensive,
interlinked ultrabasic rock formations (such as
talc carbonates) and metagabbros, separated by
a thrust contact between them.
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Fig. 2. The geologic
(Hamimi et al., 2024)

map of Wadi Zeidun area
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Fig. 3. Field photographs of the litho-units
outcropping in the investigated area. A) Gneissose
granite intersected by deformed acidic and basic
dykes, B) Talc schist located within ophiolitic
mélange, C) The contact zone between the alkali
granite and the metavolcanics, D) The Hammamat
Conglomerates, E) The characteristic shape of
pillow lava, and F) The granite prominently
displaying a felsic dyke within Wadi Zeidun area.

Felsite dykes penetrate the underlying
rocks and molasse sediments, noted for their
steeply dipping orientation and primary trends
that run north-south (N-S) and northeast-
southwest (NE-SW). In the study area, these
dykes are frequently located alongside the
felsite sills in the northern Zeidun basin and
Wadi El-Qash. An alteration zone arises within
the molasse sediments due to the intrusion of
felsite.

The younger granite is found as oval
intrusions in specific locations such as Gabal
Um Dugal, Gabal Al-Jabrawiyah,and Gabal Al-
Sibai, where it has penetrated the arc
assemblage and trends in a NW-SE direction.

Materials and Methods

The LS80LI data from the study area
underwent thorough radiometric and geometric
corrections, which were implemented using
ground control points along with a digital
elevation model (Lee et al., 2004). LS8 imagery
processing was performed  with the
Environment for Visualizing Images (ENVI
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5.3.1) software. The Quick Atmospheric
Correction method was applied to convert the
digital number values from the LS8 data into
reflectance data, effectively minimizing the
effects of atmospheric scattering. This method
is based on empirically derived average
reflectance values obtained from a range of
material spectra that are primarily independent
of the specific scene (FLAASH Module, 2009).

Images that showcase the red-green-
blue (RGB) color blend from LS8OLI existed
selected mainly established on the spectral
reflectance properties of the predominant rock
classes in the Wadi Zeidun region. The color
composite technique was utilized to illustrate
the multispectral bands of the LS8 data through
the use of additive colors—red, green, and
blue—where the spectral response of minerals
indicates peak reflectance. Bands from both the
visible and infrared portions of the
electromagnetic spectrum were combined to
generate the RGB imagery (Crosta, 1989;
Evans, 1988; Gaffey, 1986).

The PCA method was applied to remote
sensing data to generate independent output
bands, remove noise components, and reduce
the complexity of the data's dimensions (e.g.,
Ciampalini et al., 2013; Hamimi et al., 2022;
Loughlin, 1991). The PCA involves identifying
a new pack of orthogonal axes that are centered
on the data’s significance, aimed at maximizing
the variance of the data.

Differences in topography, overall
changes in reflectance, and variations in
brightness associated with grain size can be
effectively addressed using the BRC method
(e.g. Abdelsalam et al., 2000a; Abdelsalam et
al., 2000b; Abrams and Kahle, 1984; Abrams et
al., 1983; Hamimi et al., 2022; Sultan et al.,
1987). However, this technique tends to
accentuate differences in the shape of spectral
reflectance. BRC images are produced by
splitting the digital numbers (DN) of pixels in a
band exhibiting high total reflectance by those
of the interconnected pixels in a band showing
low total reflectance (Jensen, 1996). The
selection of BRC is based on the spectral
signatures of the key lithological divisions
expected to be present in the area (e.g. Ghrefat
et al., 2021; Hamimi et al., 2022).

Results and discussion

Over 172 rock samples were gathered
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utilizing handheld GPS, representing different
lithologic units across various stations, with
GPS coordinates for each sample site recorded.
The locations of the collected samples were
transformed into a GIS layer, along with all
relevant attribute data. An initial identification
of the gathered samples was conducted, in
addition to the field observations of noted
structures and features at each station. The
samples were investigated using a polarizing
microscope to identify their key mineral
components, textural relationships, and,
consequently, the precise lithologic
classifications.

The FCC image technique utilizes
simple procedures that are commonly used for
data presentation. To represent a colored image
in a band combination (BC) setting, only three
channels (Red, Green, and Blue) are required.
For the best selection of the three BC, it is
essential to minimize the correlation of the
variance values. The FCC technique is well-
known for its ability to differentiate rock units
based on the spectral signatures of the various
minerals found in different rocks. This
approach has been applied in the analysis of the
research area. Additionally, field data has been
instrumental in identifying the different rock
types present in the study region.

RGB color composite image derived

from the 7-6-5 bands of Landsat-8 data, which
is employed for lithological mapping in the area
under consideration, reveals distinct color
variations that correspond to the different rocks
(Fig. 4). The Hammamat Sediments are
represented in blue, the post-Hammamat
felsites in green, the granite in reddish-blue hue,
and the older granite in pinkish-gray tone. The
examination of this image holds considerable
importance in the creation of the geological map
for the corresponding area (Fig. 2).
The PCA method is utilized to generate
uncorrelated data with enhanced contrast. In
this study, the PCA technique was applied to
LS8OLI data using bands 4, 3, and 2 PCA in
RGB format to differentiate rock units
lithologically (Fig. 5). Most lithological units
were recognized and mapped using the PCA
FCC image. This analysis specifically
emphasizes the post-Hammamat Felsites in
green, the arc assemblages in dark orange-pink
hues, the younger granite in bright orange-pink
and yellow, and the Hammamat Sediments in
blue (Fig. 5).
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Fig. 4 False-color composite (FCC) that utilizes
bands 765 in RGB from the LS80LI dataset of the
Wadi Zeidun area. The Hammamat Sediments are
depicted in blue, the post-Hammamat Felsites are
shown in green, the granite appears as a reddish blue,
and the older granite is illustrated in a pinkish gray
shade.
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Fig. 5 Principal Component Analysis of Wadi
Zeidun area using PCA RGB (PC4, PC3, PC2) based
on Landsat-8 data. It highlights the post-Hammamat
Felsites in green, the arc assemblage in dark orange
and pink hues, the younger granite in bright orange,
pink, and yellow shades, and the Hammamat
Sediments in blue.

The classification of lithological units
was conducted using the BRC technique
applied to the Landsat data (e.g. FREI and Jutz,
1990; Abdelsalam and Stern, 1999; Sabins,
1999; Kusky and Ramadan, 2002; Ghrefat et al.,
2021; Hamimi et al., 2022).

The BRC (7/5, 5/4, 6/7) presented in RGB for
the concerned area highlighted the ophiolites in
bright blue, while the metavolcanics and the
metasediments are depicted in reddish-yellow
and orange (Fig. 6). The Hammamat Sediments
appear in green and bluish green (turquoise); the
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younger granites are shown in greenish-yellow,
and the post-Hammamat Felsites are
represented in pale blue.

33°450°E

33540E

Fig. 6. The RGB band ratio (7/5, 5/4, 6/7) of Wadi
Zeidun area highlights ophiolites in bright blue, with
metavolcanics and metasediments represented in
reddish-yellow and orange hues. The Hammamat
Sediments are displayed in green and bluish green
(turquoise), while the younger granites appear in
greenish-yellow shade, and the post-Hammamat
Felsite are illustrated in a soft pale blue.

The band ratio (4/2, 6/5, 6/7) illustrated in RGB
for the study area, distinguishing the ophiolites
as violet, the metavolcanics and the
metasediments as green, the Hammamat
Sediments as bluish and reddish violet, and the
younger granites as pink pixels (Fig. 7).

IFBE I4ICE

Fig. 7. (C) The RGB band ratio (4/2, 6/5, 6/7) of
Wadi Zeidun area effectively distinguishes
ophiolites as violet, the metavolcanics and the
metasediments as green, the Hammamat Sediments
as bluish and reddish violet, and the younger granites
as pink-colored pixels.

The results obtained demonstrate the
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efficacy of LS8OLI data for geological
mapping, attributed to the high signal-to-noise
ratio present in these multispectral datasets.
Field investigations confirm the geological
maps created using the BRC and PCA
techniques. The findings reveal a strong
correlation between the maps produced from
the LS8 data and the established geological
map. The imagery generated through these
processing techniques is more effective at
distinguishing the lithological units within the
study area. A new geological map of the area
under consideration was created by combining
the findings from BRC and the PCA analysis
with field observations.

Numerous researchers have used remote
sensing data to map rock units that may host
different types of deposits (e.g. Amer et al.,
2012; Amer etal., 2010; Gad and Kusky, 2006a;
Gad and Kusky, 2007; Kamel et al., 2022;
Mahdy et al., 2024; Othman et al., 2014; Sultan
et al., 1986b). For instance, various methods
and techniques have been used to identify
serpentinized ultramafic rocks, employing tools
such as ASTER (Tangestani et al., 2011,
Rajendran et al., 2012), Landsat TM (Sultan et
al., 1986), and Landsat ETM+ (Gad and Kusky,
2006b) satellite imagery. Previous studies have
utilized several image processing methods,
including FCC (Pournamdari et al., 2014), PCA
(Qaoud, 2014), and band ratios (Sultan et al.,
1986a).

Landsat 8 is preferred over ASTER for
mapping serpentine due to its better thermal
infrared spectral range (12.50 um for Landsat 8
vs. 11.650 pm for ASTER) and superior
coverage, along with being publicly accessible.
While ASTER offers finer spatial resolution (15
m for visible and 90 m for TIR) and greater
spectral resolution for near-infrared and TIR,
Landsat 8 is more cost-effective for mineral
exploration compared to imaging spectroscopy.
The study employed techniques like FCC, PCA,
and ratio images to identify effective detection
methods for rock units in the arid Zeidun area.
The most effective band ratios were (7/5, 5/4,
6/7) and (4/2, 6/5, 6/7), which enhanced the
discrimination and delineation of rock units.
The results led to a map that classified the
Zeidun area into 13 distinct rock units.

Conclusions

Remote sensing techniques, such as
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BRC analysis and PCA, were employed to
analyze LS8OLI data for identifying
lithological units of Wadi Zeidun area. These
methods proved to be effective, and the
outcomes obtained from the PCA images and
BRC analysis demonstrated a significant level
of consistency. The integration of multispectral
optical data from LS8 along with field data has
shown to be a valuable approach for lithological
mapping, not only in this specific study area but
also throughout the entire Egyptian Nubian
Shield.

In conclusion, the color composite ratio and the
two band ratio techniques (7/5, 5/4, 6/7) and
(4/2, 6/5, 6/7) images, whether used with or
without supervised classification, yield the most
effective results for mapping the rock units and
alteration zones in Zeidun area. These band
ratio alongside with PCA (432) and FCC (765)
successfully mapped the main rock units in the
study area including ophiolites, metavolcanics,
metasediments, Hammamat Sediments, older
and younger granites, and post-Hammamat
felsites. Microscopic analysis of the thin
sections showed that the alteration minerals
present in the study area primarily consist of
kaolinite, chlorite, and epidote.
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