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FRACTIONAL NEUTRAL INTEGRO-DIFFERENTIAL
DYNAMICAL SYSTEMS WITH PERIODIC BVPS

V. EMIMAL NAVAJOTHI, S.SELVI

Abstract. The primary objective of this study is to comprehensively investigate
the outcomes concerning the existence and Ulam stability of a fractional dynamic
system, specifically one involving a neutral partial integro-differential equation with
periodic boundary conditions on time scales, using the Caputo fractional nabla
derivative. The study applies standard fixed point methods to derive its results, with
a focus on controllability and Ulam stability. Additionally, the practical relevance of
the theoretical findings is showcased through an illustrative example, which includes
a graphical representation.

1. Introduction

In recent years, there has been a surge of interest in fractional differential equations
and their diverse applications. This heightened attention can be attributed to the rapid
advancements in the theory of fractional calculus, which finds widespread utility across
various academic domains, including mathematics, physics, chemistry, biology, medicine,
mechanics, control theory, signal and image processing, environmental science, finance, and
other interdisciplinary field[1, 2, 3, 4, 6, 7]. Fractional order differential equations, charac-
terized by fractional orders, offer a generalized framework incorporating power-law memory
kernels in both time and spatial domains, capturing nonlocal relationships. These equations
serve as a robust tool for elucidating the memory characteristics of diverse substances and
the inherent nature of inheritance phenomena. The underlying physical motivations behind
these studies have paved the way for a burgeoning field of scientific research, encompass-
ing novel theoretical analysis and numerical methodologies for fractional order dynamical
systems[8, 9].
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In the realm of practical applications, certain scenarios may manifest wherein a complete
representation cannot be achieved through either wholly continuous or wholly discrete phe-
nomena. In such instances, the necessity arises for a shared domain that can concurrently
accommodate both conditions. Addressing this need, Stefan Hilger introduced a unifying
domain denoted as the time scale (T), serving to reconcile the demands of both continu-
ous and discrete calculus. Formulation in dynamic equations over time scale emerged as a
strategic solution for modeling systems that exhibit a synthesis of differential and difference
equations. Extensive scholarly efforts have been devoted to the exploration of dynamic equa-
tions, encompassing both linear and nonlinear formulations, incorporating considerations
of local initial and boundary conditions. Many researchers have extensively investigated
dynamic equations using fractional calculus because of its accuracy and significant benefits
in providing physical insights[10, 11, 12, 13, 52, 48].

A neutral difference equation (NDE) is characterized by the inclusion of the higher-
order difference of an unknown sequence in the equation, featuring both delayed and un-
delayed (advanced) terms. It is essential to acknowledge that the theoretical framework
surrounding neutral difference equations introduces complexities, and conclusions estab-
lished for non-neutral difference equations may not necessarily apply to neutral equations
[14, 15, 16, 24, 49, 5]. Beyond mere mathematical curiosity, the exploration of these equa-
tions is propelled by their practical applications[17]. Neutral difference equations are highly
significant across numerous applied mathematics fields, including circuit theory, bifurcation
analysis, population dynamics, the dynamic behavior of delayed network systems, signal
processing, and more. Additionally, these equations manifest in the examination of vibrat-
ing masses connected to elastic bars, where, for instance, the Euler equation is extensively
utilized in various variational problems and plays a crucial role in the theory of automatic
control [18, 19, 20].

Integer neutral integro-differential systems use integer derivatives and fixed delays to
model processes with localized memory, suitable for simpler dynamics. In contrast, frac-
tional systems utilize non-integer derivatives, offering continuous memory and greater flex-
ibility, allowing them to model complex systems with long-term dependencies more accu-
rately. Fractional systems also provide improved robustness and stability, making them
better suited for real-world applications with extended memory and non-local behaviors,
where integer systems are less effective[1, 2, 3, 4, 6, 7, 8].

One of the essential qualitative aspects to contemplate among various solution charac-
teristics is the stability of the solutions[28]. The latest research data’s thoroughly covers
an extensive array of stability theories applicable for differential and difference equations.
Nevertheless, in various mathematical analysis fields, Ulam stability has crucial and far-
reaching applications, as it adeptly addresses the existence of solutions in close proximity
to each approximation. It becomes advantageous, especially in situations where acquiring
the exact solution poses challenges. Hyers [29] and Ulam [30] commenced an in-depth ex-
amination of stability type of functional equations during 1940 and 1941. In recent times,
numerous scholars have extensively examined Ulam stability for differential, difference, and
integral equations, employing a variety of approaches. For reader’s convenience, refer to
[31, 32, 33] and the cited works therein.

In recent years, substantial research has been conducted on fractional dynamic systems,
addressing various aspects such as controllability, stability, and boundary value problems.
For instance, [34] rigorously investigated the controllability of fractional neutral differential
systems with non-instantaneous impulses, providing a foundational understanding of this
complex area. Similarly, V. Kumar and M. Malik in [35] examined the existence, stability,
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and controllability of fractional dynamic systems over time scales, emphasizing their sig-
nificance in population dynamics. Furthermore, [36] explored controllability in fractional
integro-differential equations, integrating delayed impulses across different time scales.

Picard’s operator and dynamic inequalities were utilized by Bohner and Tikare in [37] to
obtain Ulam stability results for first-order nonlinear dynamic equations over time scales.
The enhanced approach to fractional integrals and Nabla derivatives proposed in [38] has
significantly advanced our understanding of these concepts within time scales. Additionally,
[40] provided a thorough analysis of boundary value problems with periodic conditions in
the context of fractional dynamic equations.

Building on these motivational studies, this paper aims to address a critical gap by ex-
ploring the periodic boundary value problem of dynamical systems involving partial neutral
integro-differential equations across time scales.

CDγ [h(ι)− g(ι, h)] = L
(
ι, h(ι),N (h(ι)),C Dγh(ι)

)
, ι ∈ T

h(0) = h(T) = 0, T ∈ R .

}
(1.1)

Here,

N (h(ι)) =

∫ ι

0
u(ι, s, h(ι))∇s

where ι ∈ T,T > 0 and An ld-continuous function are L : T × R × R → R . For 0 <
γ < 1, CDγ is the Caputo fractional derivative and [0,T] ∈ T. Also g(ι, h) and L(ι, h)
are continuous in h and i respectively. ι ∈ T, here T are time scale interval such that
ι ∈ T : 0 ≤ ι ≤ T, T ∈ R .
The motivation for this research arises from the need to further investigate and refine the
theoretical frameworks established in these prior works, ultimately contributing to a deeper
understanding of the dynamics involved. This research bridges this gap by incorporating
the neutral term into the analysis and utilizing fixed-point methods to assess controllability
and Ulam stability. By contrasting our findings with existing literature, we highlight the
innovative approach of integrating the neutral aspect with these complex features, thereby
providing valuable new theoretical insights and practical advancements in the field.

2. Preliminaries

This section provides the fundamental definitions and concepts needed for the analysis
of fractional dynamic systems. These foundational elements, including fractional calculus
and related theorems, will support the methods and results presented later in the study.
Assume a time scale T containing a subset i.e., closed, nonempty in a real number system
R . In ι ∈ T, ρ(ι) = sup{ε ∈ T : ε < ι} is defined for backward jump operator. We
define ρ(ι) = ι when T has a minimum element ι, so, we obtain inf T = supφ. Using ρ, we
categorize ι ∈ T to be left-scattered if ρ(ι) < ι and to be left-dense(ld) if ρ(ι) = ι. Also,
backward graininess function ν : T → [0,∞) can be determined as ν(ι) = ι − ρ(ι). We
obtain a set Tk as follows:
Let Tk = T {m}, when T contains right-scattered minimum m, Else, Tk = T. Here Tk is
important in defining ∇- derivative.

Definition 2.1. [41] (∇-derivative). Assume h : T→ R is a function and ι ∈ Tk. At this
juncture ι, let’s explicitly define h’s ∇-derivative as a number. h∇(ι) is characterized by the
feature that for all ε > 0 there exists neighborhood U of ι such that

|h(ρ(ι))− h(ς)− h∇(ι)[ρ(ι)− ς]| ≤ ε|ρ(ι)− ς| for all ς ∈ U.

Here ι ∈ Tk, h is termed ∇-differentiable.
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Theorem 2.1. [42] Let h : T→ R is a function and ι ∈ Tk. Hence:

(i) At the point ι, assuming ι is a left-scattered point, the function h exhibits continuity
and ∇-differentiability alongside

h∇(ι) =
h(ι)− h(ρ(ι))

t − ρ(t)
.

(ii) Let ι denote ld, such that h be ∇-differentiable in ι iff

lim
ς→ι

h(ι)− h(ς)

ι− ς
.

there exists a finite number

h∇(ι) = lim
ς→ι

h(ι)− h(ς)

ι− ς
.

Definition 2.2. [42] A function g : I → R is ld-continuous if it is continuous at each ld
point in I and there exists r.h.s limit for all rd point in I .
At this juncture, L(I ,R ) denotes set of all ld-continuous functions mapping from I to R .
I = L(I ,R ) is defined as a Banach space whenever,

||g || = sup
ι∈I
|g(ι)|, for all g ∈ L. (2.1)

Definition 2.3. [42] Let g : I → R are an ∇-integrable function. Thus, for all ι ∈ I ,
which results in ∫ T

0
g(ς)∇ς =

∫ ι

0
g(ς)∇ς +

∫ T

ι
g(ς)∇ς.

Remark 1. [43] Assume hγ : T× T→ R for γ ≥ 0, such that h0(ι, ι0) = 1 and

hγ+1(ι, ι0) =

∫ ι

ι0

hγ(ς, ι0)∇ς for all ι, ι0 ∈ T. (2.2)

Also, for α, γ > 1, we get∫ ι

ρ(ϑ)
hα−1(ι, ρ(ς))hγ−1(ς, ρ(ϑ))∇ς = hα+γ−1(ι, ρ(ϑ)), (2.3)

for all ι, ϑ ∈ T with ϑ ≤ ι.

Definition 2.4. [43] Suppose g ∈ L(Tk,R ). On T, the function is integrable with respect to
the Lebesgue ∇ measure. Fractional ∇- integral for 0 < γ < 1 may be explicitly formulated
as

Iι0g(ι) =

∫ ι

ι0

hγ−1(ι, ρ(ς)g(ς))∇ς, for all ι ∈ U, (2.4)

where U is neighbourhood of ι such that U ⊂ T. Hence I0g(ι) = g(ι).

Remark 2. ∇-power function hγ−1(ι, ρ(ς)) varies across various time scales T.

Suppose T = R , results in ρ(ς) = ς and hγ−1(ι, ρ(ς)) =
(ι− ς)γ−1

Γ(γ)
. Here, (2.4) is demon-

strated as

Iι0g(ι) =

∫ ι

ι0

(ι− ς)γ−1

Γ(γ)
g(ς)dς.
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Let T = Z , results in ρ(ς) = ς − 1 and hγ−1(ι, ρ(ς)) =
(ι− ρ(ς))γ−1

Γ(γ)
=

(
ι− ρ(ι)

γ

)
, here for

all γ ∈ R , ιγ =
Γ(ι+ γ)

Γ(ι)
. According to equation (2.4), it is feasible to derive

Iγ
0+

g(ι) =

∫ ι

ι0

hγ−1(ι, ρ(ς)g(ς))∇ς,

=
1

Γ(γ)

∫ ι

0
(ι− ρ(ς))γ−1g(ς)∇ς,

=
1

Γ(γ)

ι−1∑
ς=0

(ι− (ς − 1))γ−1g(ς).

For T = qN0 , we have hγ−1(ι, ρ(ς)) = Γq(γ) qγ−1
q−1 (ι− qς)γ−1

q .

Definition 2.5. [44] (R-L fractional ∇- derivative). Let an ld-continuous function are
g : Tkm → R . We establish the R-L fractional ∇-derivative for any γ ∈ R as follows

Dγ
o+g(ι) = Dm

o+Im−γ
o+ g(ι), ι ∈ I , γ > 0 .

Definition 2.6. [44] (Caputo fractional ∇-derivative). Let an ld-continuous function are
g : Tkm → R such that for m ∈ N0 , in Tkm there exists ∇m g . Thus, CF∇D of g is

CDγ
o+g(ι) =

∫ ι

ι0

hm−1 (ι, ρ(ι))∇m g(ς))∇ς, for all ι ∈ I , γ ≥ 0 .

Remark 3. According to Definition 2.5, we show CDγ
o+g(ι) = Im−γ

o+
C Dγ

o+, here m = [γ]+1 .

Theorem 2.2. [45] Take into account the collection C(T,R ), encompassing all continuous
functions defined on T. A subset D of C(T,R ) exhibits relative compactness iff it exhibits
both boundedness and equicontinuity.

Definition 2.7. [46] Let us suppose X and Y are Banach spaces. For B ⊆ X , the set G(B)
is asserted to exhibit relative compactness in Y under the mapping G : X → Y , assuming G
exhibits complete continuity.

Proposition 1. [47] Suppose g ∈ L([0,T]T,R ), for the group g , let g̃ denote an extension
over [0,T] such that

g̃ =

{
g(ι) if ι ∈ T
g(ς) if ι ∈ (ρ(ς), ς) /∈ T,

we obtain ∫ T

0
g(ι)∇ι ≤

∫ T

0
g̃(ι)dι.

Theorem 2.3. [50] (Krasnoselskii). Let C denote a subset that is nonempty, closed, and
convex within B. Suppose F1,F2 : C→ B such that
1. F1 is contraction.
2. F2 is continuous and F1 (C) is relatively compact.
3. F1 [ι] + F2 [ϑ] ∈ C for all ι, ϑ ∈ C,
there exists ι ∈ C such that F1 [ι] + F2 [ι] = ι.
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3. Main Results

Definition 3.8. Suppose g ∈ L ∩L∇(I ,R ) denote the solution of (1.1) iff g(ι) ≥ 0, ι ∈ I ,
and equations and conditions outlined in (1.1) are strictly followed by g , here L∇(I ,R ) a
function that is Lebesgue ∇- integrable from I → R .

Lemma 3.1. Given 1 < γ < 2. Thus, g ∈ L∩ L∇(T,R ) is the solution to PBVP (1.1), iff
g solves integral equation as follows

g(ι) =

∫ T

0
G(ι, ς)L(ς, g(ς),N g(ς)), CDγg(ς))∇ς, (3.1)

where G(ι, ς) is a defined green function as

G(ι, ς) =


Thγ−1(ι, ρ(ι),N g(ς))

T
+
−ιhγ−1(T, ρ(ς),N g(ς))

T
if 0 < ς < ι

−ιhγ−1(T, ρ(ς),N g(ς))

T
if ι ≤ ς < T.

(3.2)

Proof. According to Definition 2.6, for 1 < γ < 2
i.e.,

CDγ
o+g(ι) =

∫ ι

0
hm−γ(ι, ρ(ι))∇m(g(ς))∇ς, ι ∈ T, γ ≥ 0 .

we have,

CDγg(ι) = I2−γg2∇ι, ι ∈ T.

Based on Lemma 2.7 in [51], it is evident that,

C∆αu(t) = ∆I2−αu∆2
(t),

∆IαC∆αu(t) = ∆IαI2−αu∆2
(t).

As a result, we derive

IγCDγg(ι) = IγI2−αg2
∇(ι)

= I2g2
∇(ι)

= g(ι) + ko + k1 ι. ko , k1 ∈ R .

Let CDγg(ι) = r(ι), ι ∈ T.
Thus,

g(ι) = Iγr(ι)− ko − k1 ι. (3.3)

By applying the boundary condition from equation (1.1), we obtain ko = 0 , and
From Definition (2.4),

Iγιog(ι) =

∫ ι

ι0

hγ−1(ι, ρ(ς))g(ς)∇ς, ι ∈ u.

Drawing from equation (3.3), we can take k1 ι

k1 =
1

T

∫ T

0
hγ−1 (T , β(ς))r(ς)∇ς.

Consequently, equation (3.3) leads us to

g(ι) =

∫ ι

0
hγ−1(ι, ρ(ς))r(ς)∇ς − ι

T

∫ T

0
hγ−1(T, ρ(ς))r(ς)∇ς,
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Thus,

g(ι) =


Thγ−1(ι, ρ(ι),N g(ς))

T
+
−ιhγ−1(T, ρ(ς),N g(ς))

T
[−ιhγ−1(T, ρ(ς),N g(ς))]

T
r(ς)∇ς.

g(ι) =

∫ T

0
G(ι, ς)r(ς)N g(ς)∇ς,

i.e.,

g(ι) =

∫ T

0
G(ι, ς)CDγg(ς)N g(ς)∇ς.

One can derive (3.1) in conjunction with the equation given by (1.1). During our analysis,
we base our findings on the following assumptions provided:

(H1) The function L : I × R × R → R exhibits ld-continuous behavior with respect to
each of its three variables independently.

(H2) In (H1), there exists ‘+’ve constants E > 0 and F that satisfies 0 < F < 1 for a
function L such that

|L(ι, ς1, ϕ1)− L(ι, ς2, ϕ2)| ≤ E |ς1 − ς2|+ F |ϕ1 − ϕ2|,

for (ι, ςi, ϕi) ∈ I × R × R (i=1,2).
(H3) In (H1), there exists P ∈ L and R > 0 and Q alongside 0 < Q < 1 for a function L

such that

|L(ι, ς, ϕ)| ≤ |P (ι)|+ R (ς)|+ Q |(ϕ)|,

for (ι, ς, ϕ) ∈ I × R × R .
(H4) On the interval [0,T], consider g(·, ·) as the Green function, characterized by being

bounded and piecewise continuous. also, function G conforms to

∫ ι

0
|G(ι, ς)|∇ς ≤ k and

∫ T

ι
|G(ι, ς)|∇ς ≤ m,

here k and m are ‘+’ve real constants and 0 < ι < T and,∫ T

0
G(ι, ς)∇ς = A ∈ R .

(H5) Let π : B → B be defined as;

(πg)(ι) =

∫ T

0
G(ι, ς)L(ς, g(ς),N (g(ς)), CDγg(ς))∇ς

+

∫ T

0
ϕA(ι, g(ς))

[
B(ς)u(ς) + L(ς, g(ς),N (g(ς), CDγg(ς))∇ς)

]
.

The validation of the resultant existence hinges on the application of Theorem 2.3. Prior
to achieving the outcome, it is essential to obtain the following results.

Analyze a specific subset of L, precisely identified as

Mα = {g : I → R : g(ι) ∈ L, ||g || ≤ α, α > 0}. (3.4)
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Here, Mα forms a Banach subspace embedded within the space L. Consequently, a precise
definition can be formulated for F1 : Mα → L and F2 : Mα → L by

F1[g ](ι) =

∫ ι

0
G(ι, ς)L(ς, g(ς), CDγg1 (ς))∇ς, (3.5)

and

F2[g ](ι) =

∫ ι

0
G(ι, ς)L(ς, g(ς), CDγg1 (ς))∇ς, (3.6)

respectively. �

Lemma 3.2. Assume that hypotheses (H1), (H2), and (H4) are valid. If
E K

1−F
< 1, then

F1 : Mα → L expression provided in equation (3.5) demonstrates a tendency to contract.

Proof. Suppose CDγgi(ι) = ri(ι), ι ∈ T, i = 1, 2, here g1, g2 ∈Mα. From (3.5), for ι ∈ T,

|F1[g1](ι)−F1[g2](ι)| =
∣∣∣∣N g(ς)

(∫ ι

0
G(ι, ς)L(ς, g1(ς), CDγg1 (ς))∇ς

−
∫ ι

0
G(ι, ς)L(ς, g2(ς), CDγg2 (ς))∇ς

)∣∣∣∣,
=

∣∣∣∣N g(ς)

(∫ ι

0
G(ι, ς)

(
L(ς, g1(ς), CDγg1 (ς))

)
−
(
L(ς, g2(ς), CDγg2 (ς))

)
∇ς
)∣∣∣∣,

≤
∫ ι

0
N g(ς)

∣∣G(ι, ς)
∣∣∣∣L(ς, g1(ς), r1(ς))

∣∣
−
∣∣L(ς, g2(ς), r2(ς))

∣∣∇ς, (3.7)

where r1, r2 ∈Mα. But in view of (1.1), for ς ∈ T.

|r1(ς)− r2(ς)| = N g(ς)
∣∣L(ς, g1(ς), r1(ς))− L(ς, g2(ς), r2(ς))

∣∣.
Using the assumption (H2) we get,

≤ E |g1(ς)− g2(ς)|+ F |r1(ς)− r2(ς)|.

This gives

|r1(ς)− r2(ς)| ≤
EN g(ς)

1−F
|g1(ς)− g2(ς)|. (3.8)

Substituting (3.8) in (3.7), we get∣∣∣∣F1[g1]−F1[g2]
∣∣∣∣ ≤ E

1−F

∫ ι

0
N g(ς)

∣∣G(ι, ς)
∣∣∣∣∣∣g1 − g2

∣∣∣∣∇ς.
Using the assumption (H4) we get,

≤ E K

1−F

∣∣∣∣g1 − g2

∣∣∣∣.
Since

E K

1−F
< 1, F1 : Mα → L is contractive. �

Theorem 3.4. Given that conditions (H1)-(H4) are satisfied. In (3.6), F2 : Mα → L are
continuous and F2(Mα) are relatively compact.
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Proof. Assume CDγgN (ι) = rN (ι), N ∈ N and CDγg(ι) = r(ι), ι ∈ T. Assume F2 : Mα →
L, is detrmined in (3.6).
Step 1: F2 : Mα → L exhibits continuity.
In the space Mα, let gNN∈N be a sequence converging to g . Consider ι ∈ [0,T],∣∣F2[gn](ι)−F2[g ](ι)

∣∣ =

∣∣∣∣N g(ς)

(∫ T

ι
G(ι, ς)L(ς, gN (ς), CDγgN (ς))∇ς

−
∫ T

ι
G(ι, ς)L(ς, g(ς), CDγg(ς))∇ς

)∣∣∣∣,
≤
∣∣∣∣ ∫ T

ι
G(ι, ς)N g(ς)

[
L(ς, gN (ς), CDγgN (ς))

− L(ς, g(ς), CDγg(ς))

]
∇ς
∣∣∣∣,

≤
∣∣∣∣ ∫ T

ι
G(ι, ς)

∣∣∣∣∣∣∣∣N g(ς)

∣∣∣∣∣∣∣∣[L(ς, gN (ς), CDγgN (ς))

− L(ς, g(ς), CDγg(ς))

]∣∣∣∣∇ς. (3.9)

here rn, r ∈Mα. However, considering (1.1), for ς ∈ T.

|rn(ς)− r(ς)| = N g(ς)
∣∣L(ς, gn(ς), r1(ς))− L(ς, g(ς), r(ς))

∣∣.
Using the assumption (H2) we get,

≤ E |gn(ς)− g(ς)|+ F |rn(ς)− r(ς)|.
This gives

|rn(ς)− r(ς)| ≤
EN g(ς)

1−F
|gn(ς)− g(ς)|. (3.10)

Substituting (3.10) in (3.9), we get∣∣∣∣F2[gn]−F2[g ]
∣∣∣∣ ≤ E

1−F

∫ ι

0

∣∣N g(ς)G(ι, ς)
∣∣∣∣∣∣gn − g

∣∣∣∣∇ς.
Using the assumption (H4) we get,

≤ E K

1−F

∣∣∣∣gn − g
∣∣∣∣,

i.e., ∣∣∣∣F2[gn]−F2[g ]
∣∣∣∣ ≤ E K

1−F

∣∣N g(ς)
∣∣∣∣∣∣gn − g

∣∣∣∣.
Consequence shows that r.h.s of above inequality → 0 as gn tends towards g . Thus F2 :
Mα → L is continuous.
Step 2: F2 : Mα → L exhibits boundedness.
By employing equation (3.6), it is possible to represent ι ∈ T as∣∣F2[g ](ι)

∣∣ ≤ ∫ T

ι

∣∣G(ι, ς)
∣∣∣∣N g(ς)

∣∣∣∣L(ς, g(ς), CDγg(ς))
∣∣∇ς,

=

∫ T

ι

∣∣G(ι, ς)
∣∣∣∣N g(ς)

∣∣∣∣L(ς, g(ς), r(ς))
∣∣∇ς,

=

∫ T

ι

∣∣g(ι, ς)
∣∣∣∣N g(ς)

∣∣∣∣r(ς))∣∣∇ς, (3.11)
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here r ∈M. By (1.1), for ς ∈ T, we have,∣∣r(ς))∣∣ =
∣∣L(ς, g(ς), r(ς))

∣∣.
Applying the assumption (H3) results in,

≤ |P (ς)|+ R |g(ς)|+ Q |r(ς)|.

Thus

|r(ς)| ≤
|P (ς)|+ R |g(ς)|

1− Q
N g(ς). (3.12)

Substituting equation (3.12) into equation (3.11), and subsequently applying norm from
(2.1), leads us to derive

||F2[g ]|| ≤
∫ T

ι

∣∣G(ι, ς)
∣∣∣∣N g(ς)

∣∣ ||P ||+ R ||g ||
1− Q

∇ς.

Using the assumption (H4) we get,

≤ [||P ||+ R α]

1− Q

∣∣N g(ς)
∣∣,

That is,

||F2[g ]|| ≤ [||P ||+ R α]

1− Q

∣∣N g(ς)
∣∣.

Hence, F2 : Mα → L is bounded.
Step 3: F2 : Mα → L is equicontinuous.
Let ι1, ι2 ∈ T be such that ι1 < ι2. Then for g ∈Mα, we have∣∣F2[g ](ι1)−F2[g ](ι2)

∣∣ =

∣∣∣∣N g(ς)

(∫ T

ι1

G(ι1, ς)L(ς, g(ς), CDγg(ς))∇ς

−
∫ T

ι2

G(ι2, ς)L(ς, g(ς), CDγg(ς))∇ς
)∣∣∣∣,

=

∣∣∣∣ ∫ T

ι1

G(ι1, ς)∇ς −
∫ T

ι2

G(ι2, ς)∇ς
∣∣∣∣∣∣∣∣N g(ς)

∣∣∣∣∣∣∣∣L(ς, g(ς), CDγg(ς))

∣∣∣∣,
=

∣∣∣∣ ∫ T

ι1

G(ι1, ς)∇ς −
∫ T

ι2

G(ι2, ς)∇ς
∣∣∣∣∣∣∣∣N g(ς)

∣∣∣∣∣∣r(ς)∣∣.
Substituting (3.12) in the above equation,

≤
∣∣∣∣ ∫ T

ι1

G(ι1, ς)∇ς −
∫ T

ι2

G(ι2, ς)∇ς
∣∣∣∣∣∣∣∣N g(ς)

∣∣∣∣( |P (ς)|+ R |g(ς)|
1− Q

)
.

i.e., ∣∣F2[g ](ι1)−F2[g ](ι2)
∣∣ ≤ [||P ||+ R α]

1− Q

∣∣∣∣N g(ς)

∣∣∣∣∣∣∣∣ ∫ T

ι1

G(ι1, ς)∇ς −
∫ T

ι2

G(ι2, ς)∇ς
∣∣∣∣. (3.13)
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Based on (3.2) along with Remark 1, for ι1, ι2 ∈ T results in,∫ T

ι1

ι1h(T, ρ(ς))∇ς =

∫ T

ι1

−ι1hγ−1(T, ρ(ς))∇ς,

=
−ι1hγ(T, ρ(ς))

T
, (3.14)

and ∫ T

ι2

ι2h(T, ρ(ς))∇ς =
−ι2hγ(T, ρ(ς))

T
. (3.15)

Using (3.14) and (3.15) in (3.13), we get∣∣F2[g ](ι1)−F2[g ](ι2)
∣∣ ≤ [||P ||+ R α]

1− Q

∣∣∣∣N g(ς)

∣∣∣∣hγ(T, ρ(ς))

T
(
ι1 − ι2

)
. (3.16)

As ι1 approaches ι2, r.h.s of (3.16) converges to zero . Thus, we obtain
∣∣∣∣F2[g ](ι1) −

F2[g ](ι2)
∣∣∣∣→ 0. Thus F2 : Mα → L exhibits equicontinuity. Now, since F2(Mα) exhibits

boundedness and equicontinuous, by Theorem 2.3, it says that F2(Mα) exhibits relative
compactness. �

Theorem 3.5. [43, 40] Assume the assumption (H1)-(H4) fulfill the conditions. Suppose

Mα = {g : T→ R : g(ι) ∈ L, ||g || ≤ α} such that
(m + k)||P ||

1− Q − (m + k)R
≤ α. Hence, equation

(1.1) under consideration has a solution belonging to Mα.

Proof. Using Lemma 3.2, it can be shown that F1 : Mα → L, in (3.5), demonstrates
contractive behavior. Based on Theorem 3.4, F2 : Mα → L, determined in equation
(3.6), exhibits continuity and F2(Mα) are relatively compact. Suppose CDγg(ι) = r(ι) =
C Dγh(ι) = q(ι) for ι ∈ T. For g , h ∈Mα, we write

|F1[g ](ι) + F2[h ](ι)| ≤ N g(ς)

(∫ ι

0
|G(ι, ς)||L(ς, g(ς), CDγg(ς))|∇ς

+

∫ T

ι
|G(ι, ς)||L(ς, g(ς), CDγh(ς))|∇ς

)
,

≤
∫ ι

0
N g(ς)

(
|G(ι, ς)||r(ς)|∇ς +

∫ T

ι
|G(ι, ς)||q(ς)|∇ς

)
. (3.17)

By utilizing equation (1.1) for all ς ∈ T, it is possible to derive

|r(ς)| = |L(ς, g(ς), r(ς))|.
From the assumption (H3),

|r(ς)| ≤ |P (ς)|+ r|g(ς)|+ Q |r(ς)|

≤
|P (ς)|+ r|g(ς)|

1− Q
, (3.18)

and

|q(ς)| = |L(ς, h(ς), q(ς))|.
Based on the assumption (H3),

|r(ς)| ≤ |P (ς)|+ R |h(ς)|+ Q |q(ς)|

≤ |P (ς)|+ R |h(ς)|
1− Q

, (3.19)
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Substituting (3.18) and (3.19) in (3.17), one can obtain

||F1[g ] + F2[h ]|| ≤
∫ ι

0
|G(ι, ς)|

(
||P ||+ R ||g ||

1− Q

)
|N g(ς)|∇ς

+

∫ ι

0
|G(ι, ς)|

(
||P ||+ R ||h ||

1− Q

)
|N g(ς)|∇ς.

Using the assumption (H4), we obtain,

||F1[g ] + F2[h ]|| ≤ m
||P ||+ R α

1 − Q
|N g(ς)|+ k

||P ||+ R α
1 − Q

|N g(ς)|,

=
(m + k)(||P ||+ R α)

1− Q
(|N g(ς)|) ≤ α. (3.20)

Hence, F1[g ] + F2[h ] ∈Mα for g , h ∈Mα. Thus the criteria outlined in Theorem 2.3 have
been entirely satisfied. Thus, there exists g ∈Mα such that g = F1[g ]+F2[h ] demonstrates
the solution to PBVP (1.1). �

4. Controllability

Examine PBVP concerning the dynamical system featuring a neutral integro-differential
equation over time scale incorporating a control component,

CDγ [h(ι)− g(ι, h))] = L
(
ι, h(ι),N (h(ι)),C Dγh(ι)

)
+ Bu(ι), ι ∈ T

h(0) = h(T) = 0, T ∈ R .

}
(4.1)

Here,

N (h(ι)) =

∫ ι

0
(ι, s, h(ι))∇s,

here ι ∈ T,T > 0 and L : T× R × R → R signifies ld-continuous function. CDγ is Caputo
fractional derivative of order 0 < γ < 1 and [0,T] ∈ T. Also, g(ι, h) and L(ι, h) demonstrates
continuity in h and i respectively. ι ∈ T such that ι ∈ T : 0 ≤ ι ≤ T, T ∈ R .

Theorem 4.6. Suppose (H1)-(H5) are met and EF = L + εTγ < 1. Then equation (4.1) is
controllable on I.

Proof. For β =
k1

1− k1
, we consider,

B = {h ∈ C(T,R ) : ||h ||c∇ ≤ β} ⊆ C(T,R ).

Define π : B → B, results in

(πg)(ι) =

∫ T

0
G(ι, ς)L(ς, g(ς), CDγg(ς))∇ς

+

∫ T

0
ϕA(ι, g(ς))

[
B(ς)u(ς) + L(ς, g(ς), CDγg(ς))N g(ς)∇ς

]
.

where π : B → B be well defined. For α ∈ T and g ∈ B results in,

|(πg)(ι)| =
∣∣∣∣ ∫ T

0
G(ι, ς)L(ς, g(ς), CDγg(ς)))∇ς

∣∣∣∣
+

∣∣∣∣ ∫ T

0
ϕA(ι, g(ς))

[
B(ς)u(ς) + L(ς, g(ς), CDγg(ς))N g(ς)∇ς

]∣∣∣∣,
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≤
∣∣∣∣ ∫ T

0
G(ι, ς)L(ς, g(ς), r1(ς)))∇ς

∣∣∣∣
+

∣∣∣∣ ∫ T

0
ϕA(ι, g(ς))

[
B(ς)u(ς) + L(ς, g(ς), r2(ς))N g(ς)∇ς

]∣∣∣∣,
≤ k1 + k2β,

≤ k1

1− k2
,

≤ β.
Hence, π : B → B is well defined. Additionally, we demonstrate that π : B → B exhibits
contractivity and ι ∈ T,

|(πg)(ι)− (πh)(ι)| ≤
[∣∣∣∣ ∫ T

0
G(ι, ς)L(ς, g(ς), r1(ς)))∇ς

∣∣∣∣
+

∣∣∣∣ ∫ T

0
ϕA(ι, g(ς))

[
B(ς)u(ς) + L(ς, g(ς), r2(ς))N g(ς)∇ς

]∣∣∣∣]
−
[∣∣∣∣ ∫ T

0
G(ι, ς)L(ς, h(ς), r1(ς)))∇ς

∣∣∣∣
+

∣∣∣∣ ∫ T

0
ϕA(ι, h(ς))

[
B(ς)u(ς) + L(ς, g(ς), r2(ς))N g(ς)∇ς

]∣∣∣∣].
Employing the assumption (H2) yields,

|(πg)(ι)− (πh)(ι)| ≤ E |g(ς)− h(ς)|+ F |r1(ς)− r2(ς)|,

|(πg)(ι)− (πh)(ι)| ≤ E

1−F
|g(ς)− h(ς)|.

Hence,

|(πg)(ι)− (πh)(ι)| ≤ L||g − h ||,
which implies

EF = L + εTγ < 1.

Thus, Equation (4.1) exhibits controllability over I. �

5. Stability Results

Definition 5.9. If PBVP (1.1) holds Hyers-Ulam stability (HUS), then NL > 0 such that
for all ε > 0 and for g ∈Mα that meets the requirements

|CDγg(ι)− L(ς, g(ς),C Dγg(ς))| ≤ ε for all ι ∈ Tk (5.1)

there exists a solution of h ∈Mα for PBVP (1.1) such that

|g(ι)− h(ι)| ≤ NLε for all ι ∈ T.

Any positive value of NL > 0 signifies constant for HUS.

Definition 5.10. Suppose PBVP (1.1) has ‘+ ’ve continuous function HL which satisfies
the condition HL(0) = 0 , it consequently demonstrates generalized Hyers-Ulam stability
(GHUS), such that for every g ∈ Mα meeting the condition (4.1), there exists solution
h ∈Mα of (1.1) such that

|g(ι)− h(ι)| ≤ HL(ε) for all ι ∈ T.
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Definition 5.11. Consider K as a set of positive, non-decreasing ld-continuous real-valued
function defined on T. The Hyers-Ulam-Rassias stability (HURS) of PBVP (1.1) is classi-
fied as type K if, for every instance ϕ ∈ K and ε > 0, there exists NL,ϕ > 0 such that for
each g ∈Mα which satisfies

|CDγg(ι)− L(ς, g(ς),C Dγg(ς))| ≤ εϕ(ι) for all ι ∈ Tk (5.2)

there exists a solution of h ∈Mα of (1.1) such that

|g(ι)− h(ι)| ≤ εNL,ϕϕ(ι) for all ι ∈ T.

Here NL,ϕ > 0 is known as HURS constant.

Remark 4. A function g ∈ C1
rd(T,R ) are a solution of (5.2) if there exists a function

H ∈ C1
rd(T,R ) possessing the following characteristics:

• |H(ι)| ≤ εϕ(ι) for all ι ∈ T .

• CDγg(ι) = L(ς, g(ς),C Dγg(ς)) +H(ι) for all Tk .

Theorem 5.7. Assume that (H1)-(H5) hold true for
AE

1−F
< 1. Then, (1.1) contains

HURS type of K .

Proof. Let g ∈ C1
rd(T,R ) meets the requirements outlined in (5.2). Thus, as noted in

Remark 5.4 there exists for H ∈ C1
rd(T,R ) satisfying |H(ι)| ≤ εϕ(ι) such that

CDγ [g(ι)− h(ι, h)] = L[ι, g(ι,N (g(ι))),C Dγg(ι)] +H(ι). for all ι ∈ Tk

For CDγg(ι) = q(ι), ι ∈ Tk along q ∈Mα, then according to Lemma 3.1, it is asserted that

g(ι) =

∫ T

0
G(ι, ς)L

(
ς, g(ς),N g(ς), q(ς)) +H(ι)

)
∇ς. (5.3)

For ϕ ∈ K , then according to Remark 5.4, it follows that

∣∣g(ι)−
∫ T

0
G(ι, ς)L

(
ς, g(ς),N g(ς)), q(ς)

)
∇ς
∣∣ ≤ Aεϕ(ι) ι ∈ Tk . (5.4)

Let h ∈Mα is a solution of (1.1). Then for ι ∈ T, we have

CDγ [h(ι)− g(ι, h)] = L[ι, h(ι,N h(ι)),C Dγh(ι)]. for all ι ∈ Tk (5.5)

For CDγh(ι) = r(ι), ι ∈ Tk with r ∈Mα, applying Lemma 3.1, one can obtain

h(ι) =

∫ T

0
g(ι, ς)L

(
ς, h(ς),N (h(ς), r(ς)).

)
∇ς. (5.6)
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From (5.5) & (5.6), one can obtain

|g(ι)− h(ι)| =
∣∣∣∣g(ι)−

∫ T

0
G(ι, ς)L

(
ς, g(ς),N g(ς), q(ς)

)
∇ς

+

∫ T

0
G(ι, ς)L

(
ς, g(ς),N g(ς), q(ς)

)
∇ς

−
∫ T

0
G(ι, ς)L

(
ς, h(ς),N (h(ς), r(ς))

)
∇ς
∣∣∣∣,

≤
∣∣∣∣g(ι)−

∫ T

0
G(ι, ς)L

(
ς, g(ς),N g(ς), q(ς)

)
∇ς
∣∣∣∣

+

∣∣∣∣ ∫ T

0
G(ι, ς)L

(
ς, g(ς),N g(ς), q(ς)

)
∇ς

−
∫ T

0
G(ι, ς)L

(
ς, h(ς),N h(ς), r(ς))

)
∇ς
∣∣∣∣.

Using Equation (5.4), results in

|g(ι)− h(ι)| ≤ Aεϕ(ι) +

∣∣∣∣ ∫ T

0
G(ι, ς)

∣∣∣∣∣∣∣∣L(ς, g(ς),N g(ς), q(ς)
)
− L

(
ς, g(ς),N g(ς), r(ς)

)∣∣∣∣. (5.7)

According to (1.1), for ι ∈ T,

|r(ς)− q(ς)| =
∣∣L(ς, g(ς),N g(ς), q(ς)

)
− L

(
ς, g(ς),N g(ς), r(ς)

)∣∣.
Applying the assumption (H2), one can obtain

|r(ς)− q(ς)| =
[
E |h(ς)− g(ς)|+ F |r(ς)− q(ς)

]
|N g(ς)|.

i.e.,

|r(ς)− q(ς)| = E

1 −F
|h(ς)− g(ς)||N g(ς)|.

From (5.7), we get

|g(ι)− h(ι)| ≤ AE

1−F
+Aεϕ(ι),

≤ A

1− AE

1−F

εϕ(ι)|N g(ς)|,

≤ N εϕ(ι)|N g(ς)|.

Thus, equation (1.1) encompasses HURS characterized by type K alongside a constant

HURS
A(1−F )

1−AE −F
> 0. �

6. Application I

Suppose T = [1, 2] ∪ [3, 4] and T = 3. Hence, I = [1, 3] ∩ T = [1, 2] ∪ {3}. Assume the
PBVP D1 .5 [h(ι)− g(ι, h)] =

e−2 ι

4
+

sin|h(ι)|+ sin|C D1/2h(ι)|Ng (ι)

10 + e-5ι
, for all ι ∈ Tk ,

h(0) = h(2) = 0.
(6.1)
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Here L(ι, h(ι),N h(ι),D1.5h(ι)) =
e-2ι

4
+

sin|h(ι)|+ sin|C D1/2h(ι)|Ng (ι)

10 + e-5ι
satisfying the as-

sumption (H1). For qi ∈ L, i = 2, 3. Let D1.5qi(ι) = ri(ι) & for ι ∈ T, one can obtain

|L(ι, q1(ι), r1(ι))− L(ι, q2(ι), r2(ι))|

=

∣∣∣∣e−2ι

4
+

[sin|q1 (ι)|+ sin|r1 (ι)|]Ng (ι)

10 + e−5ι
− e−2ι

4
−

[sin|q2 (ι)|+ sin|r2 (ι)|]N g(ι)

10 + e−5ι

∣∣∣∣,
=

∣∣∣∣ [sin|q1 (ι)|+ sin|r1 (ι)|]N g(ι)

10 + e−5ι
−

[sin|q2 (ι)|+ sin|r2 (ι)|]N g(ι)

10 + e−5ι

∣∣∣∣,
≤
[

1

10
|q1(ι)− q2(ι)|+ 1

10
|r1(ι)− r2(ι)|

]∣∣N g(ι)
∣∣.

i.e.,

|L(ι, q1(ι), r1(ι))− L(ι, q2(ι), r2(ι))|

≤
[

1

10
|q1 − q2|+

1

10
|r1 − r2|

]∣∣N g(ι)
∣∣.

Thus,the assumption (H2) meets the requirements E = F =
1

10
. Also, for q ∈ L, consider

D1.5q(ι) = r(ι).
For ι ∈ T,

|L(ι, q(ι), r(ι,N (ι)))| ≤ 1

4
+

1

10
|q(ι)|+ 1

10
|r(ι)|+ 1.

Thus, the assumption (H3) meets the requirements alongside P =
1

4
, r =

1

10
,Q =

1

10
.

With the data provided, the inequality now demonstrates
E K

1−F
< 1 which gives K < 19.

Furthermore, utilizing this principle once again in

(k + m)(||P ||+ rα)(N g(ς))

1− Q
≤ α, α > 0.

yields m <
380

4α+ 10
, α > 0. Furthermore, employing the boundary condition h(0) =

h(4) = 0, and as prop 2.13 indicates,∣∣∣∣ ∫ 2

0
G(ι, ς)∇ς

∣∣∣∣ ≤ ∣∣∣∣ ∫ 2

0
G(ι, ς)dς

∣∣∣∣,
≤
∣∣∣∣ ∫ ι

0

(ι− ς)0.5

Γ(
2

1
)

dς − ι

2

∫ 4

0

(ι− ς)0.5

Γ(
2

1
)

dς − ι

2

∫ ι

4

(ι− ς)0.5

Γ(
2

1
)

dς

∣∣∣∣,
≤ 1.

As a result, the assumption (H4) holds with A = 1 and satisfies the assumption (H5).
Consequently, all requirements of Theorems 3.5 and 3.6 are met. Thus, the PBVP (6.1)
possesses a unique solution h & applying Lemma 3.2 confirms its solution,

h(ι) =

∫ 4

0
G(ι, ς)

(
e−2ι

4
+
sin|h(ς) + sin|CD

1

2 h(ς)|
10 + e−5ς

)
∇ς. (6.2)
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Further, if g ∈ C1
ld(T,R ) meets the requirements

∣∣∣∣CD1/2g(ι)− e−2ι

4
+

sin|g(ι) + sin|C D

1

2 g(ι)|
10 + e−5ι

∣∣∣∣ ≤ ε,
Applying Definition (5.1), results in

|g(ι)− h(ι)| ≤ 17

16
ε.

Thus PBVP (6.1) demonstrates robust Hyers-Ulam stability supported by a fixed HUS

constant
17

16
. Fig 1 demonstrates a remarkable alignment between numerical solution and

exact solution throughout entire interval.

Fig 1: Graph depicting the estimated solution for h(ι).

7. Conclusion

This paper delves into critical findings regarding a fractional dynamic system character-
ized by partial neutral integro-differential equations in Caputo fractional nabla derivative
and is governed by periodic boundary conditions across time scales. Our analysis employs
traditional fixed-point methods for system evaluation. Additionally, we present an illustra-
tive application, accompanied by a MATLAB-generated graph. Future work will focus on
advancing numerical methods for fractional systems with delays or nonlocal conditions, ex-
ploring new control strategies, and applying these systems to communication networks and
biomedical fields. Key areas include enhancing stability analysis and leveraging machine
learning for optimized control.
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