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Abstract: Estimating and studying global navigation satellite system (GNSS) velocities play an essential role in understanding the 

deformation and motion of the crust. Thus, in this research, we employ a deep neural network (DNN) to estimate horizontal velocities 

at certain places using GNSS data. Data on crustal deformation are obtained by using Global Positioning System (GPS) techniques. 

The exact locations of the three stations were obtained by recording, analyzing, and adjusting permanent GPS measurements. 

Moreover, 70% of the GNSS velocities from stations in the Cairo region and  International GNSS Service (IGS) stations were used 

in the analysis to train the proposed DNN model, with the remaining 30% set aside for testing. The horizontal velocity components 

(east and north) were estimated using the DNN model. The highest differences between the velocities obtained by the DNN model 

and the reference velocities were 0.0004 mm. These findings highlight the ability of the DNN model to provide precise GNSS 

velocity estimates for geodetic applications. 
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1. Introduction 

Global plate motion models (e.g., NUVEL-1 and NUVEL-

1A) are used to understand tectonic structures and large-scale 

crustal movements. Subsequently, GPS data were utilized for 

determining geodetic velocities [1, 2]. The development of GPS 

technology made it possible to use GPS measurements to 

monitor crustal motions directly. Researchers can now gain a 

more detailed understanding of crustal motion and deformation 

processes by examining GNSS velocities. Geodetic velocities 

are usually computed using traditional interpolation techniques, 

such as Kriging models, in areas lacking GPS stations. Artificial 

intelligence (AI) techniques such as artificial neural networks 

(ANNs), deep learning (DL), and machine learning (ML) have 

acquired popularity as substitutes in this sector of geosciences 

lately [3-8]. This study assesses the effectiveness of these 

methods in estimating horizontal velocities by employing DNN 

algorithms specifically.  

The DNN model offers an effective tool for forecasting 

GNSS station velocities while considering geographical 

variables. These models provide crucial information for 

displacement analysis and geodynamic research. The GNSS, a 

constellation of satellites, provides global positioning and 

navigation services. For this study, three geodetic stations were 

used in the Cairo area from 2022 to April 2023. Utilizing the 

DNN to calculate the east and north velocities for each station 

until April 2023 provides the ability to estimate east and north 

velocities till September 2023. 

1.1 Study Area 

The study area is centered in Cairo, the capital city of Egypt, 

located in the northeastern part of the country. Cairo’s 

geographic coordinates are approximately 30.0444° N latitude 

and 31.2357° E longitude. The city is situated on the eastern 

bank of the Nile River and covers an extensive area that includes 

a variety of geological and urban landscapes. 

Cairo lies within the tectonically active region influenced by 

the Nubian, Arabian, and Eurasian plates. The geological setting 

of Cairo is primarily characterized by sedimentary rock 

formations, including limestone, sandstone, and shale, which are 

part of the broader Nile Delta region. This region is known for 

its complex geological history, which both tectonic and 

sedimentary processes have shaped. A network of geodetic GPS 

stations has been established throughout the Cairo metropolitan 

area to monitor and analyze crustal movement. These stations 

provide precise and continuous measurements of the Earth’s 

surface, allowing for the detection of minute movements and 

deformations. The selected GPS stations are strategically 

distributed across various districts, including Downtown Cairo 

and the Mokattam Hills, to ensure comprehensive coverage of 

the study area. The GPS data collected from these stations are 

analyzed to understand the crustal dynamics, including the rates 

and directions of ground movement. The study aims to provide 

valuable insights into the tectonic behavior of the region, 

contributing to the understanding of seismic hazards and the 

potential for future geological events. The findings from this 
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research are expected to enhance the knowledge of crustal 

movements in Cairo and support the development of mitigation 

strategies to reduce the impact of tectonic activity on the urban 

infrastructure. 

1.3 GPS Data 

Fig. 1 illustrates the three geodetic GPS stations used in the 

Cairo area from 2022 to April 2023. The GPS stations’ names 

and coordinates are listed in Table 1. 

 

Fig. 1. Location map of the study area (red rectangular), Cairo 

area, Egypt. 
 

Table 1. Geographic location of the Cairo geodetic stations with 

reference to WGS 1984. 

Station Latitude Longitude Height (m) 

ADIS 9° 2' 6.49''N 38° 45' 58.69'' E 2439.1 

DRAG 31° 35' 35.52 

'' N 

35° 23' 31.45'' E 31.8 

KATA 29°55′39″N 31°49′45.12″E 495.596 

IISC 13° 1' 16.2'' N 77° 34' 13.35'' E 843.71 

MATE 40° 38' 56.87'' 

N 

16° 42' 16.05'' E 535.6 

MSLT 29°30′49.68″

N 

30°53′19.32″E 5.102 

NICO 35° 8' 27.56'' 

N 

33° 23' 47.22'' E 190.1 

NOT1 36° 52' 34'' N 14° 59' 23.31'' E 126.2 

PHLW 29°51′41.4″N 31°20′36.24″E 148.749 

RABT 33° 59' 53.17'' 

N 

-6° 51' 15.44'' E 90.1 

YEPE 40° 31' 29.63'' 

N 

-3° 5' 19.07'' E 972.8 

ZIMM 46° 52' 37.54'' 

N 

7° 27' 55'' E 956.4 

2. Materials and Methods 

2.1. GPS Measurements 

In the Cairo region, three GPS stations were used from 2022 

to April 2023. The measurements are conducted with field 

equipment consisting of receiver units and auxiliary devices like 

batteries, a compass, and other accessories. Accurate baseline 

readings are obtained using dual-frequency geodetic receivers. 

At every station, the minimum elevation mask angle is 15 

degrees, and the data sampling interval is set to 30 seconds. To 

enhance the datum definition and precision of the three stations’ 

GPS results, 10 permanent stations from the International GNSS 

Service (IGS) dataset (ADIS, DRAG, IISC, MAL2, MATE, 

NICO, NOT1, RABT, ZIMM, and YEBE) are also examined, as 

well as the three stations GPS observations. Furthermore, in Fig. 

2, IGS stations (International Terrestrial Reference Frame 

(ITRF2014)) [9] are arranged sensibly around the study area. 

IGS accurate satellite orbits are used to find the daily coordinate 

solution. Following a traditional processing scheme and 

processing strategy, GPS data are processed using Bernese 

software V.5.2 [10], as follows: 

 1) ITRF2014 reference frame. 

2) NNR-NUVEL-1A plate motion model for non-ITRF stations 

3) The application of IGS products from 2022 to April 2023 

4) Baselines that are automatically created using the MAX-OBS 

technique. 

5) 15° is the elevation cut-off angle. 

6) Linear ionosphere-free (LIF) combination 

7) Dry Niell as a troposphere model with (the Vienna mapping 

function) global mapping function 

The double-differenced observation technique is used to find 

daily minimum-constrained solutions for the processing 

strategy. Precise IGS orbits, earth orientation parameters, and an 

absolute antenna phase center are used in daily data processing. 

It has proven possible to resolve integer phase ambiguities using 

the SIGMA and QIF (quasi-ionosphere-free) techniques. 

Fig. 2. Distribution of International GNSS Service (IGS) 

stations. 

2.2. Deep Neural Network Model: 

This study aims to analyze crustal movements in Cairo using 

geodetic GPS station data. The methodology consists of several 

key steps, including data acquisition, preprocessing, model 

development, training, and evaluation. The dataset was split into 

training and testing sets: 70% of the data for training and 30% 

for testing. the optimal hyperparameters for the neural  
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network model. Various configurations of the model were 

evaluated by iteratively altering the key parameters, including 

the number of neurons in the first and second hidden layers 

(ranging from 32 to 128 and 16 to 64, respectively), activation 

functions (ReLU, sigmoid, and tanh), and dropout rates (0.0, 0.2, 

and 0.4). The model was trained with 300 epochs and a batch 

size of 10. Its performance was measured using mean absolute 

error (MAE),  root mean squared error (RMSE), and the 

coefficient of determination (R2). The results of this analysis, 

stored in a structured DataFrame and exported for 

documentation, allowed for a comprehensive evaluation of the 

model’s behavior under different hyperparameter settings, 

aiding in the selection of an optimal configuration. The model 

was compiled using the Adam optimizer and MSE as the loss 

function. 

The model was trained on the training data for each target 

variable in the dataset. For each target variable, a separate model 

was created and trained for 300 epochs with a batch size of 10. 

The training process involved fitting the model to the input 

features and target values. The model’s performance was 

evaluated using the testing data. Predictions were generated for 

each target variable, and the accuracy of the predictions was 

determined using MAE, RMSE, and R2 score. Furthermore, the 

results were visualized using Matplotlib to compare the training 

data, testing data, and predictions. 

In this study, the random forest algorithm was utilized to 

predict the velocities of geodetic stations based on Global 

Positioning System (GPS) data, and its results were compared 

to those of the deep neural network (DNN). Although random 

forest demonstrated its ability to handle high-dimensional data 

and nonlinear relationships, its performance was evaluated using 

metrics such as root mean squared error (RMSE) and the 

coefficient of determination (R2). However, DNN exhibited 

significantly better results, showcasing its superior capability in 

extracting complex patterns from the data. These results 

highlight the advantage of employing DNNs for predictive tasks 

in geodetic analysis. 

In this study,  Monte Carlo simulation was applied to 

quantify the uncertainty in predictions made by the model. The 

simulation involved generating multiple predictions by 

introducing stochastic behavior during prediction. Specifically, 

randomness was maintained by enabling training mode in the 

model, keeping dropout layers active during inference. For each 

simulation, predictions were recorded, and the mean prediction 

and standard deviation, representing uncertainty, were 

calculated. These metrics allowed the assessment of the model’s 

reliability under uncertain conditions. The true values were 

plotted alongside the mean predictions, and the uncertainty was 

visualized as a shaded confidence region around the predictions. 

The results highlighted that the true values consistently fell 

within the uncertainty bounds, demonstrating the robustness of 

the model as shown in Figs. 7 and 8.  

3. Results and Discussion 

We calculated the north and the east velocities for all study 

stations until April 2023, and the results are displayed in Table. 

2. By applying DNN algorithms, we predicted north velocities 

and east velocities until September 2023, as shown in Table 2. 

Notably, the computed velocity and the velocity estimations 

obtained by DNN methods are consistent. Using the DNN 

algorithms, we estimated the standard deviations of the velocity 

values, as shown in Table. 2. The actual data and DNN 

predictions for the east and north velocities are demonstrated in 

Figs. 3, 4, 5, and 6. As illustrated, the variation between the 

observations and the forecasts are in the normal distribution. 

Table 2. The geodetic stations, GNSS geodetic velocities, and 

velocities predictions(mm/yr) from DNN of Cairo stations and 

IGS stations. 

 

Table 3. The geodetic stations, GNSS geodetic velocities, and 

velocities predictions(mm/yr) from RF of Cairo stations and 

IGS stations. 

Stati

on 

 GNSS geodetic  

velocity (mm/yr)   

Velocity predictions 

 from DNN (mm/yr)  

VE σE VN σN VE σE VN σN 

ADI

S 

18.

63 

2.1

9 

24.

72 

2.7

9 

18.62

98 

2.1

9 

24.71

98 

2.7

9 

DRA

G 

24.

56 

2.2

4 

27.

67 
2.4 

24.55

95 

2.2

4 

27.66

94 
2.4 

IISC 
35.

66 

1.3

6 

35.

17 

2.5

8 

35.65

96 

1.3

6 

35.16

96 

2.5

8 

KAT

A 

25.

52 

2.1

5 

19.

8 

2.0

1 

25.51

97 

2.1

5 

19.79

98 

2.0

1 

MA

TE 

24.

58 

1.4

1 

18.

41 

2.9

1 

24.57

98 

1.4

1 

18.40

98 

2.9

1 

MSL

T 

23.

21 

2.3

3 

18.

74 

3.2

2 

23.20

98 

2.3

3 

18.73

98 

3.2

2 

NIC

O 

16.

51 

2.2

8 

16.

89 

2.6

6 

16.51

00 

2.2

8 

16.89

00 

2.6

6 

NOT

1 

23.

27 

1.7

8 

17.

4 

2.3

5 

23.26

98 

1.7

8 

17.39

98 

2.3

5 

PHL

W 

24.

31 

2.0

1 

19.

32 

2.6

2 

24.30

98 

2.0

1 

19.31

98 

2.6

2 

RAB

T 

18.

58 

2.0

7 

17.

61 

2.3

5 

18.57

98 

2.0

7 

17.60

98 

2.3

5 

YEP

E 

21.

31 

2.0

7 

16.

00 

2.7

1 

21.30

98 

2.0

7 

15.99

98 

2.7

1 

ZIM

M 

21.

60 

2.1

3 

14.

44 

2.7

5 

21.59

98 

2.1

3 

14.43

99 

2.7

5 

Statio

n 

 GNSS geodetic  

velocity (mm/yr)   

Velocity predictions 

 from RF (mm/yr)  

VE σE VN σN VE σE VN σN 

ADIS 
18.6

3 

2.1

9 

24.7

2 

2.7

9 

18.6

2 

2.1

8 

24.7

1 

2.7

8 

DRA

G 

24.5

6 

2.2

4 

27.6

7 
2.4 

23.1

9 

2.1

1 

27.6

4 

2.3

9 

IISC 
35.6

6 

1.3

6 

35.1

7 

2.5

8 

35.6

5 

1.3

5 

35.1

4 

2.5

7 
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Tables 4, 5, 6, and 7 list MAE, R2, and RMSE values for north 

velocities and east velocities for each station based on the DNN 

and RF models. 

Table 4.  MAE, RMSE, and R2 of east GNSS velocities 

predictions from DNN for all stations. 
 

Station MAE RMSE R2 

ADIS 3.46E-06 1.60E-11 0.99999 

DRAG 1.17E-05 1.36E-10 0.99998 

IISC 7.20E-07 7.57E-13 0.99999 

MATE 1.45E-07 2.10E-14 0.99999 

NICO 8.82E-08 8.08E-15 0.99999 

NOT1 8.96E-08 8.06E-15 0.99999 

RABT 4.71E-08 2.27E-15 1 

YEPE 3.10E-06 9.85E-12 0.99999 

ZIMM 6.75E-08 5.05E-15 0.99999 

KATA 8.31E-07 7.45E-13 0.99999 

MSLT 1.10E-07 1.20E-14 0.99999 

PHLW 1.39E-07 3.68E-13 0.99999 

 

Table 5. MAE, RMSE, and R2 of north GNSS velocities 

predictions from DNN for all stations.    

                                    

Station MAE RMSE R2 

ADIS 3.46E-06 1.60E-11 0.99999 

DRAG 1.17E-05 1.36E-10 0.99998 

IISC 7.20E-07 7.57E-13 0.99999 

MATE 1.45E-07 2.10E-14 0.99999 

NICO 8.82E-08 8.08E-15 0.99999 

NOT1 8.96E-08 8.06E-15 0.99999 

RABT 4.71E-08 2.27E-15 1 

YEPE 3.10E-06 9.85E-12 0.99999 

ZIMM 6.75E-08 5.05E-15 0.99999 

KATA 8.31E-07 7.45E-13 0.99999 

MSLT 1.10E-07 1.20E-14 0.99999 

PHLW 1.39E-07 3.68E-13 0.99999 
 

Table 6. MAE, RMSE, and R2 of east GNSS velocities  

predictions from RF for all stations. 

              

Station MAE RMSE R² 

ADIS 2.02E-05 2.97E-05 0.99991 

DRAG 0.000123 0.000742 0.94447 

IISC 4.14E-05 7.61E-05 0.99989 

KATA 1.45E-05 3.05E-05 0.99970 

MATE 6.21E-06 9.15E-06 0.99992 

MSLT 1.06E-05 1.46E-05 0.99991 

NICO 2.22E-05 9.43E-05 0.99807 

NOT1 3.87E-05 0.000207 0.98542 

PHLW 2.22E-05 0.000233 0.98902 

RABT 5.96E-05 0.000157 0.99633 

YEPE 1.16E-05 1.94E-05 0.99987 

ZIMM 1.29E-05 5.45E-05 0.99886 

 

Table 7. MAE, RMSE, and R2 of north GNSS velocities  

predictions from RF for all stations.   

 

Station MAE RMSE R² 

ADIS 6.29E-05 3.80E-05 0.999777 

DRAG 6.47E-05 2.78E-05 0.999194 

IISC 0.000118 5.81E-05 0.999292 

KATA 2.51E-05 1.28E-05 0.999578 

MATE 1.88E-05 6.15E-06 0.999603 

MSLT 4.81E-05 2.04E-05 0.998587 

NICO 0.000138 4.27E-05 0.991894 

NOT1 2.52E-05 8.39E-06 0.999379 

PHLW 4.63E-05 1.40E-05 0.998441 

RABT 6.99E-05 2.22E-05 0.99749 

YEPE 0.000164 2.81E-05 0.972296 

ZIMM 0.000148 2.72E-05 0.992477 

KAT

A 

25.5

2 

2.1

5 
19.8 

2.0

1 

25.5

1 

2.1

4 

19.7

9 

2.0

0 

MAT

E 

24.5

8 

1.4

1 

18.4

1 

2.9

1 

24.5

7 

1.4

0 

18.4

0 

2.9

0 

MSL

T 

23.2

1 

2.3

3 

18.7

4 

3.2

2 

23.2

0 

2.3

2 

18.7

1 

3.2

1 

NIC

O 

16.5

1 

2.2

8 

16.8

9 

2.6

6 

16.4

7 

2.2

7 

16.7

5 

2.6

3 

NOT

1 

23.2

7 

1.7

8 
17.4 

2.3

5 

22.9

3 

1.7

5 

17.3

8 

2.3

4 

PHL

W 

24.3

1 

2.0

1 

19.3

2 

2.6

2 

24.0

4 

1.9

8 

19.2

8 

2.6

1 

RAB

T 

18.5

8 

2.0

7 

17.6

1 

2.3

5 

18.5

1 

2.0

6 

17.5

6 

2.3

4 

YEP

E 

21.3

1 

2.0

7 

16.0

0 

2.7

1 

21.3

0 

2.0

6 

15.5

5 

2.6

3 

ZIM

M 

21.6

0 

2.1

3 

14.4

4 

2.7

5 

21.5

7 

2.1

2 

14.3

3 

2.7

2 

Fig. 9 illustrates the GPS velocities and their standard 

deviations, represented as green arrows accompanied by 

95% confidence ellipses. In comparison, the velocity 

predictions and standard deviations derived from the DNN 

model are depicted with yellow arrows and 95% 

confidence ellipses to elucidate the data. 
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                                   (a)                                                                 (b)                                                             (c) 

Fig. 3. Trend of east component velocities. (a) The actual data, (b) the DNN predictions, and (c) the RF predictions. 
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                                      (a)                                                                 (b)                                                                  (c) 

Fig. 4. Trend of east component velocities. (a) The actual data, (b) the DNN predictions, and (c) the RF predictions. 

https://sjsci.journals.ekb.eg/


 

©2025 Sohag University    sjsci.journals.ekb.eg         Sohag J. Sci. 2025, 10(2), 229- 239    235 

 
                                       (a)                                                                 (b)                                                                (c) 

Fig. 5. Trend of north component velocities. (a) The actual data, (b) the DNN predictions, and (c) the RF predictions. 
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                                      (a)                                                                  (b)                                                                 (c) 

Fig. 6. Trend of north component velocities. (a) The actual data, (b) the DNN predictions, and (c) the RF predictions. 
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Fig. 7. Results of the Monte Carlo simulation in the east velocities. 
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Fig. 8. Results of the Monte Carlo simulation in the north velocities. 

 

  
                                            (a) 

 
                                            (b) 

Fig. 9. (a) The GNSS geodetic velocity and standard deviations (green arrows with 95% confidence ellipses). (b) Velocity predictions 

and standard deviations obtained from the DNN algorithm with yellow arrows and 95% confidence ellipses. 

4. Conclusion 

This study examined the use of DNN techniques to assess 

horizontal GNSS velocities in a location of active plate 

tectonics. Thus, 70% of the dataset was used to train the DNN 

models, with the remaining 30% reserved for model testing and 

performance evaluation. The findings show that there is no 

velocity discrepancy between the reference and estimate values 

of more than 0.0004 mm/yr.. This article contributes a valuable 

vision of the application of DNN algorithms for geodetic 

velocity predictions. The findings offer valuable insights for 

geodynamical research and displacement analysis. Therefore, 

future research should focus on integrating more advanced 

methods and improving DNN algorithms to further enhance the 

accuracy of velocity forecasts. 
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