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Abstract  

Traffic congestion remains a significant challenge in smart city transportation, leading to increased 
travel time, fuel consumption, and environmental impact. This study introduces FireflyXRO, a novel route 
optimization algorithm that integrates the Firefly Algorithm (FA) with Explainable Artificial Intelligence 
(XAI) techniques, specifically SHAP and LIME, to enhance decision transparency. FireflyXRO 
dynamically optimizes routes by considering real-time traffic updates, weather conditions, and vehicle 
attributes, ensuring more efficient fleet management. The algorithm employs a multiobjective function to 
balance travel time, fuel consumption, and congestion avoidance while continuously learning from user 
feedback. Experimental results demonstrate that FireflyXRO outperforms conventional routing 
algorithms, including Dijkstra’s, A, and Genetic Algorithm*, across multiple performance metrics. 
FireflyXRO achieved an 18% reduction in travel time, 12% fuel savings, and improved congestion 
avoidance, surpassing existing methods in adaptability and efficiency. Additionally, the integration of 
XAI techniques enhances interpretability, providing fleet managers with insights into route 
recommendations and improving user trust. The study highlights FireflyXRO’s ability to dynamically 
adjust to real-time conditions, ensuring optimal routing decisions and scalable deployment in smart 
transportation systems.  

Keywords: Firefly Algorithm (FA); Explainable Artificial Intelligence (XAI); Fleet Management; Route 
Optimization.  

1. Introduction   

Route optimization systems are advanced software programs created to determine the best routes for 

fleets of vehicles with the goal of reducing operating expenses, travel time, and fuel consumption while 

guaranteeing on-time delivery. These systems have a major impact on operational effectiveness, cost 

control, and customer satisfaction and are essential to traffic management and transportation logistics. 
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The International Transport Forum claims that effective route optimization can cut fuel usage by up to 

20% and transportation expenses by up to 10% to 15% [1].  

Moreover, the implementation of these systems contributes to the reduction of traffic congestion, leading 

to lower greenhouse gas emissions and improved air quality. As illustrated in Figure 1, "Route 

Optimization: Simplifying Delivery Routes," a key challenge in fleet management is depicted. The image 

shows a single vehicle, often a taxi icon, connected to a map. This simplified illustration highlights the 

complexity of finding the most efficient route for deliveries across a network of roads.  This intricate web 

of possibilities is what intelligent route optimization systems aim to address, streamlining delivery routes 

and enhancing efficiency.  

  

Figure 1. Route Optimization: Simplifying Delivery Routes  

In traffic management, route optimization systems enable better utilization of existing road infrastructure 

by reducing traffic congestion through dynamic route adjustments based on real-time traffic data. For 

transportation companies, these systems are invaluable for maintaining competitive advantage, as they 

ensure efficient delivery schedules and optimize resource allocation. A recent report by the American 

Transportation Research Institute (ATRI) highlights that route optimization can reduce vehicle miles 

traveled by up to 12%, directly translating to lower maintenance costs and extended vehicle lifespan [2].  

The integration of Artificial Intelligence (AI) into route optimization has revolutionized the field by 

enabling systems to process vast amounts of data and adapt to dynamic conditions in real-time. AI 

algorithms, such as Machine Learning (ML) and Deep Learning (DL), are employed to predict traffic 

patterns, assess road conditions, and make informed routing decisions. These AI-driven approaches offer 

significant improvements over traditional methods, providing more accurate and efficient routing 

solutions.  

Numerous studies have explored the application of AI in route optimization. For instance, Liu et al. (2020) 

developed a route optimization model using a Genetic Algorithm (GA) that demonstrated significant 
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improvements in reducing delivery times and operational costs for logistics companies [3]. Similarly, 

Zhang et al. (2019) proposed a neural network-based approach to route optimization that achieved a 15% 

reduction in fuel consumption compared to traditional methods [4].  

Despite the advancements in AI-based route optimization, several challenges remain. Traditional AI 

algorithms often struggle with the high-dimensional and dynamic nature of routing problems, leading to 

suboptimal solutions. Feature selection is a critical preprocessing step that reduces data dimensionality 

by identifying relevant features and eliminating redundant ones, thereby improving the performance of 

optimization algorithms. However, many existing methods fail to adequately address feature selection, 

resulting in inefficient route planning.  

Moreover, the lack of transparency and interpretability in the decision-making processes of AI models is 

a significant barrier to their adoption. Fleet managers and decision-makers require clear insights into how 

routing decisions are made to trust and rely on these systems fully.  

Explainable Artificial Intelligence (XAI) is gaining prominence as a solution to the transparency issues 

in AI models. XAI techniques enable users to understand and interpret the decisions made by AI systems, 

which is crucial for gaining trust and ensuring accountability in high-stakes applications such as route 

optimization. XAI provides insights into the factors influencing routing decisions, helping fleet managers 

and decision-makers to validate and refine the optimization strategies employed by AI systems. By 

making the decision-making process transparent, XAI enhances the usability and acceptance of AI-based 

route optimization systems in the industry.  

Swarm intelligence algorithms, inspired by the collective behavior of social insects and animals, have 

shown promising results in solving complex optimization problems. The Firefly Algorithm (FA), inspired 

by the bioluminescent communication of fireflies, is a notable example. FA has been effectively applied 

to various optimization challenges due to its simplicity, flexibility, and ability to escape local optima. In 

the context of route optimization, FA can iteratively improve routing solutions by simulating the 

attraction and brightness of fireflies, representing potential solutions. The application of FA in route 

optimization can enhance the search for optimal routes, balancing multiple objectives such as travel time, 

fuel consumption, and delivery constraints.  

Problem Statement:  

Efficient fleet management requires dynamic route optimization that balances multiple factors such as 

traffic conditions, fuel consumption, and travel time while ensuring transparency in decision-making. 

Traditional optimization methods, including rule-based algorithms and heuristic approaches, often 

struggle with high-dimensional, real-time data and fail to adapt effectively to changing traffic patterns. 

Similarly, many AI-driven solutions lack interpretability, making it difficult for fleet managers to trust 

and understand the decision-making process.  
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To address these challenges, this paper proposes FireflyXRO, an intelligent route optimization system 

that integrates the Firefly Algorithm (FA) for feature selection and multi-objective optimization with  

Explainable AI (XAI) techniques (SHAP and LIME) to enhance transparency. By leveraging FA’s 

bioinspired optimization capabilities, FireflyXRO efficiently explores large solution spaces, while XAI 

methods provide clear insights into the key factors influencing route recommendations. This combination 

ensures not only optimal and adaptive route planning but also high interpretability, user trust, and 

improved operational efficiency in fleet management.  

The main contributions of this paper are as follows:  

• Novel Route Optimization Method: Introducing a novel FA-based route optimization 

method tailored for fleet management, demonstrating its effectiveness compared to other 

contemporary optimization techniques.  

• Feature Selection Using FA: Employing the FA for efficient feature selection, identifying 

relevant features that impact route optimization, such as traffic density, road conditions, and 

delivery priorities.  

• Integration of Explainable AI: Incorporating XAI techniques to provide insights into the 

decision-making process, ensuring transparency and interpretability of the optimized routes.  

• Comprehensive Evaluation: Comparing the performance of the proposed FA-based method 

with traditional and other contemporary optimization techniques using key performance 

metrics.  

The rest of the paper is organized as follows: Section 2 presents and discusses some related works and 

studies. The proposed framework is presented in detail in Section 3. The experiments, their results, and 

a comparative analysis are presented in Section 4. The paper is concluded in Section 5.  

2. Literature Review   

AI presents a powerful toolkit for optimizing various aspects of smart city management. However, 

challenges persist regarding the development of green AI infrastructure, particularly concerning the high 

dimensionality and dynamic nature of data in routing problems. Additionally, traditional AI approaches 

often inadequately address feature selection and lack transparency in decision-making processes [3].  

Despite these challenges, AI has demonstrably benefited various smart city applications. Traffic 

management can be improved through AI-powered prediction of congestion and evacuation performance  

[5]. AI can also contribute to achieving "zero waste" by integrating waste management into smart city 

plans, with applications in waste prediction and automated sorting [6, 7]. Citizen security can be enhanced 

through AI-based crime prediction models that identify high-crime areas, enabling proactive measures. 

Data security and privacy are crucial aspects of smart cities, and AI can be integrated with blockchain 
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technology and the Internet of Things (IoT) to address these concerns [8]. Fire detection can be improved 

with deep learning algorithms offering high accuracy and performance [9].  

Vehicle-to-Everything (V2X) communication, a key technology for smart cities, can benefit from AI 

algorithms integrated with 5G-V2X to improve real-time road perception and enhance safety [10, 11]. 

For Electric Vehicles (EVs), AI-powered optimization strategies can be employed to optimize charging 

and discharging schedules, considering factors like battery loss and time-space characteristics [12]. Even 

the design of EVs can be streamlined with AI-powered software that automates the design process for 

optimal powertrain configurations, improving energy efficiency and performance [13].  

While AI offers promising solutions, limitations remain. Some studies acknowledge the computational 

complexity associated with certain AI models [8, 13]. Additionally, the human-computer interaction 

interface has been overlooked in some research, impacting real-world implementation [14]. Future 

research should address these limitations and delve deeper into the ethical considerations and potential 

biases inherent in AI systems used for smart city management. This paper proposes an intelligent route 

optimization system that leverages the XAI to address these challenges and contribute to a more 

sustainable and efficient transportation system within smart cities.  

The field of route optimization has seen significant advancements with the integration of AI, particularly 

in optimizing logistics and transportation systems. Various AI techniques have been applied to solve 

complex routing problems, leveraging their ability to handle large datasets and dynamic conditions 

[1520]. This section reviews recent developments and methodologies in AI-based route optimization, 

focusing on prominent algorithms and the importance of XAI.  

The field of route optimization has seen significant advancements with the integration of AI, particularly 

in optimizing logistics and transportation systems. Various AI techniques have been applied to solve 

complex routing problems, leveraging their ability to handle large datasets and dynamic conditions. This 

section reviews recent developments and methodologies in AI-based route optimization, focusing on 

prominent algorithms and the importance of XAI.  

AI Techniques for Route Optimization  

• Genetic Algorithms (GA): Widely used for their robustness in finding near-optimal solutions  

[1, 2].  

• Neural Networks (NN): Learn and predict traffic patterns for more accurate route optimization, 

reducing travel times and fuel consumption [3, 4].  

• Ant Colony Optimization (ACO): Inspired by ant foraging behavior, effective for the Vehicle 

Routing Problem (VRP) to improve delivery efficiency [5].  

• Particle Swarm Optimization (PSO): Simulates social behavior for efficient route planning, 

reducing travel time and operational costs in urban areas [6].  
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• Hybrid Approaches: Combine multiple AI techniques for superior performance. For instance, 

GA-ACO can optimize logistics routes by leveraging the strengths of both algorithms [7].  

Explainable Artificial Intelligence (XAI)  

XAI addresses the need for transparency and interpretability in AI models. In route optimization, XAI 

provides insights into the decision-making processes of AI algorithms, enhancing trust and adoption 

among stakeholders, such as fleet managers understanding AI-driven route selections [8].  

As shown in Table 1, various AI applications are transforming smart cities. These range from healthcare, 

where AI and blockchain can safeguard sensitive health data, to traffic management, where Deep Belief 

Networks (DBNs) can optimize traffic flow and reduce congestion. Additionally, secure and scalable 

transactions within the Internet of Things (IoT) are achievable through a combined Blockchain and AI 

architecture. AI is also proving valuable in fire detection with DBNs and R-LSTM neural networks, 

citizen security with AI-powered crime hotspot identification, and smart vehicle manufacturing with 

secure data management using DeepBlockScheme. Furthermore, AI is enhancing road perception 

through 5G-V2X technology, EV charging and discharging optimization, and even the automation of EV 

design for optimal powertrain configurations. However, it's important to acknowledge the limitations 

associated with some of these applications, such as increased network strain due to blockchain, high 

computational complexity, and the need for improved human-computer interfaces for practical use.  

Table 1: AI Applications in Smart Cities  
Applica(on  Descrip(on  Advantages   Disadvantages  

Healthcare  A secure framework using 

AI  and  blockchain 

 to safeguard 

 smart  city  

health data  

Enhanced protec@on  data  Increased network strain 
due to blockchain  

Traffic Management  A Deep Belief Network 
(DBN) approach to reduce 
traffic conges@on and 
pollu@on  

Improved traffic flow and 
conges@on control  

High @me complexity  

Informa(on Technology  A combined Blockchain 

and AI architecture for 

secure and scalable 

transac@ons in the  

Internet of Things (IoT)  

Secure  and  scalable 

transac@ons  across  

various IoT layers  

Increased computa@onal 
complexity  
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Fire Detec(on  A Deep Belief Network 

(DBN) with a Recurrent 

LSTM Neural Network 

(RLSTM-NN)  for  fire  

detec@on  

Wide applicability for 

various smart city  

predic@on tasks  

High computa@onal cost 

and memory  

requirements  

Ci(zen Security (Crime  

Detec(on)  

 An AI and machine 
learning-based strategy 
to iden@fy crime hotspots  

Cost-effec@ve approach for 
ci@zen security  

Complex implementa@on  

Smart  

Manufacturing  

Vehicle  DeepBlockScheme:  A 

system combining deep 

learning and blockchain to 

enhance security in  

smart ci@es  

Secure and decentralized 
manufacturing  data 
management  

Challenges in data 

volume, quality, supply 

chain complexity, and  

service provision  

Road Percep(on   An  AI-based 

 method using 5G-

V2X technology for 

 real-@me 

 road  

percep@on  

Fast,  accurate, 

 and flexible 

 anomaly  

detec@on  

Needs improvement in 
real-@me performance 
for heavy traffic scenarios  

EV  Charging  

Discharging  

and  A mul@-factor model for  

EV  charging  load  

op@miza@on  

Minimized ba^ery loss cost  Lacks a human-computer 
interac@on interface for 
prac@cal use  

EV Design Automa(on  Ar@ficial Neural Network 
(ANN) technology for 
op@mal EV powertrain 
design  

Improved  design 

efficiency and decision- 

making  for  diverse 
powertrain configura@ons  

High  computa@onal  

complexity  

While many AI-based optimization methods have demonstrated success in route planning, there are still 

challenges to address:  

• Handling High-Dimensional Data: Existing methods often struggle with the complexity and 

dynamic nature of large datasets in fleet management.  

• Feature Selection: Efficient feature selection remains underexplored, often resulting in 

suboptimal routing solutions.  

• Lack of Transparency: Traditional AI models lack interpretability, posing challenges for 

realworld adoption by fleet managers.  
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Fleet optimization is a complex problem that has been extensively studied using various AI and 

metaheuristic approaches. While existing methods offer advantages, they also present limitations that 

hinder their effectiveness in real-world fleet management scenarios. This section systematically presents 

the existing approaches, their advantages, and specific shortcomings, justifying the need for our proposed 

FireflyXRO algorithm.  

Genetic Algorithms (GA)  

Genetic Algorithms (GA) have been widely used for optimization problems, including vehicle routing 

and fleet management. GA employs evolutionary principles, such as selection, crossover, and mutation, 

to iteratively improve solutions. However, its effectiveness is limited by the following challenges:  

• Premature Convergence: GA often struggles with maintaining diversity in solutions, leading to 

premature convergence to suboptimal routes, especially in large-scale dynamic routing problems.  

• Computational Cost: The iterative nature of GA results in high computational overhead, making 

it inefficient for real-time applications.  

• Lack of Explainability: GA does not inherently provide interpretability, making it difficult for 

fleet managers to understand and justify the selected routes.  

• Neural Networks (NN)  

• Neural Networks (NN) have been employed for route optimization and demand forecasting due 

to their ability to model complex non-linear relationships. However, they present several 

drawbacks in the context of fleet management:  

• High Data Requirements: NN models require extensive labeled datasets to achieve high 

accuracy, which may not always be available in real-world scenarios.  

• Computational Intensity: Training and deploying deep learning models require significant 

computational resources, making them impractical for real-time fleet routing.  

• Lack of Transparency: NN-based approaches act as black-box models, making it difficult to 

interpret why a specific route was chosen, which is a critical requirement for fleet management 

decision-making.  

• Why FireflyXRO?  
• Given the limitations of existing methods, our proposed FireflyXRO algorithm offers a more 

effective solution for fleet optimization by leveraging the Firefly Algorithm (FA) with Explainable 

AI (XAI). The key advantages of FireflyXRO include:  

• Improved Exploration-Exploitation Balance: Unlike GA, FA maintains diversity in the 

solution space, reducing the risk of premature convergence and ensuring optimal route selection.  
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• Computational Efficiency: FA provides faster convergence and lower computational 

complexity, making it suitable for real-time traffic variations and dynamic fleet optimization.  

• Enhanced Transparency with XAI: By integrating SHAP and LIME, FireflyXRO ensures that 

route selection decisions are interpretable, addressing the major drawback of NN-based solutions 

and improving user trust.  

This paper aims to fill these gaps by proposing an intelligent route optimization system that leverages  

FA for feature selection and optimization while integrating XAI for transparency and interpretability. The 

use of FA ensures efficient exploration of solutions, and XAI enables decision-makers to understand and 

refine the model’s recommendations.  

3. FireflyXRO (Firefly-Enhanced Explainable Route Optimization)  

The algorithm integrates the Firefly Algorithm (FA) for efficient optimization with Explainable AI 

(XAI) to ensure transparency in decision-making. It is designed for dynamic and sustainable route 

optimization in smart cities. FireflyXRO consists of four main phases as depicted in Figure 2.  

 i.  Data Acquisition and Preprocessing Phase  

o Collects real-time data, including traffic density, weather conditions, road closures, and 

fuel consumption patterns.  

o Prepares the dataset through data cleaning, normalization, and handling missing values to 

ensure high-quality input for the algorithm.  

ii.  Feature Selection and Optimization Phase  

a. The Firefly Algorithm identifies the most relevant features (e.g., traffic flow, travel time, 

fuel consumption).  

b. Optimizes the solution space by evaluating multiple candidate routes based on these 

selected features, balancing trade-offs like cost and time.  

iii.  Explainable Route Decision Phase  

a. Uses XAI techniques (e.g., SHAP, LIME) to provide transparent insights into the selected 

route.  

b. Generates interpretable explanations for route choices, helping fleet managers understand 

why certain paths were recommended (e.g., less traffic or fuel savings).  

iv.  Feedback and Continuous Learning Phase  

a. Collects post-trip feedback and performance data to evaluate the chosen route’s efficiency 

and accuracy.  
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b. Continuously updates the algorithm using real-time data and feedback, ensuring 

adaptability to changing conditions and improving future predictions.  

  

  

  

 

Figure 2: Proposed Active Learning based Traffic Flow Prediction (ATFP)  
FireflyXRO ensures optimal, transparent, and adaptive route planning, addressing challenges like 

feature selection, real-time optimization, and stakeholder trust, contributing to sustainable and efficient 

transportation in smart cities.  

3.1.Data Acquisition and Preprocessing Phase  

This phase is responsible for gathering, cleaning, and preparing the necessary data to ensure high-quality 

input for the route optimization algorithm. The acquired data includes both static (e.g., road network, 

distance between points) and dynamic (e.g., real-time traffic, weather updates) data. Effective 
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preprocessing ensures the data is consistent, complete, and suitable for optimization models. The overall 

steps of Data Acquisition and Preprocessing Algorithm (DAPA) are illustrated in Algorithm 1.  

 
Algorithm 1: Data Acquisition and Preprocessing Algorithm (DAPA)  
Inputs o Traffic_data, Weather_data, Road_network_data, 

Vehicle_data  

  
Output o 

Preprocessed_Data.  
Steps  
1. Step 1: Acquire Data from Various Sources   

1.1 Traffic_data ← fetch_from_API("traffic_API_endpoint")   

1.2 Weather_data ← fetch_from_API("weather_API_endpoint")   

1.3 Road_network_data ← load_static_data("road_network_file")   

1.4 Vehicle_data ← retrieve_from_database("fleet_info")   

  
2. Step 2: Check for Missing or Inconsistent Data   

2.1 For each dataset in [Traffic_data, Weather_data, Road_network_data, Vehicle_data]:   
                If dataset contains missing values:   
                            Replace with mean/median OR apply interpolation If dataset has duplicate entries:                                   

Remove duplicates   
  

3. Step 3: Normalize Data for Consistent Scaling   
3.1 For each numeric feature in [travel_time, traffic_density, fuel_consumption]:   
                Normalize feature using: normalized_value = (value - min) / (max - min)   

  
4. Step 4: Encode Categorical Data (if needed)   

4.1 Road_condition ← one_hot_encode(Road_network_data['condition'])   

4.2 Weather_type ← label_encode(Weather_data['type'])   
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5. Step 5: Merge Data into a Unified Format   

5.1 Preprocessed_Data ← merge(Traffic_data, Weather_data, Road_network_data, Vehicle_data)   
  

6. Step 6: Apply Real-Time Data Updates  
6.1 While system is running: Fetch latest traffic and weather updates Update Preprocessed_Data 

with new values   
  

7. Step 7: Return Preprocessed Data Return Preprocessed_Data  

  
3.2.Feature Selection and Optimization Phase  

The Feature Selection and Optimization Phase ensures that only the most relevant features (e.g., traffic 

flow, travel time, fuel consumption) are selected to reduce computational complexity and improve the 

performance of route optimization. This phase integrates the Firefly Algorithm (FA) to find nearoptimal 

solutions by balancing factors such as travel time, traffic conditions, and fuel costs. The Firefly 

Algorithm, inspired by the flashing behavior of fireflies, evaluates multiple routes and selects the best 

candidates by optimizing for both efficiency and sustainability. The overall steps of Feature Selection 

and Optimization Algorithm (FSOA) are illustrated in Algorithm 2.  

 
Algorithm 2: Feature Selection and Optimization Algorithm (FSOA)  
Inputs o Preprocessed_Data o Objective_Function (time, fuel_cost, 

traffic_density) o FA_Params (num_fireflies, max_iterations, alpha, 

beta, gamma)  

  
Output  
o Optimized_Route  

  
Steps  
1. Step 1: Feature Selection  

1.1 Relevant_Features ← Select(features=['traffic_density', 'travel_time', 'fuel_consumption'])  
1.2 For each feature in Relevant_Features:  
         If correlation(feature, Objective_Function) < threshold:  
            Remove feature from Relevant_Features  

1.3 Selected_Features ← Final set of relevant features  
  
2. Step 2: Initialize Firefly Algorithm  

2.1 Fireflies ← Initialize `num_fireflies` routes randomly  

2.2 Best_Route ← NULL  
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   2.3 Initialize alpha, beta, and gamma (FA parameters)  
  
3. Step 3: Evaluate Initial Population  
3.1 For each firefly `i` in Fireflies:  

         Fitness[i] ← Objective_Function(Fireflies[i], Selected_Features)  

  
4. Step 4: Iterate to Optimize Route (Main Loop)  
4.1 For iteration = 1 to max_iterations:  
        For each firefly `i`:  

           For each firefly `j` where j ≠ i:  
              If Fitness[j] < Fitness[i]:  # Brighter firefly attracts the other                  

Move firefly `i` towards `j` using:  
                    Fireflies[i] ← Fireflies[i] + beta * exp(-gamma * distance(i, j)^2) * (Fireflies[j] - Fireflies[i]) + 

alpha * random_step  
4.2 Update Fitness of all fireflies after movement  
4.3 Update Best_Route if a better solution is found  

  
5. Step 5: Return Optimized Route  

5.1 Optimized_Route ← Firefly with the best fitness score  
5.2 Return Optimized_Route  

 

The Firefly Algorithm (FA) optimizes route selection by balancing travel time, congestion, and fuel 
efficiency. It operates using:  

• Randomness Factor (α): Controls exploration to prevent premature convergence.  

• Attractiveness (β): Determines movement towards brighter fireflies (better solutions), calculated 
as:  

o 𝛽	=	𝛽0	𝑒−𝛾𝑟2																			(1)  

• Light Absorption (γ): Balances local and global search by reducing attraction over distance.  

To enhance interpretability, FireflyXRO integrates SHAP (global feature importance) and LIME (local 
explanations), ensuring transparent and trustworthy route recommendations for smart city traffic 
management.  

 

3.3.Explainable Route Decision Phase  

The Explainable Route Decision Phase ensures transparency by providing interpretable explanations 

for the optimized route chosen by the Firefly Algorithm. This phase leverages Explainable AI (XAI) 

techniques such as SHAP (SHapley Additive exPlanations) or LIME (Local Interpretable 
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Modelagnostic Explanations) to offer insights into how the selected features (e.g., traffic conditions, 

fuel savings) influenced the routing decision.  

By making the decision-making process clear, this phase helps build trust among users—such as fleet 

managers or municipal authorities—who can understand the rationale behind each route 

recommendation. The overall steps of Explainable Route Decision Algorithm (ERDA) are illustrated in 

Algorithm 3.  

 
Algorithm 3: Explainable Route Decision Algorithm (ERDA)  
Inputs o  
 

Optimized_Route o 

Selected_Features  

o Model (Trained route optimization 

model) o SHAP_Tool (SHAP explainer 

initialized with Model)  

 
Output  
o Explanation_Report o 

Visual_Explanation  

 
Steps  
 

1. Step 1: Initialize SHAP Explainer   

1.1 SHAP_Explainer ← shap.Explainer(Model)   
  

2. Step 2: Calculate SHAP Values for the Optimized Route   

2.1 shap_values ← SHAP_Explainer(Optimized_Route)  
  

3. Step 3: Extract Feature Contributions from SHAP Values   

3.1 feature_contributions ← {}   
3.2 For each feature in Selected_Features: contribution_value ← shap_values[feature] 

feature_contributions[feature] ← contribution_value  

  
4. Step 4: Generate SHAP Visual Explanations   

4.1 Visual_Explanation ← shap.summary_plot(shap_values, Optimized_Route, plot_type="bar")  
  

5. Step 5: Create Explanation Report   
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5.1 Initialize Explanation_Report ← "Explanation for the chosen route:\n"   
5.2 For each (feature, value) in feature_contributions: Append f"- {feature}: {value}\n" to 

Explanation_Report  
 

 
6. Step 6: Display Results to the User   

6.1 Show Visual_Explanation # Display SHAP summary plot 
6.2 Print Explanation_Report # Print the textual report  
 

 

  
7. Step 7: Return the Results   

7.1 Return Explanation_Report, Visual_Explanation  

 

 

3.4.Feedback and Continuous Learning Phase  

This phase ensures that the FireflyXRO algorithm remains adaptive and responsive by incorporating 

post-trip feedback and real-time data updates into its learning process. The goal is to continuously 

refine future route recommendations based on past outcomes and environmental changes. Feedback 

mechanisms evaluate the efficiency of the recommended route, while the system updates itself with the 

latest data to maintain optimal performance in evolving conditions. The overall steps of Feedback and 

Continuous Learning Algorithm (FCLA) are illustrated in Algorithm 3.  

 
Algorithm 4: Feedback and Continuous Learning Algorithm (FCLA)  
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Inputs o 

Optimized_Route  

o Post_Trip_Data (e.g., actual travel time, fuel consumption, feedback) o Model 

(Current route optimization model) o Real_Time_Data (e.g., traffic, weather updates)  

  
Output  
o Updated_Model - Performance_Report  

Steps  
1. Step 1: Collect Post-Trip Feedback   

1.1 Actual_Travel_Time ← Post_Trip_Data["travel_time"]   

1.2 Actual_Fuel_Consumption ← Post_Trip_Data["fuel_consumption"]   

1.3 User_Feedback ← Post_Trip_Data["feedback"]  

  
2. Step 2: Compare Predicted vs Actual Performance   

2.1 Time_Error ← Actual_Travel_Time - Optimized_Route["predicted_time"]   

2.2 Fuel_Error ← Actual_Fuel_Consumption - Optimized_Route["predicted_fuel"]  2.3 

Record deviations in Performance_Report  
  

3. Step 3: Update Performance Metrics   
3.1 Performance_Report ← { "Time_Error": Time_Error, "Fuel_Error": Fuel_Error, 

"User_Feedback": User_Feedback }  
  

4. Step 4: Adjust Model Based on Feedback   

4.1 If abs(Time_Error) > Threshold OR abs(Fuel_Error) > Threshold:   
                 4.1.1 Retrain Model with Post_Trip_Data + Real_Time_Data   

                 4.1.2 Updated_Model ← Updated Model parameters  
  

5. Step 5: Incorporate Real-Time Data Updates   
5.1 While system is running:   
5.1.1 Fetch latest traffic and weather updates   
5.1.2 Update Model with new data points  

  
6. Step 6: Store Updated Model   

6.1 Save Updated_Model for future predictions  

  
7. Step 7: Return Performance Report and Updated Model   

7.1 Return Performance_Report, Updated_Model  
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The Firefly Algorithm (FA) has been chosen for fleet route optimization due to its adaptive attractiveness 

mechanism, which enables an effective balance between exploration and exploitation in the search space. 

Unlike traditional metaheuristic methods such as Genetic Algorithms (GA) and Particle Swarm 

Optimization (PSO), FA dynamically adjusts the movement of fireflies based on their relative brightness, 

ensuring more efficient convergence while avoiding local optima.  

In the context of fleet management, where real-time traffic conditions, fuel consumption, and congestion 

must be considered, FA demonstrates superior adaptability in high-dimensional and dynamic 

environments. The algorithm’s ability to parallelly explore multiple potential routes significantly 

enhances its efficiency in identifying optimal solutions under varying traffic conditions.  

To further improve decision-making transparency, FA is integrated with Explainable AI (XAI) techniques 

such as SHAP (SHapley Additive exPlanations) and LIME (Local Interpretable Modelagnostic 

Explanations). These methods provide interpretable insights into route selection by highlighting key 

contributing factors, such as traffic density, weather conditions, and road network constraints. By 

incorporating these techniques, the system ensures that fleet managers can understand and trust the 

optimization results, thereby enhancing user confidence and adoption.  

4. Implementation and Evaluation  

The FireflyXRO algorithm was implemented using Python due to its extensive libraries for optimization 

and machine learning. Key libraries included scikit-learn, SHAP, LIME, and NumPy. The system was 

tested on a smart city dataset containing dynamic and static data such as real-time traffic updates, weather 

conditions, road networks, and vehicle attributes. Below is the technical workflow and system setup. 4.1 

System Setup  

 •  Programming Language: Python 3.9  

• Libraries Used:  

o  Firefly Algorithm: Py-Firefly-Algorithm 

o  Data Manipulation: Pandas, NumPy o 

 Machine Learning: scikit-learn o 

 Explainable AI: SHAP, LIME o 

 Visualization: Matplotlib, Seaborn  

• Hardware:  

o CPU: Intel Core i7 (3.5 GHz)  
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o RAM: 16 GB o  GPU: NVIDIA GeForce RTX 2060 o 

 OS: Ubuntu 20.04  

4.2 FireflyXRO Implementation Steps  

Step 1: Data Acquisition and Preprocessing  

Real-time data sources were simulated using APIs to mimic the dynamic conditions. The data 

preprocessing involved:  

i. API Integration: Traffic and weather data were fetched in real-time.  

ii. Handling Missing Values: Missing entries were filled using interpolation and mean imputation.  

iii. Data Normalization: Key features like travel time, traffic density, and fuel consumption were 

scaled between 0 and 1.  

iv. Encoding: Road conditions were one-hot encoded, while weather types were label-encoded.  

Step 2: Feature Selection and Optimization Using Firefly Algorithm  

The Firefly Algorithm optimized routes by balancing trade-offs among features:  

i. Firefly Initialization: Routes were initialized as fireflies with random feature values.  

ii. Fitness Evaluation: Fitness scores were computed using a weighted objective function (travel 

time, traffic, and fuel cost).  

iii. Firefly Movement: Fireflies were updated iteratively to explore the solution space.  

iv. Optimization: The best route was selected after 50 iterations, using a multi-criteria objective 

function.  

Step 3: Explainable Route Decision Using SHAP and LIME  

After optimization, SHAP and LIME were applied to explain the chosen route. SHAP values highlighted 

which factors (e.g., low traffic density) contributed most to the recommendation. A visual SHAP 

summary plot was generated, and textual insights were provided to fleet managers.  

Step 4: Feedback and Continuous Learning Integration  

User feedback (e.g., fuel consumption and travel delays) was incorporated to improve future predictions:  

i. Performance Analysis: Deviations between predicted and actual travel times were recorded.  

ii. Model Update: When deviation exceeded a threshold, the optimization model was retrained 

using new data. iii. Real-time Updates: Live traffic and weather data were continuously fed into the 

system for adaptive learning.  
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4.3. Performance Metrics  

i. Travel Time Reduction: Percentage reduction in travel time compared to baseline static routing 

algorithms. ii. Fuel Consumption Savings: Percentage reduction in fuel consumption based on 

optimized routes.  

iii. Congestion Avoidance: Number of high-traffic zones avoided during the journey.  

iv. Optimization Time: Time taken for the FireflyXRO algorithm to converge to an optimal route 

solution.  

v. Model Update Time: Time required to retrain the model with new feedback data.  

vi. Memory Usage: Amount of RAM consumed during optimization and learning phases.  

vii. User Satisfaction Score: A subjective score (on a scale of 1–10) provided by users based on their 

confidence in the recommended route. viii. Interpretability Score: Rating of how easily users 

could understand the decision-making process through SHAP and LIME visualizations.  

  

4.4. Results   

Table 2 presents a comparative analysis of the FireflyXRO algorithm against traditional algorithms 

(Dijkstra's, A*, and Genetic) across various performance metrics. The metrics include travel time 

reduction, fuel consumption savings, congestion avoidance, optimization time, model update time, 

memory usage, user satisfaction, and interpretability.   

Table 2: Performance comparison of FireflyXRO with traditional algorithms.  
Metric  FireflyXRO  Dijkstra's Algorithm  A* Algorithm  Genetic Algorithm  

Travel Time 
Reduction (%)  

18  10  12  15  

Fuel Consumption  
Savings (%)  

12  7  9  10  

Congestion 
Avoidance (Zones)  

8  5  6  7  

Optimization Time  
(seconds)  

12.5  5  7  15  

Model Update Time  
(minutes)  

3  6  5  4  

Memory Usage (MB)  220  150  180  240  
User Satisfaction  

Score (1-10)  
9.2  7.5  8.1  8.5  

Interpretability  
Score (1-10)  

9.5  4  6  7  

Discussion of Results:  
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i. Travel Time Reduction: FireflyXRO achieved the highest reduction (18%) in travel time among 

the tested algorithms, outperforming Dijkstra’s (10%), A* (12%), and the Genetic Algorithm 

(15%).  

ii. Fuel Consumption Savings: FireflyXRO provided significant fuel savings (12%), surpassing 

traditional algorithms by efficiently selecting less congested routes.  

iii. Congestion Avoidance: FireflyXRO was able to avoid 8 high-traffic zones per trip, 

demonstrating its ability to optimize for real-time traffic conditions better than the other 

algorithms.  

iv. Optimization Time: Although FireflyXRO took longer (12.5 seconds) than Dijkstra's (5 seconds) 

and A* (7 seconds), its multi-objective optimization process justifies the increased time.  

v. Model Update Time: FireflyXRO retrains efficiently within 3 minutes using continuous 

learning, outperforming Dijkstra’s (6 minutes) and A* (5 minutes). vi. Memory Usage: Due to 

its complexity, FireflyXRO consumed 220 MB of memory, slightly higher than Dijkstra’s and 

A*, but lower than the Genetic Algorithm.  

vii. User Satisfaction and Interpretability: With scores of 9.2 and 9.5 respectively, FireflyXRO excels 

in providing user confidence and transparent decision-making through SHAP and LIME, 

significantly outperforming traditional algorithms in interpretability.  

Figure 3 illustrates the core components of the FireflyXRO algorithm. The figure highlights the key steps 

involved in the optimization process, including initialization, objective function evaluation, and update 

of firefly positions. The visualization emphasizes the algorithm's ability to explore the solution space 

efficiently and converge to optimal solutions.  

 

Figure 3: Comparison of the FireflyXRO Algorithm with previous algorithms  
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Qualitative Benefits of Transparency in Real-World Deployment  

One of FireflyXRO’s key advantages is its explainability through SHAP and LIME, which enhances trust 
and usability in AI-driven decision-making. Traditional routing algorithms operate as black-box models, 
making it difficult for users to understand why a particular route is chosen. This lack of transparency can 
lead to resistance in AI adoption, especially in critical applications such as fleet management, emergency 
response, and smart city traffic control.  

FireflyXRO addresses this challenge by:  

• Providing Route Explanations: SHAP values highlight the impact of different factors (traffic 
density, weather conditions, road quality) on route selection, allowing users to validate AI 
decisions.  

• Increasing User Confidence: Fleet managers can interpret the reasoning behind route adjustments, 
leading to greater trust in AI recommendations.  

• Regulatory Compliance: Many industries require explainability in AI systems, and FireflyXRO's 
interpretable framework helps businesses meet AI transparency and fairness regulations.  

• Enhanced Decision-Making: The ability to visualize route decisions ensures that human operators 
remain in control, facilitating a hybrid AI-human decision-making approach for better operational 
flexibility.  

By integrating transparency into route optimization, FireflyXRO bridges the gap between AI automation 
and practical usability, making it a viable and scalable solution for real-world deployment in smart 
transportation and logistics systems.  

5. Conclusion  

This study presented an intelligent fleet optimization system that integrates the Firefly Algorithm (FA) 

with Explainable AI (XAI) techniques to enhance routing efficiency while ensuring transparency in 

decision-making. The proposed FireflyXRO model demonstrated superior performance in optimizing 

fleet routes, effectively addressing challenges related to high-dimensional data, computational efficiency, 

and interpretability. By leveraging FA for feature selection and optimization, combined with SHAP and 

LIME for explainability, our approach provides fleet managers with both optimized solutions and insights 

into the decision-making process. Future research can focus on enhancing scalability for larger fleets by 

incorporating hybrid metaheuristic techniques or reinforcement learning, integrating real-time IoT-based 

traffic data and smart city analytics for adaptive route optimization, and further refining XAI methods to 

improve transparency and user adoption. Beyond fleet optimization, this work has broader implications 

for urban planning, sustainability, and environmental impact. Smarter transportation systems can benefit 

from optimized fleet routes, leading to reduced congestion, improved traffic management, and lower 

operational costs. Additionally, minimizing travel distances and idle time enhances fuel efficiency, while 

decreased carbon emissions align with global sustainability efforts for eco-friendly transportation 

systems. By bridging the gap between optimization, interpretability, and real-world applicability, this 

research contributes to more intelligent and sustainable fleet management solutions.   
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