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Abstract 

Brain cancer, a perilous disease, underscores the critical need for brain tumor classification to 

enhance treatment outcomes and increase patient survival rates. Nevertheless, the challenging task of 

classifying brain tumors in their initial stages is compounded by variations in size, shape, and 

appearance. Deep learning (DL) gained prominence as a promising solution, particularly in the 

healthcare sector, utilizing brain magnetic resonance (MR) images for effective detection and 

classification. The prevalent use of transfer learning via fine-tuning addresses this challenge, where 

specific layers of a pre-trained architecture are adapted for a related target task. Despite its efficacy, 

selecting the optimal fine-tuning layers remains a key issue. This study presents a novel system 

employing a fine-tuning approach with manually chosen layers across five diverse architectures 

(EfficientNetV2s, Inception ResNetV2, MobileNetV2, RegNetY-320, and ConvNeXt-Large). A 

Global Average Pooling (GAP) layer was implemented at the output to address overfitting and 

vanishing gradient challenges, while a dropout layer was added to improve generalization. A 

comprehensive evaluation of multiple models on the BT-Large-4C dataset, which consists of 3,264 

brain MRI images, shows that the fine-tuned EfficientNetV2s architecture outperforms other models. 

It achieved an impressive test accuracy of 97.86% while using only image resizing as the 

preprocessing step. Additionally, EfficientNetV2s outperforms state-of-the-art methods, making it a 

highly efficient and effective choice for classification of brain tumors. This study underscores the 

effectiveness of tailored fine-tuning in improving brain tumor classification. 

Keywords: Deep learning (DL),  Brain cancer, Transfer learning (TL), Fine-tuning, Magnetic resonance 

imaging (MRI). 

 

1. INTRODUCTION 

 

The human brain is a critical organ that controls a variety of essential functions, including cognition, 

hearing, emotion, vision, and reflexes [1,2]. Brain tumors, which develop from abnormal growth of tissues 

within the skull, are extremely fatal diseases. They are classified into two categories: primary tumors 

which remain confined inside the brain and secondary cancers that originate in other organs and 

metastasize to the brain [3]. Common forms include meningiomas, gliomas, and pituitary tumors. These 

tumors may lead to hormone imbalances and visual problems. Addressing these disorders poses 

considerable obstacles in treatment, stressing the necessity of early detection for general health [4,5]. In 

2023, the American Cancer Society predicts that 24,810 people will be diagnosed with malignant tumors, 
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resulting in 18,990 deaths [6]. Techniques of brain tumor treatment differ based on the size and kind of the 

tumor. It may be challenging to identify brain tumors due to their varying sizes. Precisely evaluating a 

brain tumor's size and resolution in its early stages can be challenging, limiting detection efforts. However, 

early detection greatly improves patient survival rates. Brain tumors are more difficult to diagnose when 

compared to cancers in other regions of the body. The existence of the blood-brain barrier complicates the 

detection of tumor cell activity, as traditional radioactivity markers are useless in this condition [7]. 

 

Recent imaging techniques have achieved significant progress in diagnosing serious human illnesses 

such as skin cancer, brain tumors, and stomach cancer [7-9]. Among these, MRI and computed 

tomography (CT) scans are widely regarded as the most effective tools for detecting brain malignancies 

[10]. MRI, in particular, is preferred over CT due to its ability to capture detailed information about tumor 

texture and shape, offering high-resolution, non-invasive images of brain tissue. Despite this, the complex 

nature of brain tumor tissue and the inherent variability in patient images often present significant 

challenges for manual interpretation. These challenges highlight the need for more advanced methods to 

improve diagnostic accuracy and reduce human error. In response, artificial intelligence (AI) and deep 

learning (DL) techniques have emerged as transformative tools in medical image analysis. These AI-

driven methods not only expedite the diagnostic process but also enhance accuracy by automatically 

detecting intricate patterns that may elude human expertise, offering a more reliable and efficient approach 

to brain tumor diagnosis. Among the AI techniques, transfer learning (TL) has gained considerable 

attention for its ability to leverage pre-trained models, reducing the need for large, labeled datasets and 

computational resources [11,12]. TL allows models that have already been trained on large datasets to be 

adapted for specific tasks, such as brain tumor classification, enhancing both the speed and accuracy of 

diagnoses. Building on recent advancements in artificial intelligence (AI), deep learning (DL), and fine-

tuning pre-trained models specifically for brain tumor classification allows for further optimization by 

adapting these models to the unique characteristics of brain MRI scans. By adjusting specific layers and 

incorporating custom features such as Global Average Pooling (GAP) and dropout, classification accuracy 

can be significantly improved, ensuring more reliable diagnostic outcomes [13-15]. Transfer learning (TL) 

further enhances this process by leveraging knowledge from pre-trained models to new, task-specific data, 

making these systems particularly valuable in medical diagnostics. Early and accurate detection is 

essential for effective treatment, and this study aims to improve brain tumor classification by utilizing TL 

to optimize model performance for this critical application [16]. Incorporating a Global Average Pooling 

(GAP) layer improves training efficiency and model accuracy by mitigating overfitting and addressing 

vanishing gradient issues [17],[18]. Additionally, the inclusion of a dropout layer with a rate of 0.2 is 

essential for enhancing the model's ability to generalize to unseen data, which is particularly important in 

clinical applications where the model must handle diverse patient cases [19]. Dense layers are also added 

to further boost performance. This combination of GAP, dropout, and dense layers not only helps prevent 

overfitting but also significantly enhances accuracy compared to the model’s baseline performance 

without these enhancements. 

            This study focuses on improving brain tumor classification by first applying transfer learning to 

five pre-trained architectures: EfficientNetV2 [20], Inception ResNetV2 [21], MobileNetV2 [22], 

RegNetY-320 [23], and ConvNeXt-Large [24]. Fine-tuning these models with minimal preprocessing, 

freezing particular layers, and incorporating new ones, including GAP and dropout layers, helped prevent 

overfitting and improved model generalization. The effectiveness of these fine-tuned networks was 

evaluated using the BT-large-4c MRI brain tumor dataset, which includes meningioma, glioma, pituitary 

tumors, and normal tissue. Standard evaluation metrics such as precision, accuracy, F1-score, recall, and 

the confusion matrix, were employed to evaluate performance. Results indicate that fine-tuned networks 

offer significant improvements in classifying different types of brain tumors, demonstrating the potential 

of TL and fine-tuning approaches in medical diagnostics [25]. 

In summary, the significant contributions of the paper are outlined as follows: 
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 An approach for the automatic classification of brain tumors and healthy brain tissue was 

developed using transfer learning followed by fine-tuning on five pre-trained architectures. Using the fine-

tuning method, important features were effectively extracted from the BT-large-4c dataset with minimal 

preprocessing, achieving high accuracy; 

 EfficientNetV2s, when fine-tuned, achieved the highest accuracy among the architectures, 

demonstrating its efficiency and capability to deliver excellent performance with fewer computational 

resources. This makes it suitable for applications requiring high efficiency; 

 Fine-tuning with layers such as a Global Average Pooling (GAP) layer and a 0.2 dropout layer was 

used to prevent overfitting and address vanishing gradient issues, enhancing the architecture's ability to 

generalize to unseen data; 

 Comprehensive evaluation of the models on the BT-large-4c dataset was conducted using various 

metrics, including accuracy, accuracy curve, loss curve, F1-score, confusion matrix, sensitivity, and 

specificity.  

 

       The subsequent sections of the research article are organized as follows: Section 2 conducts a 

comparative analysis of prior related work. Section 3 outlines the pre-trained architectures and transfer 

learning with fine-tuning. Section 4 provides a comprehensive description of the dataset utilized in the 

experiment, as well as the evaluation metrics, training procedure, results, and discussion. Finally, Section 

5 presents the conclusion. 

 

2. RELATED WORKS 

 

     The problem of brain tumor detection and classification has been a prominent focus in research for 

the past two decades due to its significant medical implications. Timely identification, diagnosis, and 

classification of brain tumors are crucial for effective treatment planning, which contributes to patient 

recovery and life extension. Traditional neural networks are enhanced by deep learning models through 

the incorporation of additional hidden layers between the input and output layers, enabling the 

establishment of more complex and nonlinear relationships. Medical imaging applications extensively 

utilize various deep learning models, including convolutional neural networks (CNNs), recurrent neural 

networks (RNNs), and deep neural networks (DNNs). This section provides a summary of various existing 

studies in the field of brain tumor classification that leverage deep learning approaches. Kujur et al. [26] 

introduced a tumor classification methodology that combines CNN and the genetic algorithm (GA). The 

proposed method achieved an accuracy of 90.9% in the classification of three Glioma grades. Munira et al. 

[27] utilized preprocessing techniques, including thresholding, resizing, cropping, and rescaling. They 

created a novel 23-layer CNN architecture designed for extracting deep features from brain MRI images. 

The features extracted from the flattened layer of the CNN model underwent evaluation using random 

forest (RF) and support vector machine (SVM) classifiers. They employed CNN, CNN-SVM, CNN-RF, 

and fine-tuned Inception V3 deep learning models for multi-class brain MRI datasets. The hybrid 

approach proposed in this research is tested on two publicly accessible datasets. Out of the four models 

examined, the CNN-RF model attains an accuracy of 96.52% on the Figshare 3C dataset, as the CNN-

SVM model records a 95.41% accuracy on the BT-large-4c dataset, which includes four categories 

(glioma, normal, meningioma, and pituitary). 

      Hossain et al. [28] incorporated various pre-trained models in their research, including VGG16, 

VGG19, InceptionV3, ResNet50, Xception, InceptionResNetV2, and a model denoted as IVX16. IVX16 

was formulated by combining the top-performing transfer learning models: VGG16, InceptionV3, and 

Xception. Their preprocessing steps involved applying data augmentation techniques, including horizontal 

flipping, rescaling, zooming, and shearing. These techniques effectively increased the dataset size from 

3264 to 13056 images. The experiments resulted in peak accuracy scores of 95.11% for VGG16, 94.19% 

for VGG19, 93.88% for InceptionV3, 93.88% for ResNet50, 94.5% for Xception, 93.58% for 
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InceptionResNetV2, and an impressive 96.94% for IVX16. Evaluations were conducted on a dataset 

divided into: 80% for training, 10% for validation, and 10% for testing. The primary goal was to classify 

four specific categories: glioma, pituitary, no tumor, and, meningioma sourced from the BT-large-4c 

dataset. 

     Vankdothu et al. [29] introduced a model termed CNN-LSTM, which combined a convolutional 

neural network (CNN) via a long short-term memory (LSTM). They achieved accuracy scores of 80% and 

92% through two distinct dataset splits: one with 80% for training and 20% for testing, and the other with 

90%, 10% for training and testing, respectively. The primary objective was to classify four specific 

categories—glioma, no tumor, meningioma, and pituitary—derived from the BT-large-4c dataset. Xiao et 

al. [30] introduced the Dual Suppression and Enhancement (DSE) block, which employed two distinct 

methods to identify precise features that captured the distinctions among similar classes. One approach 

involved refining global, orderless features to enhance valuable clues by mitigating the influence of 

negative ones. They focused on redirecting attention to salient regions derived from local spatial features. 

Subsequently, a fusion layer named FBE (Feature Bilinear Enhancement) was employed to generate 

compact and discriminative representations. They achieved an accuracy of 97.43% on the BT-large-4c 

dataset. 

      Chitnis et al. [31] introduced a methodology for accurate brain tumor classification employing a 

neural architecture search technique known as Learning by Self-Explanation (LeaSE). Within LeaSE, the 

main objective was to enable an effective neural architecture to be explored and identified by an explainer 

model. This was accomplished by requiring coherent explanations from the explainer. The underlying 

concept of LeaSE was rooted in the notion that a thorough comprehension of a subject matter by a model 

was necessary before it could provide lucid explanations. To formalize LeaSE, a four-level optimization 

framework was established, outlining four consecutive stages: a specific topic was learned by the 

explainer; insights on this topic were articulated by the explainer; the topic was comprehended by the 

audience based on the explainer's explanations; and the explainer refined its understanding of the topic 

based on the learning outcomes of the audience. A test accuracy of 90.6% was attained in the classification 

of four specific categories—glioma, no tumor, meningioma and pituitary—utilizing data from the BT-

large-4c dataset. Balaji et al. [32] applied transfer learning methodology to multiple architectures, 

including VGG16, MobileNet, Xception, ResNet, and EfficientNet-B0, in the study. They applied 

preprocessing steps that encompassed cropping and resizing, bias correction, and various denoising 

techniques such as Gaussian filtering, BM3D denoising, and total variation denoising. Following these 

steps, skull stripping was performed, and the data augmentation process was implemented for further 

refinement. Remarkably, the EfficientNet-B0 architecture outperformed others, achieving an accuracy of 

97.61% based on the BT-large-4c dataset.  

      Kang et al. [33] utilized an ensemble of deep features from 13 pre-trained deep CNNs with 9 various 

machine learning classifiers across three datasets: BT-large-2c, BT-small-2c, and BT-large-4c. They found 

that using the DenseNet-169 deep feature with an SVM with an RBF kernel on the BT-small-2c dataset 

achieved an accuracy of 94.12%. For the BT-large-2c dataset, the ensemble of DenseNet-169, Inception 

V3, and ResNeXt-50 deep features with a fully connected classifier achieved an accuracy of 98.83%. 

Using the BT-large-4c dataset, an ensemble of DenseNet-169, ShuffleNet V2, and MnasNet deep features 

with an SVM with an RBF kernel achieved an accuracy of 93.72%. Nassar et al. [34] employed a Vision 

Transformer (ViT) and achieved an accuracy of 95.4% using the BT-large-4c dataset. Bin and Uddin [35] 

compared a newly developed CNN with pre-trained models such as VGG-16, AlexNet, ResNet-50, and 

Inception-v3, using transfer learning. The test accuracies of the models were 95.52%, 92.59%, 93.31%, 

and 89.40%, respectively. 

      Recent research indicates a predominant reliance on conventional machine learning (ML), sequential 

deep learning (DL) architectures, and transfer learning (TL) for brain tumor classification in MRI studies. 

Traditional ML methods often prove ineffective due to their reliance on extensive domain knowledge and 

manual feature extraction from MRIs. DL models, on the other hand, are limited by the uniform kernel 
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sizes in convolutional layers, which hinders their ability to extract relevant features from brain MRIs. TL 

addresses these challenges by leveraging pre-trained models, thereby reducing the need for large annotated 

datasets and extensive training times. The study utilized five fine-tuned pre-trained architectures with 

custom layes—EfficientNetV2s [20], Inception ResNetV2 [21], MobileNetV2 [22], RegNetY-320 [23], 

and ConvNeXt-Large [24]—both without and with fine-tuning. Notably, all models achieved higher 

accuracy when fine-tuned. EfficientNetV2s demonstrated superior results due to its computational 

efficiency, achieving superior performance with fewer parameters and reduced computational costs 

compared to many other models. This makes it ideal for deployment on devices with limited 

computational resources. Moreover, the system requires minimal preprocessing, involving only image 

resizing, further enhancing its efficiency and practicality for real-world applications. This research 

significantly contributes to the field, particularly on the BT-Large-4C dataset, by improving the efficiency 

and accuracy of classification methods. The findings highlight the potential for enhanced patient outcomes 

and a reduced workload for medical professionals. 
 

3. METHODOLOGY 

 

The proposed methodology is outlined in Figure 1, providing an overview of the approach for classifying 

brain tumors and healthy brain MR images. First, we utilized a freely available brain tumor classification 

dataset from Kaggle, which consists of four categories: pituitary, glioma, meningioma, tumors, and 

healthy brain images. Secondly, we applied resizing as the only preprocessing step, adjusting all images to 

the specific input dimensions required for each model: EfficientNetV2s at 384×384 pixels, Inception 

ResNetV2 at 299×299 pixels, and MobileNetV2, RegNetY-320, and ConvNeXt-Large at 224×224 pixels. 

The proposed method is divided into two phases. The first phase relies on transfer learning (TL) using five 

pre-trained architectures. This approach enables us to leverage prior knowledge from large datasets to 

classify brain MRI images into four distinct categories: pituitary, meningioma, glioma tumors, and normal 

tissue, as shown in Figure 1 (a). This method operates within the framework of source domain ϕs = 
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[36].  Finally, we evaluate the model's performance through a detailed set of metrics, including specificity, 

accuracy, sensitivity, and confusion matrix analysis. This thorough evaluation ensures that our proposed 

method delivers reliable and precise results in brain tumor classification.  

In the second phase, fine-tuning was performed to further optimize the performance of these models. 

This involved adding custom layers, such as replacing the fully connected (FC) output layer with a Global 

Average Pooling (GAP) layer, which converted the multi-dimensional feature maps (M×N×N) into one-

dimensional vectors (1×N) for improved feature interpretation. The GAP layer enhanced training 

efficiency and model accuracy by mitigating overfitting and addressing vanishing gradients [17,18]. 

Additionally, a dropout layer set at a 0.2 rate played a key role in improving the models' generalization to 

unseen data, which is crucial for clinical applications [19]. Dense layers were also added to further classify 

the four categories classification accuracy. This combination of transfer learning, fine-tuning, and the 

inclusion of GAP and dropout layers worked synergistically to achieve superior accuracy, making the 

architecture more adept at handling the complexities of brain tumor classification. The two phases of this 

approach are illustrated in Figure 1 (b). 
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Fig. 1. Proposed model for brain tumor classification: a) Utilizing Transfer Learning, b) Enhancing performance through fine-

tuning by adding layers based on pre-trained models. 

  3.1 EfficientNetv2s model  

The EfficientNetv2s [20] model efficiently converges with a stable training process and dynamic 

regularization adjustment. It demonstrates progressive learning and addresses memory consumption by 

resizing input images to 384×384 pixels. The evaluation of the tumor diagnosis system before and after 

fine-tuning demonstrates enhanced accuracy, improved feature learning, and reduced overfitting. It has 

proven adept at tackling challenges in medical image analysis, with prevalent applications including 

automated detection of tuberculosis in chest X-ray images [37], breast cancer classification [38], and 

COVID-19 detection through X-ray and CT imaging [39]. 

The EfficientNetv2 architecture, developed in alignment with EfficientNetv1, demonstrates significant 

superiority over its predecessor in terms of parameter efficiency and floating-point operations per second 

(FLOP) performance. FLOPs, a metric for model complexity, reveal that EfficientNetv2 surpasses 

EfficientNetv1 due to enhanced FLOP efficiency. EfficientNetv1, trained with a large image size, presents 

a challenge due to substantial memory consumption, requiring the use of smaller batch sizes in CNN 

models and impeding training speed. A distinctive feature of EfficientNet is its utilization of depth-wise 

convolutions, which sets it apart from other models [03]. The model was fine-tuned by replacing the 

conventional flattening layer with Global Average Pooling (GAP) in the neural network, aiming to 

minimize parameters and accelerate computations. A dropout layer with a 0.2 rate was introduced to 

enhance model flexibility and robustness. To categorize the data into four categories— pituitary, no tumor, 

meningioma, glioma and—a dense layer was added. Overall, these adjustments contribute to improving 

efficiency and classification accuracy in the fine-tuned model. 

3.2 Inception ResNetV2 model 

The Inception-ResNet model, introduced by Szegedy, combines elements from the Inception and ResNet 

network backbones [21]. The Inception module demonstrates an advantageous local topology by 

performing several convolution or pooling operations are performed simultaneously on the input image in 



7  

parallel. It employs various convolution kernels simultaneously, merging the output results to create a 

more profound feature map, enhancing image representation [40].  ResNet, proposed by Kaiming He, is a 

residual neural network with 152 layers, addressing challenges of deep networks by introducing shortcut 

connections, mitigating issues like gradient dispersion [41]. The Inception-ResNetV2 model combines the 

strengths of the Inception module with the residual network architecture, increasing both the depth and 

width of the network while mitigating the issue of gradient vanishing [42]. 

3.3 MobileNetV2 Model 

Deep learning methods are constantly evolving, with MobileNetV2 emerging as one of the latest and 

most widely adopted architectures due to its lightweight design [22]. It is worth noting that MobileNetV2 

includes an innovative layer module, the inverted residual with linear bottleneck, which effectively 

minimizes the required memory for processing  [43].  This research presents a brain tumor image 

classification approach based on the MobileNetV2 network to achieve accurate and efficient results. The 

approach utilizes MobileNetV2 as the base model for the transfer learning procedure, incorporating a GAP 

layer. Subsequently, A dropout layer set at a rate of 0.2 was incorporated, followed by a dense layer 

designed for the classification of four distinct categories: glioma, no tumor, meningioma, and pituitary. 

The utilization of this lightweight architecture allows for the implementation of the model on mobile 

devices, facilitating the detection of tumors. The objective is to enable early detection of this disease, 

thereby enhancing life expectancy [44]. 

3.4  RegNetY-320 Model 

RegNetY stands out as a robust convolutional network, deriving its foundation from the original 

RegNetX model with notable distinctions. RegNetY features linear block width parameters, adaptive depth 

and initial width configurations, and the incorporation of squeeze-and-excitation blocks, making it a 

versatile model well-suited for a variety of tasks. Its popularity in the field of machine learning is rapidly 

growing, cementing its status as one of the most favored models. ResNet marked a pivotal advancement 

by enabling the efficient training of neural networks with an unprecedented depth exceeding 150 layers. 

The bottleneck RegNet module, built upon the foundation of the bottleneck ResNet building block, was 

introduced to overcome challenges associated with large-scale datasets [23]. 

3.5 ConvNeXt-Large Model 

ConvNeXt, introduced by Facebook AI Research in 2018, constitutes a deep neural network aimed at 

enhancing the efficiency of Convolutional Neural Networks (CNN). This improvement is achieved 

through the implementation of group convolutions and concatenation. The extended version, ConvNeXt-

Large, builds upon the original architecture by augmenting both depth and width. ConvNeXt, which 

attains cutting-edge performance on various image classification benchmarks, including ImageNet, utilizes 

group of convolutions and concatenation to enhance parameter efficiency and reduce computational 

overhead during network training. This strategic approach enhances efficiency and scalability [24, 45]. 

4. RESULTS and DISCUSSION 

The effectiveness of the transfer learning-based framework is assessed in this study on the widely 

adopted BT-large-4c dataset. This section provides a comprehensive overview of the datasets, evaluation 

metrics, network training procedures, and subsequent assessment of performance.  

4.1. Datasets       

The BT-large-4c, a freely accessible resource, is commonly used to evaluate classification algorithms. It 

consists of 3,264 JPEG images featuring MRI scans that depict three categories of brain tumors: pituitary, 

pituitary, meningioma tumors, as well as images of brain scans exhibiting no tumors. Figure 2  visually 
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represents a sample of the MRI images presented in sagittal, coronal, and axial views. Specifically, the 

dataset encompasses 500 MRI scans depicting a tumor-free brain, 901 scans of pituitary tumors, 937 

images of meningioma tumors, and 926 images of glioma tumors [46]. The dataset was divided into three 

subsets: 80%, 10%, 10% for training, testing, and validation, respectively. All images were resized 

according to the specific input dimensions required by each model: EfficientNetV2s (384×384 pixels), 

Inception ResNetV2 (299×299 pixels), and MobileNetV2, RegNetY-320, and ConvNeXt-Large (224×224 

pixels). Excessive preprocessing may change the inherent properties of the images, which may hinder the 

model's ability to extract features. 

 

Fig. 2. Visual representations of glioma, meningioma, pituitary tumors, and no tumors in the BT-large-4c dataset. 

4.2 Evaluation Metrics 

To evaluate the efficacy of the proposed method for the classification of brain tumors, we employed six 

essential performance metrics: precision, accuracy, sensitivity, F1-score, specificity, and confusion 

matrices.  

Accuracy, a fundamental performance measure, quantifies the percentage of correctly classified image 

samples relative to the total number of samples, irrespective of specific class labels. Mathematically, 

accuracy is determined using the following: Equation 1: Equation 5 as follows: 

          
     

           
                                        

Sensitivity, a crucial performance metric, gauges the model's ability to correctly identify brain tumor 

instances. It is quantified using the following Eq. 2: 
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Specificity, an essential performance metric, assesses the model's capacity to accurately classify negative 

samples. This is computed using the following Eq. 3: 

             
  

     
                                                           

Precision, a pivotal performance metric, characterizes the correctness of the positive predictions made by 

the model. It is computed using the following  Eq. 4: 

           
  

     
                                                          

The F1-score, a combined metric, provides a balanced assessment of both precision and recall in a 

model. It is determined using the following Eq. 5: 

           
                           

                       
                                 

Here, TN, FP, FN, and TP represent true negatives, false positives, false negatives, and true positives, 

respectively, within the context of our study. 

4.3 Hyper-parameters 

Hyperparameter optimization aims to increase a specific deep learning model's performance by choosing 

the best hyperparameter. Five models were fine-tuned: EfficientNetV2s, Inception ResNetV2, 

MobileNetV2, RegNetY-320, and ConvNeXt-Large. In this study, the five utilized models were initially 

applied without fine-tuning and then with fine-tuning to enhance accuracy. During the training process, the 

learning rate was dynamically adjusted using the ReduceLROnPlateau callback, which monitored 

validation accuracy to optimize convergence. This adaptive approach, combined with a training duration 

of 30 epochs and the utilization of the Adam optimizer, significantly enhanced training performance and 

accelerated convergence towards an optimal solution. This research project was conducted using Python as 

the primary programming language in the Kaggle Notebook environment, which is an open-source 

platform that originated from the Python Notebook project. Python, chosen for its object-oriented 

structure, high-level functionality, and interpretative design, played a central role in the implementation of 

various tasks. 

4.4 Qualitative Results 

In the first experimental phase, we evaluated transfer learning-based models—EfficientNetV2s, 

Inception ResNetV2, MobileNetV2, RegNetY-320, and ConvNeXt-Large—using the BT-Large-4C 

dataset. The utilized models of EfficientNetV2s, Inception ResNetV2, MobileNetV2, RegNetY-320, and 

ConvNeXt-Large can achieve accuracies of 96.64%, 95.4%, 95.10%, 96.33%, and 95.41%, respectively. 

EfficientNetV2s achieved the highest an accuracy of 96.64%, while MobileNetV2 showed the lowest an 

accuracy of 95.10%, as illustrated in Table 1. In the second phase, fine-tuning the models resulted in 

notable improvements: EfficientNetV2s recorded the highest accuracy at 97.86%, followed by Inception 

ResNetV2 at 97.25%, RegNetY-320 at 96.94%, MobileNetV2 at 96.64%, and ConvNeXt-Large at 

96.01%. The fine-tuning process included the integration of a Global Average Pooling (GAP) layer to 

alleviate overfitting and reduce issues related to vanishing gradients, with an optimized dropout rate of 

20%. EfficientNetV2s surpassed all other models in various metrics, achieving an accuracy of 97.86%, 

sensitivity of 97.87%, specificity of 98.00%, precision of 98.25%, and an F1-score of 98.00%, as shown in 

Table 2. Figure 3 shows the accuracy curves (a) and loss curves (b) for both training and validation for the 

EfficientNetV2s architecture after fine-tuning. The accuracy curve shows significant improvements during 

training, while the loss curve demonstrates a steady decrease, indicating effective model optimization. 



10  

Figure 4 presents the confusion matrices for the EfficientNetV2s architecture: (a) displays the results 

before fine-tuning, and (b) highlights the enhanced outcomes following fine-tuning. 

 

(a)                                                                     (b) 

Fig.3 . Illustrates the training and validation (a) accuracy curves for the Efficient-netV2s architecture with fine-tuning., (b) 

loss curves for the Efficient-netV2s architecture with fine-tuning. 

Table 1. Results of five pre-trained models utilizing transfer learning, before the fine-tuning process. 

Model ACC. 

(%) 

Sen. 

(%) 

Spec. 

(%) 

Prec. 

(%) 

F1-score  

(%) EfficientNetV2s 96.64 96.79 97.00 97.03 97.12 

RegNetY_320 96.33 96.26 96.42 96.51 96.43 

MobileNetV2 95.1 95.31 95.38 95.45 95.38 

ConvNeXt_Large 95.41 95.39 95.50 95.73 95.77 

Inception_ResNet

V2 
95.40 95.24 95.61 95.59 95.49 

Table 2. Evaluation results of five pretrained models post fine-tuning for enhanced performance. 

Model ACC. 

(%) 

Sen. 

(%) 

Spec. 

(%) 

Prec. 

(%) 

F1-score  

(%) EfficientNetV2s 97.86 97.87 98.00 98.25 98.00 

RegNetY_320 96.94 96.81 97.01 97.25 97.20 

MobileNetV2  96.64 96.70 96.81 97.10 96.95 

ConvNeXt_Large 96.01 95.94 96.13 96.51 96.49 

Inception_ResNet

V2 
97.25 97.23 97.33 97.42 97.39 

 

Fig. 4 . Showcases the confusion matrices for the EfficientnetV2s architecture, (a)  the outcomes without fine-tuning; (b) the 

improved results with fine-tuning. 



11  

4.5 Discussion 

The EfficientNetV2s model demonstrated outstanding performance, achieving a 97.86% accuracy, 

surpassing several leading methods. For comparison, LeaSE by Chitnis et al. [31] achieved an accuracy of 

90.60%, a customized CNN by Munira et al. [27] reached 95.41%, Hossain et al. [28] utilized IVX16 and 

attained 96.94%, and Kang et al. [33] employed an ensemble of pre-trained CNN models with an SVM 

(RBF), reporting an accuracy of 93.72%, as illustrated in Table 3. Additionally, Nassar et al. [34] using a 

ViT model achieved an accuracy of 95.4%, and Bin and Uddin [35] tested several transfer learning-based 

models, with VGG-16 achieving 95.52%, AlexNet achieving 92.59%, ResNet-50 achieving 93.31%, and 

Inception-v3 achieving 89.40%. These results highlight the effectiveness of fine-tuning in improving brain 

tumor classification accuracy. For instance, Hossain et al. [28] applied the IVX16 model, integrating three 

models with additional layers, achieving 96.94% accuracy. In contrast, the individually fine-tuned 

EfficientNetV2s and Inception ResNetV2 models demonstrate that simpler approaches can often 

outperform complex systems dependent on multiple models. Furthermore, the fine-tuned RegNetY-320 

delivered performance comparable to Hossain et al. [28]. Crucially, the EfficientNetV2s model, even 

without fine-tuning and relying solely on transfer learning, achieved an accuracy of 96.64%, further 

underscoring its effectiveness. The proposed system's primary advantage lies in its impressive 

performance with minimal preprocessing, only requiring resizing, which significantly reduces the 

computational cost compared to models that necessitate complex preprocessing or ensemble methods. 

Table 3. Comparative results with state-of-the-art approaches on the BT-large-4c dataset. 

Ref.s Technique ACC. (%) 

Chitnis et al. [31]  LeaSE 90.60% 

Munira et al. [27] Customized CNN  95.41 

Hossain et al. [28] IVX16 96.94 

Kang et al. [33] 
Ensemble of pre-trained CNN models 

 with an SVM (RBF) 
93.72 

Nassar et al. [34] ViT 95.4 

Bin and Uddin [35] 

VGG-16 based TL 95.52 

AlexNet based TL 92.59 

ResNet-50 based TL 93.31 

Inception-v3 based TL 89.40 

Proposed systems 

Fine-tuned ConvNeXt_Large 96.01 

Fine-tuned RegNetY_320 96.94 

Fine-tuned MobileNetV2  96.64 

Fine-tuned Inception_ResNetV2 97.25 

Fine-tuned EfficientnetV2s 97.86 

5. CONCLUSION    

 

Precise classification of brain tumors plays a vital role in developing effective treatment methods and 

improving patient outcomes. This study effectively addresses the inefficiencies and inaccuracies inherent 

in traditional manual diagnoses by leveraging advanced deep learning techniques to classify MR images of 

brain tumors. A customized transfer learning strategy with fine-tuning was employed to optimize specific 

layers of five different models: EfficientNetV2s, Inception ResNetV2, MobileNetV2, RegNetY-320, and 

ConvNeXt-Large. Of all the models, EfficientNetV2s emerged as the leading model, attaining the highest 

accuracy. The system underwent rigorous evaluation using the BT-large-4C dataset, and both 

EfficientNetV2s and Inception ResNetV2 surpassed state-of-the-art techniques across all performance 

metrics. These results highlight the potential of this approach to significantly enhance brain tumor 
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classification, ultimately contributing to improved diagnostic accuracy and better treatment outcomes for 

patients. 

EfficientNetV2s demonstrated superior results, as it is designed to be computationally efficient, 

achieving better performance with fewer parameters and a lower computational cost compared to many 

other models. This makes it particularly suitable for deployment on devices with limited computational 

resources. Additionally, this system benefits from minimal preprocessing, requiring only image resizing, 

which further enhances its practicality for real-world applications without compromising the inherent 

features of the data. 

6. FUTURE WORK and LIMITATIONS 

Future research should concentrate on various key areas to enhance the effectiveness of brain tumor 

classification models. Training with a larger and more varied dataset is crucial for enhancing the model's 

robustness and ability to generalize. Addressing feature dimensionality issues during the transfer learning 

process will be crucial for simplifying training and enhancing performance. Additionally, optimizing the 

computational efficiency of the model will be necessary to facilitate practical deployment. Despite the 

promising results, several limitations exist within the current approach. The dataset utilized was limited in 

both size and diversity, which may not adequately capture the variability present in real-world scenarios, 

potentially affecting the model's generalizability. 
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