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 This paper investigates the parameter estimation in a Weibull distribution using Neoteric 

Ranked Set Sampling (NRSS) designs, thus extending the earlier study by Sabry et al. 

(2020). Maximum likelihood estimators (MLEs) using NRSS, comparing their 

performance against estimators from Simple Random Sampling (SRS) and traditional 

Ranked Set Sampling (RSS) were derived and evaluated. A Monte Carlo simulation was 

used to evaluate their performances with respect to metrics that include absolute relative 

bias, mean squared error, and overall efficiency. The results showed that the NRSS 

estimators performed better than SRS and RSS estimators for a Weibull distribution It 

demonstrates that NRSS-based estimators consistently outperform their SRS and RSS 

counterparts, exhibiting lower bias and higher efficiency.  This is important because in 

many real-world situations, collecting data can be expensive or time-consuming . The 

study's findings strongly suggest that NRSS designs offer a compelling alternative for 

achieving more accurate parameter estimates in relevant applications. 

 

1. Introduction 
The quest for efficient sampling methods in statistical analysis has led to the development of 

various techniques that aim to improve upon traditional Simple Random Sampling (SRS). 

Among these, Ranked Set Sampling (RSS) has emerged as a powerful alternative, particularly in 

scenarios where the variable of interest is costly or challenging to measure directly. The concept 

of RSS was introduced by McIntyre in 1952 as an innovative approach to estimating mean 

pasture yields. Since its inception, RSS has proven to be more efficient than SRS in estimating 

various population parameters across a wide range of applications (Zamanzade & Al-Omari, 

2016). The method's strength lies in its ability to leverage easily observable or inexpensive 

ordering criteria to inform the sampling process, thereby extracting more information from the 

available data. Building upon the RSS framework, researchers have developed several extensions 

to further enhance sampling efficiency. One such extension is Neoteric Ranked Set Sampling 

(NRSS), proposed by Al-Saleh and Al-Kadiri (2000). NRSS differentiates itself from traditional 

RSS and its variants by employing a streamlined single-stage rating and selection process. This 

approach is designed to maximize the information extracted from the ranking process while 

maintaining a relatively simple selection procedure. 

The Weibull distribution, widely used in reliability engineering and lifetime data analysis, serves 

as an excellent candidate for exploring the efficacy of NRSS in parameter estimation. Its 

versatility in modeling various types of data make it a crucial tool in many scientific and 
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engineering applications. Neoteric Ranked Set Sampling on the other hand is relatively newer in 

the field of ranked set sampling. In the case of NRSS, it is established to differ from DRSS and 

the normal RSS since it adopts a more straightforward single-stage rating and selection. In NRSS 

case, the initial means of forming units is by sets, and then there is a single ranking within the set 

of units. Then in an orderly manner one unit is selected from each set in accordance with some 

plan that has been adopted beforehand. This scheme is designed to the finest detail to extract 

most of the information possible from the ranking process while keeping the selection process 

simple, an aspect that could lead to even better efficiency improvements than what is provided 

by DRSS (Sabry & Shaaban, 2020). 

Due to its rather simple structure, NRSS is most effective in situations where it is impossible or 

too complicated to apply multiple stages of ranking. 

This paper explores the application of NRSS in estimating the parameters of the Weibull 

distribution, a versatile lifetime distribution commonly used in reliability engineering. We derive 

maximum likelihood estimators for NRSS and compare their performance with MLEs obtained 

from SRS and RSS through a comprehensive Monte Carlo simulation study. Our aim is to 

quantify the potential improvements in estimation accuracy and efficiency that NRSS can offer 

over traditional sampling methods when applied to the Weibull distribution.  

 

2. Ranked Set Sampling Design  

Ranked set sampling (RSS) is a cost-effective sampling technique that enhances the efficacy of 

population parameter estimation when measuring the variable of interest is costly or time-

consuming. RSS employs auxiliary data or expert judgment to order sampling units, allowing for 

the selection of more informative samples without requiring exact measurements of the target 

variable. In comparison to simple random sampling, this ranking procedure enables the selection 

of a more informative sample.  The RSS design can be described as follows (see Wolfe, 2004): 

Step  1: Randomly select m2 units from a target population with a cumulative distribution 

function (cdf) and probability density function (pdf),  𝐹(𝑥; 𝜃) and 𝑓(𝑥; 𝜃), respectively. 

Step 2: Allocate the m2 selected units as randomly as possible into m sets, each of size m. 

Step 3: Arrange the units within each group based on the variable of interest. This ordering can 

be achieved using expert judgment, visual assessment, or a related variable that is correlated with 

the variable of interest. It's important to emphasize that actual measurements of the variable of 

interest are not necessary at this stage. 

Step 4: To select a sample for measurement, include the lowest-ranked unit from the first group 

and the second lowest-ranked unit from the second group. Units in each group are ranked 

according to the variable of interest, using expert judgment, visual observation, or a related 

variable. At this stage, actual measurements of the variable of interest remain unnecessary, and 

the process continues until the highest-ranked unit from the final group is chosen. 

Step 5: Repeat steps 1 to 4 for r cycles to create a sample consisting of 𝑚 × 𝑟 units. 

In RSS uses only one observation is used from each cycle. Specifically, in the 𝑗𝑡ℎ cycle, the 

lowest-ranked unit  𝑋(11)𝑗  is selected from the set. Next, the second -lowest unit  𝑋(22)𝑗 is 

chosen from another independent set of 𝑚 observations. Finally, the largest ranked unit  𝑋(𝑚𝑚)𝑗 
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is selected from last set of 𝑚 observations. This entire process is illustrated in Figure 1. 

𝑅𝑆𝑆 

matrix 

𝒙(𝟏𝟏) 𝑥(12) 𝑥(13) 

𝑥(21) 𝒙(𝟐𝟐) 𝑥(23) 

𝑥(31) 𝑥(32) 𝒙(𝟑𝟑) 

⇓ 

𝑅𝑆𝑆 sample 𝒚𝟏 = 𝒙(𝟏𝟏) 𝒚𝟐 = 𝒙(𝟐𝟐) 𝒚𝟑 = 𝒙(𝟑𝟑) 

Figure 1. RSS sample display of 𝑚2 observations in one cycle and the selected RSS sample of size 𝑚 = 3 

Let {𝑋(𝑖𝑖)𝑗, 𝑖 = 1,2, . . , 𝑚; 𝑗 = 1,2, . . , 𝑟} represent the RSS where 𝑚 denotes the set size and 𝑟 

represent the number of cycles. For simplicity, throughout this paper, 𝑋(𝑖)𝑗 will be used instead 

of 𝑋(𝑖𝑖)𝑗. The cumulative distribution function (cdf) and probability density function (pdf) are 

given by  

𝐹𝑖:𝑚(𝑥(𝑖)𝑗; 𝜽) = ∑ (
𝑚
𝑡
)𝑚

𝑡=𝑖 [𝐹(𝑥(𝑖)𝑗; 𝜽)]
𝑡[1 − 𝐹(𝑥(𝑖)𝑗; 𝜽)]

𝑚−𝑡,        (1) 

and 

𝑓𝑖:𝑚(𝑥(𝑖)𝑗; 𝜽) =
𝑚!

(𝑖−1)!(𝑚−𝑖)!
𝑓(𝑥(𝑖)𝑗; 𝜽)[𝐹(𝑥𝑖;𝑗; 𝜽)]

𝑖−1[1 − 𝐹(𝑥(𝑖)𝑗; 𝜽)]
𝑚−𝑖 . (2) 

Respectively, where, −∞ < 𝑥(𝑖)𝑗 < ∞. The joint pdf of𝑥(𝑖)𝑗,𝑖 = 1,2, … ,𝑚,  𝑗 = 1,2, … , 𝑟 is then 

given by 𝐿(𝜽; 𝑿𝑅) = ∏ 𝑓𝑖:𝑚(𝑥(𝑖)𝑗; 𝜽)
𝑚
𝑖=1  

  

3. Neoteric Ranked Set Sampling Design 
Neoteric Ranked Set Sampling, introduced by Zamanzade and Al-Omari (2016), presents a 

refined approach to ranked set sampling. NRSS sets itself apart by using a specialized selection 

process designed to better represent the population distribution in the final sample. The steps 

involved in the NRSS sampling plan are as follows: 

Step 1: Randomly select 𝑚2 units from the target population. 

Step 2: Rank the 𝑚2 sample units based on some pre-established ordering criterion; 

Step  3:  Select the sample unit ranked in position [(𝑖 −  1)𝑚 +  𝑙]th for the final sample for 𝑖 =

1, . . . , 𝑚. If 𝑚 is odd, 𝑙 =
𝑚 + 1

2
; if 𝑚 is even, 𝑙 =

𝑚 + 2

2
 when 𝑖 is odd and 𝑙 =  𝑚/2 when 𝑖 is 

even. 

Step 4: Steps 1–3 can be repeated 𝑟 times to obtain a final sample size 𝑛 = 𝑚𝑟. 

Figure 2 displays the step for establishing a NRSS sample in one cycle when 𝑚 = 3.  
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Random 

sample 
𝑢1 𝑢2 𝑢3 𝑢4 𝑢5 𝑢6 𝑢7 𝑢8 𝑢9 

⇓ 

Ordered sample 𝑢(1) 𝒖(𝟐) 𝑢(3) 𝑢(4) 𝒖(𝟓) 𝑢(6) 𝑢(7) 𝒖(𝟖) 𝑢(9) 

⇓ 

NRSS sample 𝑢(2) 𝑢(5) 𝑢(8) 

Figure 2. NRSS sample display of 𝑚2 observations in one cycle and the selected  

NRSS sample of size 𝑚 = 3 

 

Let {𝑢𝑖 , 𝑖 = 1,2, . . , 𝑛} be a random sample of size 𝑛 from a continuous population and let 

{𝑢(𝑘𝑖)𝑠, 𝑖 = 1,2, . . , 𝑚, 𝑠 = 1,2, … , 𝑟} be a neoteric ranked set sample drawn from a distribution 

with pdf  ℎ(𝑢; 𝜃) and cdf 𝐻(𝑢; 𝜃), where m is the set size, 𝑟 is the number of cycles, 𝜽 is the 

parameter space and n = mr. Then, the likelihood function of NRSS samples is then given by 

𝐿(𝜃) =
𝑚2!

∏ (𝑘𝑖−𝑘𝑖−1−1)!
𝑚+1
𝑖=1

 ∏ ∏ ℎ(𝑢(𝑘𝑖)𝑠)
𝑚
𝑖=1 ∏ [𝐻(𝑢(𝑘𝑖)𝑠) −

𝑚+1
𝑖=1

𝑟
𝑠=1

𝐻(𝑢(𝑘𝑖−1)𝑠)]
(𝑘𝑖−𝑘𝑖−1−1)

, 

(3) 

where 

𝑘𝑖 =

{
 
 

 
 

𝑚 + 1 

2
+ (𝑖 −  1)𝑚,      𝑚 odd

𝑚 

2
 + (𝑖 − 1)𝑚, 𝑚 𝑒𝑣𝑒𝑛, 𝑖 𝑒𝑣𝑒𝑛

𝑚 + 2 

2
+ (𝑖 − 1)𝑚, 𝑚 𝑒𝑣𝑒𝑛, 𝑖 𝑜𝑑𝑑

 (4) 

and 𝑘0 = 0, 𝑘𝑚+1 = 𝑚
2 + 1 and 𝑢( 𝑘0) = −∞, 𝑢( 𝑘𝑚+1) = ∞ . For more details see Sabry and 

Shaaban (2020). 

  

4. Estimation of the Weibull Distribution Parameters 
In the field of reliability engineering, the Weibull distribution is a widely used model for 

analyzing lifetime data. It is highly adaptable and can emulate the features of other distributions, 

depending on its parameters. Specifically, the distribution is characterized by a shape parameter 

and a scale parameter, with the latter depending on the value of the shape parameter. The 

cumulative distribution function (CDF), probability density function (PDF), and quantile 

function of the Weibull distribution are defined as follow 

𝐹(𝑥; 𝜆, 𝛽) = 1 − 𝑒−𝜆𝑥
𝛽

,                                                                                             (5) 

𝑓(𝑥; 𝜆, 𝛽) = 𝜆 𝛽𝑥𝛽−1 𝑒−𝜆𝑥
𝛽

,                                                                                             (6) 

and  

𝑄(𝑢) = [
− ln(1−𝑢)

𝜆
]

1

𝛽
,                                                                                                     (7) 

respectively, where 𝑥 > 0, 𝜆 > 0, 𝛽 > 0 and 0 < 𝑢 < 1. 

 

4.1. Estimation Based on SRS 

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be independent and identically distributed random variables that follow the 

Weibull distribution, with their probability density function (PDF) defined in Equation (6). The 
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likelihood function for   and   is expressed as 

 

𝐿(𝜆, 𝛽;  𝑥) = ∏ 𝜆 𝛽𝑥𝑖
𝛽−1

 𝑒−𝜆𝑥𝑖
𝛽

𝑛
𝑖=1 , 

and the log likelihood function is then derived as 

ℓ(𝜆, 𝛽) = 𝑛 𝑙𝑜𝑔 𝜆 + 𝑛 𝑙𝑜𝑔 𝛽 + (𝛽 − 1)∑ 𝑙𝑜𝑔 𝑥𝑖
𝑛
𝑖=1 − ∑ 𝜆𝑥𝑖

𝛽𝑛
𝑖=1 , 

now, the likelihood equations are 
𝑛

�̂�
− ∑ 𝑥𝑖

�̂�𝑛
𝑖=1 = 0,                                                                                                               (8) 

and 
𝑛

�̂�
+ ∑ 𝑙𝑜𝑔 𝑥𝑖

𝑛
𝑖=1 − ∑ �̂�𝑥𝑖

�̂�𝑛
𝑖=1 𝑙𝑜𝑔 𝑥𝑖 = 0,                                                                           (9) 

It is evident that solving Equations (8) and (9) in closed form is challenging. Thus, iterative 

techniques are employed to calculate the maximum likelihood estimators (MLEs) for the 

parameters. 

 

4.2. Estimation Based on RSS 

Let {𝑋𝑖
𝑗
, 𝑖 = 1,2, . . , 𝑛; 𝑗 = 1,2, . . , 𝑟} be a ranked set sample with cdf and pdf given in Equations 

(1) and (2), where 𝑛 is the set size, 𝑟 is the number of cycles and 𝑚 = 𝑛 𝑟. The Likelihood 

function of the RSS sample for Weibull data is given by,  

𝐿𝑟(𝜆, 𝛽; 𝑥) = ∏ ∏ 𝐶𝑖 𝑓(𝑥(𝑖)𝑗; 𝜆, 𝛽)[𝐹(𝑥(𝑖)𝑗; 𝜆, 𝛽)]
𝑖−1[1 − 𝐹(𝑥(𝑖)𝑗; 𝜆, 𝛽)]

𝑛−𝑖𝑛
𝑖=1

𝑟
𝑗=1   

= ∏ ∏ 𝐶𝑖 (𝜆 𝛽(𝑥(𝑖)𝑗)
𝛽−1𝑒−𝜆(𝑥(𝑖)𝑗)

𝛽
) (1 − 𝑒−𝜆(𝑥(𝑖)𝑗)

𝛽
)
𝑖−1

(𝑒−𝜆(𝑥(𝑖)𝑗)
𝛽
)
𝑛−𝑖

𝑛
𝑖=1

𝑟
𝑗=1              (10) 

where𝐶𝑖 =
𝑛!

(𝑖−1)!(𝑛−𝑖)!
. The log likelihood function can be derived directly as follows 

ℓ𝑟(𝜆, 𝛽) ∝ 𝑛 𝑟 log 𝜆 + 𝑛 𝑟 log 𝛽 + (𝛽 − 1) ∑ ∑ log 𝑥(𝑖)𝑗
𝑛
𝑖=1

𝑟
𝑗=1 ,− ∑ ∑ (𝑛 − 𝑖 +𝑛

𝑖=1
𝑟
𝑗=1

1) 𝜆(𝑥(𝑖)𝑗)
𝛽 + ∑ ∑ (𝑖 − 1) log (1 − 𝑒−𝜆(𝑥(𝑖)𝑗)

𝛽
)𝑛

𝑖=1
𝑟
𝑗=1 , 

The likelihood equations becomes   

𝑛 𝑟 

�̂�
− (𝑛 − 𝑖 + 1) ∑ ∑ (𝑥(𝑖)𝑗)

�̂�𝑛
𝑖=1

𝑟
𝑗=1 + (𝑖 − 1)∑ ∑

(𝑥(𝑖)𝑗)
�̂�𝑒

−𝜆(𝑥(𝑖)𝑗)
�̂�

1−𝑒
−�̂�(𝑥(𝑖)𝑗)

�̂�

𝑛
𝑖=1

𝑟
𝑗=1 = 0       (11) 

and 

𝑛 𝑟

�̂�
+∑∑log 𝑥(𝑖)𝑗

𝑛

𝑖=1

𝑟

𝑗=1

− (𝑛 − 𝑖 + 1)∑∑�̂�(𝑥(𝑖)𝑗)
�̂�

𝑟

𝑖=1

𝑛

𝑗=1

log 𝑥(𝑖)𝑗 

                                         + (𝑖 −  1) ∑ ∑
𝜆(𝑥(𝑖)𝑗)

�̂�𝑒
−�̂�(𝑥(𝑖)𝑗)

�̂�
log𝑥(𝑖)𝑗

1−𝑒
−�̂�(𝑥(𝑖)𝑗)

�̂�

𝑟
𝑖=1

𝑛
𝑗=1 = 0  ,                          (12) 

These two nonlinear equations (11) and (12) can't be solved analytically and will be solved 

numerically. 

 

4.3. Estimation Based on NRSS  

Let {𝑢(𝑘𝑖), 𝑖 = 1,2, . . , 𝑚 and 𝑘𝑖  is defined as in equation (4)} be a NRSS sample where 𝑚 is the 

set size. According to equation (3), the likelihood function of NRSS samples drawn from 

Weibull(𝜆, 𝛽) for one cycle is given by 
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𝐿𝑁(𝜆, 𝛽; 𝑢) ∝ ∏ 𝜆𝛽 (𝑢(𝑘𝑖))
𝛽−1

𝑒
−𝜆(𝑢(𝑘𝑖)

)
𝛽

𝑚
𝑖=1 ∏ [𝑒

−𝜆(𝑢(𝑘𝑖)
)
𝛽

− 𝑒
−𝜆(𝑢(𝑘𝑖−1)

)
𝛽

]

(𝑘𝑖−𝑘𝑖−1−1)

𝑚+1
𝑖=1 , 

∝ 𝜆𝑚𝛽𝑚  ∏ (𝑢(𝑘𝑖))
𝛽−1𝑚

𝑖=1 ∏ [𝑒
−𝜆(𝑢(𝑘𝑖)

)
𝛽

− 𝑒
−𝜆(𝑢(𝑘𝑖−1)

)
𝛽

]

(𝑘𝑖−𝑘𝑖−1−1)

𝑚+1
𝑖=1 , 

The log-likelihood associated with this design is then given by 

 

ℓ𝑁(𝜆, 𝛽) ∝ 𝑚 log 𝜆 + 𝑚 log 𝛽 + (𝛽 − 1) ∑ log(𝑢(𝑘𝑖))
𝑚
𝑖=1 . 

+∑ (𝑘𝑖 − 𝑘𝑖−1 − 1) log [𝑒
−𝜆(𝑢(𝑘𝑖)

)
𝛽

− 𝑒
−𝜆(𝑢(𝑘𝑖−1)

)
𝛽

]𝑚+1
𝑖=1 , 

where 𝑘0 = 0, 𝑘𝑚+1 = 𝑚2 + 1, 𝑢( 𝑘0) = −∞, 𝑢( 𝑘𝑚+1) = ∞ The associated normal equations are 

directly derived as 

𝜕ℓ𝑁

𝜕𝜆
=

𝑚

𝜆
+ ∑ (𝑘𝑖 − 𝑘𝑖−1 − 1)

(𝑢(𝑘𝑖−1)
)
𝛽
𝑒
−𝜆(𝑢

(𝑘𝑖−1)
)
𝛽

−(𝑢(𝑘𝑖)
)
𝛽
𝑒
−𝜆(𝑢

(𝑘𝑖)
)
𝛽

𝑒
−𝜆(𝑢

(𝑘𝑖)
)
𝛽

−𝑒
−𝜆(𝑢

(𝑘𝑖−1)
)
𝛽  𝑚+1

𝑖=1 .                         (13) 

and 

𝜕ℓ𝑁

𝜕𝛼
=

𝑚

𝛽
+ ∑ log(𝑢(𝑘𝑖))

𝑚
𝑖=1 + ∑ (𝑘𝑖 − 𝑘𝑖−1 − 1)

𝜆(𝑢(𝑘𝑖−1)
)
𝛽
𝑙𝑜𝑔 𝑢(𝑘𝑖−1)

𝑒
−𝜆(𝑢

(𝑘𝑖−1)
)
𝛽

𝑒
−𝜆(𝑢

(𝑘𝑖)
)
𝛽

−𝑒
−𝜆(𝑢

(𝑘𝑖−1)
)
𝛽  𝑚+1

𝑖=1 . 

−∑ (𝑘𝑖 − 𝑘𝑖−1 − 1)
𝜆(𝑢(𝑘𝑖)

)
𝛽
log𝑢(𝑘𝑖)

 𝑒
−𝜆(𝑢

(𝑘𝑖)
)
𝛽

𝑒
−𝜆(𝑢

(𝑘𝑖)
)
𝛽

−𝑒
−𝜆(𝑢

(𝑘𝑖−1)
)
𝛽  𝑚+1

𝑖=1 .                                                            (14) 

The two nonlinear equations (13) and (14) can’t be solved using analytical methods and will 

be solved using numerically. 

 

5. Simulation Study 

This section presents a Monte Carlo simulation aimed at evaluating the performance of 

maximum likelihood estimation (MLE) methods for complete sample, ranked sample, and 

Neoteric ranked sample designs. Data were generated from the Weibull distribution using various 

values of 𝜆 and 𝛽. The simulation was carried out using the R programming environment 

(version R4.4.1). The algorithm for the simulation is outlined as follows: 

For complete samples 

- Generate 𝑚 random samples from Weibull distribution using the quantile function 

defined in equation (7) with 100,000 iterations 

- Utilize different sample sizes (𝑚 = 6,9,10,15, ,20,25 𝑎𝑛𝑑 30), and different parameter 

values for 𝜆 and 𝛽 are, ( 𝜆 = 0.5, 1.5 and 3 ;  𝛽 = 0.5, 1.5 and 3). Obtain the MLE. 

- Compute the bias and mean square errors (MSE) of the estimates using equations (8) and 

(9). 

For RSS samples: 

- Simulate ranked set samples as described in Section 2.  
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- Repeat steps 1 and 2 for r cycles (number of cycles), ensuring that  𝑚 = 𝑛𝑟 

- The MLE by solving Equations (11) and (12) simultaneously, then calculate the bias  

,MSE, and the relative efficiency of the RSS estimators compared to the SRS estimators. 

The relative efficiency of 𝜃2 compared with 𝜃1 is defined as 

            𝐸𝑓𝑓(𝜃1, 𝜃2) =
𝑀𝑆𝐸(�̂�1)

𝑀𝑆𝐸(�̂�2)
 

- Use the NRSS approach to simulate NRSS samples, as outlined in Section 2, for both 

even and odd sample sizes.  

- Compute the MLE using Equations (13) and (14). Subsequently, calculate the bias, MSE, 

and relative efficiency of the NRSS estimators in comparison to the RSS estimators. 

The results of the simulation study are reported in tables 1-3 and in the following figures (3-

4)  

 

Figure 3. Efficiency Comparison for SRS/RSS and RSS/NRSS for the estimators for λ 
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Figure 4. Efficiency Comparison for SRS/RSS and RSS/NRSS of the estimators for β 

 

6. Discussion 
For both 𝜆 and 𝛽 parameters, the MSE decreases as the sample size increases across all sampling 

designs. For instance, the MSE for β at 𝛼=1.5 decreases from 0.045 (when 𝑚=10) to 0.020 

(when 𝑚=30) in the NRSS design. This trend is consistent across SRS and RSS designs as well. 

As 𝛽 increases, the MSE for both 𝜆 and 𝛽 parameters also increases for a fixed sample size and 

𝜆. For example, at 𝜆 =1.5 and 𝑚=20, the MSE for 𝛽 increases from 0.018 (when 𝛽=0.5) to 0.035 

(when 𝛽=3) in the NRSS design. This indicates that higher values of 𝛽 introduce more variability 

in the estimates.  

Similarly, as λ increases, the MSE for both 𝛼 and 𝛽 parameters also increases. For instance, at 

𝛽=1.5 and 𝑚=20, the MSE for 𝜆 increases from 0.015 (when 𝜆 =0.5) to 0.032 (when 𝜆 =3) in the 

NRSS design. This implies that higher values of 𝜆 introduce more complexity in accurately 

estimating the parameters. 

The relative efficiencies for NRSS estimators are consistently greater than 1, indicating superior 

performance compared to RSS and SRS estimators. For example, the relative efficiency of NRSS 

compared to RSS for 𝛽 is 1.25 at 𝜆 =1.5 and 𝑚=20. This efficiency gain can be attributed to the 

improved ranking and selection mechanism in NRSS, which leverages additional information 

from the sample units, thus providing more accurate parameter estimates. 

Overall, the simulation results underscore the advantages of NRSS over traditional SRS and RSS 

designs, particularly in scenarios requiring precise parameter estimation for the Weibull 

distribution. 
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7. Conclusion 
In this study, we investigated the effectiveness of NRSS, RSS, and SRS designs for parameter 

estimation in the Weibull distribution. The results from the Monte Carlo simulation clearly 

indicate that the NRSS design provides relatively more efficient estimates compared to the RSS 

and SRS designs. This is evident from the consistently higher relative efficiencies of NRSS 

estimators. 

The NRSS design's ability to achieve lower MSE for the Weibull distribution parameters 

highlights its potential as a robust sampling method in reliability engineering and other fields 

where accurate parameter estimation is crucial. Given these findings, we recommend the use of 

NRSS designs for parameter estimation in Weibull distributions, especially in applications where 

precision is critical. Future research should continue refining NRSS methodology and exploring 

its use with other statistical distributions and practical scenarios. By leveraging the enhanced 

ranking and selection mechanisms of NRSS, practitioners can achieve more accurate and reliable 

parameter estimates, improving decision-making processes across various fields. 
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