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Abstract

We propose nonparametric test statistics for the at most one change point
(AMOC) problem in the regression function of a nonlinear regression model. The
asymptotic distributions of these test statistics are investigated thfoygh _strong
approximation properties. We also give approximations for the test statistics limiting
distributions.
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1. Introduction

The problem of statistical change point has been an attractive topic in
statistical analysis for decades. It has originally arisen in the context of quality
control. But in many practical and experimental situations some statistical properties
of an observed phenomenon may change abruptly (or gradually) at some unknown
time point(s). The detection and characterization of such a change are problems of
interest in many scientific fields. Examples can be found in Economics (structural
change), Engineering (speech signals recognition), Epidemiology (incidence of a
disease), Geology (seismic signal processing), History (lindisfarne scribes),
Archaeology (sits studding) and Quality control (product specifications). In statistical
literature such problems are called “change point” problems. In the past four decades
an extensive amount of research has been done in this area using different approaches
(parametric and non-parametric) to treat the problem in both classical and non-
classical (Bayesian) contexts. For review we refer to Shaban (1980), Basseville and
Benveniste (1986), Lombard (1989), Csérgd and Horvath (1993), Csérgd and Horvéth
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(1997) and Antoch et al. (2002) as classical treatment, to Broemeling and Tsurumi
(1987) and Jandhyala et al. (1999) as Bayesian and to Zacks (1983) for both.

Although, the linear regression model change point problems are extensively studied,
very little work can be found in the case of nonlinear models. Dominique (1985),
proposed a Kolmogorov-Smirnov type test statistic for detecting changes in the
covariance structure of time series. He also investigated the behavior of the LR
statistic in detecting failure occurring in the mean and the covariance of
autoregressive process of bounded order. Davis et al. (1995), derived an LR test
statistic for testing a change of either the coefficients, the white noise variance or the
order in the AR model. They showed that the asymptotic distribution of the test is the
Gumbel extreme value distribution. Jandhyala et al. (1999), introduced Bayes-type
test statistics to detect parameter shifts in regression models with serially correlated
random errors. The test statistics limiting distributions are derived and their critical
values are approximated through simulation. Jandhyala and Al-Saleh (1999) proposed
two-sided Bayes-type statistics for tests of parameter changes in case of exponential
type nonlinear regression models and illustrated their methodology through data on
pre-school boys’ weight / height ratio. Lurie and Neerchal (1999), derived Bayes-type
tests for the problem of parameter changes in general autoregressive process. They
studied the statistics asymptotic distributions and showed, through simulation, that
Bayes-type tests have better power than the LR tests in case of small changes.
Horvath et al. (2001), used sequential empirical process of the squared residuals of an
ARCH(p) sequence to detect a change in the distribution of unobservable innovations.
Gomez and Drouiche (2002), proposed new homogeneity tests in dutoregressive
processes and deduced a test for the autoregressive coefficient nullity or randomness.

Let X,, X,,.., X, and ¢, &,..., &, be two independent sequences of

n

independent random variables. Then the nonlinear regression model takes the form,
Y,=60(X,)+U(X))¢, i=12,..,n, ‘ 1.1y

where 8()) is the regression function and’ U(\) is unknown bounded variation function.

Now, suppose that we are interested in testing the following hypothesis of no change
in the regression function;

H, 6(X)=0(X,)=..=6(X,),
against the alternative
H, 8(X))=6(X,)=..=0(X,)#0°(X,,))=0"(X,,,)=..=8"(X,), (1.2)

where the change point &,1< % < nand the regression functions 8(.) and 8°()are all
assumed unknown. .

To test the above hypotheses, we extend the idea of Dieblot (1995) to the change
point setup. He used the so-called Hybrid process to test the one sample hypothesis; -
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8(.)=6,(.) against the alternative hypothesis 8(.)#6,(.), for a known 6,(.). The
Hybrid process of X and ¢ is given by

A=Y U(X) IX 1) &, —w<t<m, 1.3)

where U(.)is a bounded variation function on the real line, /{e}is the indicator
function of the event e and the random variables &,'s are called the process weights.

Dieblot (1990, 1995) and Diebolt and Laib (1991) introduced, studied and used the
Hybrid process in constructing nonparametric tests for a class of nonlinear models.
They showed that A(t,n)ln converges weakly to a time-transformed Wiener
process and obtained upper bounds for the rate of convergence. Lo (1987) used
exponential weights , Parzen et al. (1994) and Lin et al. (1996) used normal weights
for the bootstrapped empirical process which is a special case of 4(.,.) of (1.3).
Burke (1998), obtained an approximation for the Hybrid process when
U(t)=t ,~o<t<w and ¢&is a normal random variable. When /{X, <¢} =1 and

" U(f)=t ,-w <t <o, Rosalsky and Srechari (1998) studied the limiting behavior of

(1.3) irrespective of the joint distributions of X and the weights &. Horvéth et al
(2000) obtained approximations for the weighted bootstrap processes as a special case
of the process in (1.3), when U(f)=1,~o <t <. Horvith (2000) derived almost
sure rates and probability inequalities for the approximations of the Hybrid process in
(1.3). :

In this paper we study the limiting behavior of what we shall define and call the
empirical Hybrid change point process. Then using this process, we propose several
nonparametric test statistics for the hypotheses in (1.2). The limiting distributions of
these test statistics are also derived and some approximations are suggested. In
Section 2 we define the empirical Hybrid change point process and discuss its
asymptotic distribution. Several nonparametric test statistics for the hypotheses in
(1.2) are introduced in section 3 and their limiting distributions are investigated. In
Section 4 we conducted a simulation study for the change point tests to estimate their
critical values and powers in finite samples. Section S contains the proof of the main

2. The empirical change point process

Let é(.).be an estimator for the regression function &(.)of the nonlinear
regression model in (1.1). Then the regression residuals can be written as;

Y,-6(X)=U(X)Z,, i=12..n, @1

where U(.)is the unknown bounded variation function of (1.1) and Z,,Z,,...,Z, isa
sequence of iid random variables. Following Horvith (2000), we assume that all
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random variables and processes introduced so far and later on can be defined on the
same probability space and the following assumptions are also satisfied:

1). The sequences X,, X, ,..., X, and Z,, Z,,..., Z, areindependent.

2). The variables Z,, Z,,..., Z, areiid random variables with zero mean , unit

variance and the moment generating function of Z is finite in the neighborhood of
Zero.

3). The variables X,,X,,...,X,,... are independent random variables with
common distribution function F(.).

4). The time-transformation process and its empirical counterpart are given by:

G(t)= jU’(s) dF(s) , —0<t<o 22)
and -
G,(t)= J’ U'(s) dE(s), —w<t<o ' (2.3)

where F () is the empirical distribution function of the random variable X based on
n observations, i.e. ’

ﬁ,(s):lZI{X, <s}, —w<s<o (2.4)
niy ‘

Now let wus define the empirical change pbiht Hybrid  process
{A,(t,5),—0<t<w,0<s<1,n21}by,

A,(15)=— (ﬁa,[ns] y - 2 G, n)] , (25)
Jn n
where ;I(., .) is the empirical Hybrid process defined by;l

- k. - :
AL, K)=YUX)(X,<1)Z,, -w<t<o k=120 (26)

i=l %
Let {W(t,s),—o<t,s < } be the two parameter Gaussian process, ( see Csorgd
and Révész (1981), section (1.11) ), with mean zero and covariance structure

E{WE,s)Wt,,s )=, Ant,) (5 As,), | 2.7

where -0 <1¢,,1,,5,,5, <,
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Theorem (2.1)

Let A,(.,.) and W (.,.) be the two processes of (2.5) and (2.7) respectively,
then we have

Prob

sup sup |A, (t,s)-A(@,s)| = <),

-od<o Osssl

where
At,s) =W (G({),s)-sW (G(t),]), -o<t<wo, 0<s<1l, (28)

and G(.) is the time-transformation process of (2.2).

By the above Theorem (2.1), we have as 7 — ©

AU.s)>AE,s), -o<t<0,05s5], @9)
where A, (.,.) and A(.,.) are as in Theorem (2.1).

It is clear that Theorem (2.1) of Horvéth et al. (2000) is a special case of the above
Theorem when the function U(¢)of the Hybrid process of (1.3) equal to one. Even

though they pointed out that the distribution of the limiting random variable in this
special case is not known.

3. Test statistics

In this section we suggest the use of the Kolmogrov-Smirnov goodness of fit
and the Cramér-Von Mises type test statistics. So for a suspected change in the
regression function of (1.1), we can use the test statistics

T, = sup sup |A,(t,5)|=maxmax|A,(X,,,>)], 3.0
—woct<o  05ss] i n

<jsn Isisa
and

]
® | 1 . \2
I (e 2
T =( [[830,9)dsdG,@) ) =;[zz Af(x(,,.%)J . 62
-0 : J=1 i=
where A (.,.) is the process of (2.5) and Xy is the j™ order statistics in the X
sample. Since the statistics 7,, and T, , are continuous functionals of the process

4,(.,.) of (2.5) and the empirical distribution function G, () converges almost surely
and uniformly to G () then using (2.9), we have as n — o;

D
T..l—>ﬂ£suplA(t.s)l=T. 33)
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and

D L
T, - ([[8* ¢,s) dsdG@) ) = T, (3.4)

where A(.,.) is the process of Theorem (2.1).

As mentioned in Horvath et al. (2000) the resulted distributions in this context such as
(3.3) and (3.4) even in the special case when U(f) =1,—o00 <f <o, are not known.

The random variables 7, and 7, in (3.3) and (3.4) are continuous functionals of a

tied-down two-parameters Guassian process that depends on the unknown distribution
function G (.). These random variables are well defined, but unknown in the literature

even if we replace G () by its empirical counterpart from the sample. It is also easy to
see that T, of (3.4) is a normal random variable, with unknown covariance because of
G() and its complicated form. Therefore in approximating these limiting

distributions, we may follow the steps and arguments of Dieblot (1995) to suggest the
following approximations. Using the covariance structure of the Gaussian processes
we have

W(t,s)-s Wit,1)

W(t) B(s), —o<t<®,0<s<1 (3.5)

Where W(.) and B(.)are independent Wiener and Bridge pr‘ocesses.v Hence we
suggest the approximations:

1
=T, sup |W(@)| sup|B(s) |, (3.6)
0<s<1 )

—0<f <o

and

1
T, ~T2 (

é'—‘a

W) dt )15 ( j’B’ (s)ds)% (3.7

where,

> Ux,). 3.8)

r =lin G ()=~
{—0 n o1

Even with the above Dieblot (1995) approximations, the distributions of the random
variables 7; and 7, in (3.6) and (3.7) are not known and considered to be an open

problem. One way out of this problem is to suggest test statistics for a specified time
parameter value f=f, €(~o, ), for the change point problem and a specified change

parameter value s=s,€[0,1], for the two-sample problem. To do so, we may suggest
the following change point test statistics, for sufficiently large values of =1,

T,=

1 1 k
A t, =—r A t’—_ ’
\/Zgggl . (,8)] \/Zw‘fl ik n)l
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1

1 k
7 1 2 A A (’..-)
12} 12 .
T.‘=(‘—,—) !A.(r.,s)dw(;,-] 2

i w)

and

.- V[ amehY
n,=[d—fA.(r..s)¢rJ o P P B 69
"0 ¥ n A=

where d, =-:;Z.:(Y, -6y =.'l;z":(U(X, )Z,)},is a consistent estimator for I', of
=] 1=
(3.8) when n is large (see Proposition 2 of Dieblot (1995) ).
The limiting random variables of the statistics T, , T, and T, of (3.9) are the well-
known tabulated random variables sup|B(¢)|, ( where B(,) is a standered Brownian
0<is!
bridge), N (0,1), ( the standered Normal random variable), and (IB’ (5)ds)?, respec
4]
-tively.
For the Two-sample problem, if we put s =s,,0< s, <1, we have the following test
statistics;

o) ‘ - .
Te=(s.(1-5))* :l(ng A,ts8)=(s0-5)) * ?}glA.(Xup-‘.)l,

T =(00-5))F | A(s)dr=(si-sy 3 K0t
- = -

and

° 1 » A2
Ta={(s.0-s))" [ 82, 8)dt) =((s.0-5))" Y A—-(—X‘n——“”i}%, (3.10)

e
where A_(.,.)is defined by (2.5).

The limiting random variables of the statistics in (3.10) are ::p Iw(G@)),
IW(G(!))J: and { I W (G(1)dt }§ , respectively. These limiting random variables
can also be approximated as in Dieblot (1995) by d,% 11’,'3.. |W (), d,% I W (f)dt and

1. I
d? ([ W (0)dt)? , respectively, where d, is defined in (3.9). We note that the
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approximated random variables are easier to apply by using their tabulated critical
values in calculating the required critical values (see for example Adler (1990) and _
Shorack and Wellner (1986)).

4. Simulation Study

In this Section we estimate through a Monte Carlo study the critical values and
powers of the change point tests in finite samples, ( the two-sample tests are just
special cases of the change point tests). Similar to Antoch et al. (2002), we calculated
the test statistics 7,;,7,, and T,; of (3.9) using Matlab programming version 5.1. To

estimate the critical values of the proposed change point tests in finite samples we
conducted the following simulations. Assuming that Z of (2.6) has a standard normal
we estimated the tests critical values when X has a normal distribution'and again
when it has exponential distribution. For simplicity we took U(X)=X of (2.6) and
calculated the tests under the assumption of no change 5000 times. Then ordered the
5000 values of each test and obtained the (1-a)” percentiles for @ =0.1,0.05 and
0.01. The entries of Table 1 and Table 2 below contain the results of the estimated
critical values for different finite samples. These estimated critical values show that
there is no that much difference between the two cases of normal and exponential
simulations. We also see that.there is no outliers within the estimated critical values
which show that they are converging. For example, in both normal and exponential
cases, and at a = 0.05, the finite sample estimated critical values of the three tests
converge to their theoretical limiting values, namely 1.36, 1.65 and 0.69 respectively. -

To measure the performance of the proposed test statistics we conducted a small
Monte Carlo study and reported the results in Table 3. The estimated powers were
obtained at & =0.05, for sample size =60 and n=100 from normal and exponential
distributions (because of similarities of results we report here the normal case only).
Three shift locations are considered m=n/4, n/2 and 31/4 and the shift sizes were

computed as the solution of the equation P(X ,,, >X )= p, where p=70%, 80%

and 90%. We only considered a possible change in the mean of the random variable X
as a change in the regression function. To calculate the powers, we simulated 5000
realizations of samples of size n=60 (and n=100) under the alternative hypothesis and
computed the test statistics of (3.9) in each realization. Then for each simulation of
5000 realizations, we obtained the fraction of the number of times, when each test
statistic exceed its critical value at = 0.05. Examining the results of Table 3, we can
make two general remarks. The estimated powers of T, are the largest, then of T, s

and the smallest are of T,, . This because T,,; counts for every deviation between the -
possible sub-samples, while T’ n3 considers the largest deviation only and both 7, and
T, are one-sided tests while 7, is a two-sided test. We also notice that { estimated

powers of the three tests increase naturally with the increase of the sample size and
shift size . They are also decreasing as the shift location moves to the end of the
sample. Thus these test statistics perform better when the shift occurs early in the
sample. :
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Estimated critical values for the change point tests

Table 1

(Normal case)

Test Ty T Y (0
1% 5% 10% 1% 5% 10% | 1% » % 10%
1':) 1.59 125 1.06 249 160 122. {098 0.72 0.60
20 147 122 1.08 224 163 124 (08 068 0.60
30 155 127 112 245 168 129 |08 070 060
40 149 125 112 231 158 122 |085 068 058
50 1.58 127 113 232 163 128 |092 069 059
60 155 126 112 234 160 122 |08 068 058
70 155 129 114 229 161 126 |0.88 069 059
80 1.57 126 LIS 216 1.61 128 [085 068 0.60
90 153 127 116 238 1.70 131 |086 069 0.59
100 1.58 131 116 228 162 127 (089 069 059
200 1.57 131 118 229 165 132 (085 069 059
500 1.59- 134 121 241 170 129 {089 070 060
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Table 2
Estimated critical values for the ch#nge poinfj tests
(Exponentialcas)
 Test ) T;,, _ : P Ty .
a 1% 5% 10% |1% 5% 10% [1% 5% 10%
lr:) 169 126 1.07 2.57‘. 1.66_ 124 [0.99 0.74 0.62 '
20  1.58. 1.24 1.08. 226 161 1.24 0.§2 ‘0.69 ,(‘).60
30 148 122 1.09 241 158 123 |0.88 068 0..58.
| 40 1.57 127 1.13 | 237 167 128 |0.94 0j68 0.60
50 1.55 127 1 13 2.33 1.62 130 [087 0.69 0.60
60 | 1.54 126 1.1i 1227 160 124 |087 068 059
70 l.54 128 114 2.32 1.64 129 |[0.87 | 069 060 -
80 1.59 129 115 2.48 166 130 |092 069 0.59
90 155 129 116 256 1.68 132 1090 0.69 0.60
100 1.57 128 115 234 167 134 |08 0.68 -0.60
200 1.55 130 1.17 225 166 125 |087 068 .0.59
500 161 134 119 [243 172 130 |08 069 060
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Table 3
Estimated power percentages for the change point tests
(Normal case and a =5%)
n=60 n=100
m

15 30 45 25 50 75

Prob. of change =70%
T,, 408 353 288 438 379 331
T, 127 125 122 127 128 125
I, 584 535 492 594 541 501

Prob. of change =80%
642 544 408 668 582 437
T,, 171 150 154 178 166 166
I, 754 685 595 757 693  60.0

Prob. of change =90%
T 867 763  60.0 902 809 626
T. ) 21.7 207 214 218 217 215
T, 91.8 837 71.7 923 849 722
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4. Proofs:

Proof of theorem (2.1): By the definition of the processes A () and A( )
in (2.5) and (2.8), we have almost surely

L=swp spl8, ¢, s) -5 P

< sup 3:3! J‘A ¢,[n]) -wWGe), s )l
+ sup suplj-["”A ¢,n)-sWGO, 1),

—0<f<o 0<ss]

<sup sup | J_A ., ns1) -WGE),s)|’

—o<f <o 0sss]

+ sup sup | T-D’:—]A ¢,n) -L—lW(G(f) 1)

4 oo Osest AN
v sup |2 s) sp GO, 1)1 @4.1)
0ss<t n —c0<f <O

Using Theorem (2.2) of Horvath (2000) and the finiteness of the two-parameter
Gaussian process ¥ (.,.), we get from (4.1) and as n — ;

L, =0...,(n‘% (logn)?) + 0.,,("_% (108")% ) +o(D.0,(D = ().
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