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Abstract

The main objective of longitudinal clinical trials is to compare the treat-
ment effects depending on an outcome variable. Standard techniques can be
used when all intended measurements for all subjects are available. Some
patients may leave the study prematurely resulting in monotone missing
data (dropout). A major problem axises when the probability of dropout is
related to the outcome variable, this often reffered to as informative or non-
ignorable dropout. Ignoring the missing data in this case leads to biased
estimates of treatment effect differences. This paper proposes and developes
tho stochastic EM algorithm to obtain valid estimates of treatment compar-
isons. The proposed algorithm is a variant of imputation approaches, which
are conceptually and practically simple and are commonly used by practl-
tioners. Simmlation studies are conducted to evaluate the proposed approach
and to compare it with thres common approaches; the “last value carrying
forward® (LVCF) approach, the “all available data” (AAD) approach and
the “partial imputation approach” (PI). Simulation results show that the

not only compering treatment effects, as tho case with other approaches.

1 INTRODUCTION

clinical trials are, sometimes, designed to take repeated measurements of an out-
come variable at several predefined times after randomization for all individuals
in the study. Typically, in a longitudinal clinical trial the study objective is to
estimate and compare two or more treatempent effects and to select the one that
is most effective in dealing with some disease or disorder. Missing values are not
uncommon in longitudinal clinical trials because some patients may dropout of the
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study all together (dropout pattern), or they fail to appear for some of the sched-
uled visits (intermittent pattern), due to several reasons. Some of these reasons
are, for example, recovery, lack of improvement, or removal from the study due to
adverse events (Heyting et al., 1992). Analysing longitudinal clinical trials data in
the precense of nissing values tend to be more complicated. Removing dropouts
from the analysis can produce serious. bias in the assessment of treatment effects
especially if the number of subjects with niissing values is large comparable with
the total number of subjects. Hence, procedures for handling dropouts need to
be developed and considered. Some of these techniques are described in Gornbein
(1992) and Murray (1998). Also a recent review of these methods is in Fitzmaurice
(2003) and references therein.

Assume that Yj;; is the response variable for the ith subject in the treatment
group k, k = 1,2,...,G, at time t;, (j = 1,2,...,n). Also, assume that there are
my, subjects in the treatment group k. Any subject, in any treatment group, with
complete observations has an n x 1 vector of measurements, Y = (Yki1, --+) Yiin)-
Let s; denote the mean of intended measurements of all subjects in treatment k
at time point £;. Let Dy, denote the dropout variable, if Dy < t, the ith subject
in group k is a dropout, otherwise, a study completer. The dropout variable, Dy
may be a function of subject’s follow-up time. It is common to assume that the
dropout time is discrete, hence #, 13, ...,t, are the set of ordered dropout times,
with Dy; = t, for the study completers. Assume that the complete set of responses
for subject i at treatment k, Yy, is partitioned into Yiiobs 8nd Yiimis Where Yiione
are the observed measurements for the ith subject in group k and Y}, are the
missing responses.

The joint proba.blhty density function of Yi; and Dy, f(Yii, Dii), can be fac-
torised as:

f(Yei, Dis) = f(Yis) P(DialYis),
where the distribution functions are implicity indexed by its associated parame-
ters. This factorisation is known as selection.model in the literature. Rubin (1976)
has introduced a very usefull taxonomy of missing data process. Following Ru-
bin’s taxonomy, in the context of a longitudinal clinical trial with dropouts, three
types of dropout mechanisms can be defined; See for example Laird (1988) and
Diggle and Kenward (1994). The first is a missing completely at random (MCAR)
mechanism, where the dropout is assumed to be independent of both Yi: 0, and
Yiimis. That is:
P (Dkilyki) = P(Dy).

The second type of dropout mechanisms is a missing at random (MAR), where
the dropout is conditionally independent of Yi;mis given Yiioss, that is:

P(DIIYI.O'M’ yi.mia) = P(Dglyg'ob,)

The third type of dropout mechanisms is an informnative (non-ignorable) dropout
mechanism, where dropout depends on the missing responses and may be on the

The Egyptian Statistical Journal, Vol.48, No.1, 2004




Treatments Ci in Trials With Informative 63

observed measurements. Another factorisation of the joint distribution of ¥;; and
Dy, f(Yui, Dis), known as pattern mixture model, as:

S(Yii, D) = f(Yis| Dis) P(Dis).

The parameters of thé conditional distribution f(Yi|Dys) or either the marginal
distribution f(Yi) can be uscd to compare treatment groups. Comparing the
treatment groups using the parameters of the marginal distribution f(Y;;) has
been studied by, for example, Heyting et ol (1992), Glidden and Wei (1997),
Rotnitzky and Robins (1995), Troxel et al. (1997), Wei and Shih (2001), Wu and
Carroll (1988) and Yao et ol (1998).

Several methods have been proposed in the literature to handle the problem of
dropout to yield valid analyses. A recent review of methods for handling dropouts
in longitudinal clinical trials has been presented by Fitzmaurice (2003). The first
method is the complete case analysis (CCA) where subjects with only complete
observations are included in the analysis. This method yields biased treatinent
comparisons except under the unrealastic assumption that the missing data process
is missing completely at random, MCAR. In other words this type of analysis
assumes that the completers are random sample of subjects.

In the second method, the all available data (AAD) approach, the analysis is
based on all available observations for all subjects. Again this approach needs
the MCAR assumption but it is more efficient than the CCA, where the partial
information available on subjects with missing data may improve the parameter
estimates.

Ththlrdmethpdinheimpumimuppmndnwhucthemhingvdnsmim-
putedbydmsenvnluulndthepuudommplctoobnrvnﬁommlndyiud.m
imputation approach is & very general term and many methods can be veiwed as
imputation methods ranging from siniple imputation methods to the methods that
need very sophesticated models. The multiple imputation method is a variant of
these methods (Rubin, 1987). Another variant is the “last value carried forward”
(LVCF)methodwiﬁchisleommonmntbodﬁonndyﬂn;longitudimlcﬁniultrL
, als among practitioners. Thismethodilbuedonlvuyumdmlcmunpﬂm
that the responses following the dropout remain constant. Recently, Wei and Shih
(2001)pmpa=lmthunﬁuntofimpuhﬁonmﬂhods.thepaﬂidhnpuhﬁonlp-
proach (PI), for handling informative dropout. In the PI approach, the missing
vdwueputiallyimputedbywrylngforwudthehstoburvadvdue.mtb&t
the dropout rates are similar for the two treatments. This approach performs
waﬂmpunbletothaAAD,thnLVCF.mdtlumimdd‘echappmudm. This
approach assumes that the last observed value remains constant and can be used
only for treatment comparisons. The PI approach still give biased treatment dif-
hemwhmhmdwmmmmdmpwtpmeﬂmdthe
response variable in both treatments.

Glddemwd(m)untheltochlsticEMdmﬂthmtoobhln parameter
estimates in the longitudinal data context. They assume that the responsc variable
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follows a skew distribution whereas in the current paper the response variable is
normally distributed. In Gad and Kenward (2002) the dropout process is modelled
using logistic regression which is not the case in this paper. .

The aim of this paper is to introduce the stochastic EM algorithm as a way
of estimating the treatment differences. The treatments is compared using the
parameters of the marginal distribution, f(Yi). The stochastic EM algorithm
is a variant of imputation methods, which are commonly used by practitioners.
This approach can overcome the drawbacks of the forementioned methods. It
provides unbiased, or at least less biased, estimates of treatment differences in
the presence of informative dropout regardless of the correlation type between the
dropout variable and the responses. In addition to treatment comparisons, the
stochastic EM algorithm can be used to estimate the individual treatment effects.
In the following section the main principles of the stochastic EM algorithm are
presented. In Section 3 simulation studies are conducted to evaluate the proposed
algorithm and to compare it with the LVCF approach, the AAD approach, and
the PI approach. Finally, in Section 4, conclusion and discussion are presented.

2 THE STOCHASTIC EM ALGORITHM

The E-step of the EM algorithm becomes untractable and not easy to execute in
some situations. The stochastic EM algorithm has been introduced as an alterna-
tive algorithuy by Celeux and Diebolt (1985). In the stochastic EM algorithm, the
E-step of the EM algorithm, is replaced by simulation step (S-step) to overcome
the difficultics of finding the appropriate expectations. The stochastic EM algo-
rithm involves iterating two steps: the S-step and the maximization step (M-step).
At the S-step, the missing values are simulated from the conditional distribution
of the missing values given the observed values and the current parameter esti-
mates. The simulated values in addition to the observed values constitiute pseudo
" complete data. At the M-step, the parameter estimates are obtained based on
the pseudo complete data. The entire procedure is iterated for sufficient number
of iterations. The parameter estimates corresponding to each pseudo complete
data form a Markov chain of estimates, {§?}. Ip (1994) proves, under specific
conditions, that this Markov chain {#(?} generated by the stochastic EM algo-
rithm is ergodic. Moreover it generally converges reasonably fast to its stationary
distribution, which is unique (Diebolt and Ip, 1996).

In the stochastic EM algorithm a sequence of parameters estimates are obtained
instead of a single point estimate. An important issue is how to use this sequence
to find a point estimate for the underlying parameters. It is possible to find two
point estimates using the sequence of estimates generated by the stochastic EM
algorithm. Although generally the exact stationary distribution (.) is not known,
it can be approximated by its empirical version. The mean of the stationary
distribution x(.) can be considered as an estimate for the parameters §. This
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catimate is called the stochastic EM estimate and is denoted by § (Diebolt and
Ip, 1996). The first early 5o iterations, the burn-in period, are discarded to avoid
the influence of the starting points. Thus, this estimate can be obtained as:

6=1/(s— 3) Z.: av),

Jmagtl

where s is the total number of iterations. The integers s and sy should be chosen
large enough to ensure that the Markov chain {6V} is close to its stationary
distribution. In general, this estimate does not agree with the maximum likelihood
estimates (MLE's). For example, in the exponential family distributions, 4 differs
from MLE's by a mnagnitude of O(1/n) (see Diebolt and Ip (1996) for details). In
some simple examples & coincides with the MLE's. Throughout this paper 0 is
considered to be the stochastic EM estimate. The second point estimate that can
be considered is the point with the largest log-likelihood value over the chain. This
point is reasonably close to the maximum likelihood estimate for most practical
purposes (Diebolt and Ip, 1996). However, obtaining this point needs an extra
effort for evaluating the log-likelihood function at cach iteration.
It is obvious that convergruce of the resulting sequence of paraineter estiinates
+ from the stochastic EM algorithm needs to be monitored. Monitoring convergence
of such chains can be done visually or using a formal method. Several incthods
have been described in the literature for this purpose, see for example, Brooks and
Roberts (1998), Cowles and Carlin (1996) and Mengerscn et al. (1999). In this
paper the method which has been introduced by Gelman and Rubin (1992) is sug-
gested to monitor convergence of the chains. This method is based on generating
multiple, » > 2, parallel chains for ¢ = 2p iterations. For each chain this method
sugests atarting from different initial points for which the starting distribution
is over-dispersed compared to the target distribution. This method is seperately
monitoring the convergence of each scalar parameter of interest from the target
distribution by evaluating the scale reduction factor V7 as

VE=Ve=1/r+ B/,

where W is the mean of within soquence variances aud B/p Is the between so-
quences varaince. These calculations depends on the last p iterations of each se-
quence. The convergence is achieved if the scale reduction factor is close to 1 which
melnltlmuwpunllulMulmvdmimueudlyoveﬂnpping. If the scale re-
Fucﬂon factor is high, then proceeding with further simulations may improve the
inference.

In longitudinal clinical trials assuming that there arc two treatment groups
k = 1,2, heuce Yj; = (Yiiota: Yiimis) is the response variable of subject i in the
first trea*ment group, where Yj; i anid Yiimia are the ol served and the missing
compone:its m?ectivoly. Also, Y3 = (Yaiobr, Yaisuia) I8 the response variable of
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the”2th subject in group 2. The aim is to estimate the treatment differences
Lai = M2j — p1; at the different time points. The steps of the stochastic EM

algorithm are as follows:

e S-Step: At the (t+1)th iteration, the missing data Yj; mis and Ys; nis are
simulated from the conditional density functions f(Y1;mis|Y1:.0bs, D1, 6®)) and
f (Yai mis|Yai obsy D2, 0¢)) respectively, where 8 is the current parameter es-
timate of §. This immputation of Y; mis is based on all current information
about #, and hence provides us with plausible set of pseudo complete data.
The parameters 6 are the relevant components of the mean vectors and co-
variance matrices. When the conditional distributions have standard forms
this simmualtion step can be easily implemented using any standard statistical
package. Otherwise, Markov chain Monte carlo methods can be used.

e M-Step: Having the pseudo complete data, parameter estimates can be ob-
tained using standard procedures to update the parameter estimates, g(t+1),
In this step the treatment differences ug-), 7 =1,...,n are obtained. The two

steps are iterated for sufficient number of iterations, s.

The stochastic EM estimate of the vector ug can be obtained as:

g =1/(s—s0) D ng.

]=80+1

3 SIMULATION STUDIES

Three simulatio:s are presented in this section with three different configurations.
These configurations are the same as that used in Wei and Shih (2001). The rea-
son behind that is to be able to compare results from the stochastic EM approach
with the previous approaches. The stochastic EM approach is used to estimate
treatments difference in addition to three other approaches; the LVCI, the AAD,
and the PI approaches. For the stochastic EM algorithm the iterations humber
(s) is set to 5000 and the burn-in period (s0) equals to 1000. The Gelman-Rubin
method is used to check the convergence of the stochastic EM chains. The neces-
sary codes for conducting the three simulation studies are written using MATLAB
packagc version 5.2. The codcs are available from the author on request.

3.1 Simulation 1: MCAR situation

Assume that tliere are 4 intended measurements for each subject in each treatment
group at time-points t = 12, 20, 32 and 48 weeks after randomisation. Assume also
there are two trcatment groups, k = 1,2. Let YV} = (Ysit, Yaiz, Yii3, Yiia) be the
response of subject 7 in treatment k at the specified time points. Also, let D, be
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the log follow-up time for treatmment group k (k = 1,2). Let the random vector
'Y, be the response of subject 2 in treatment k augmented by the dropout variable

for that treatment group Dy, hence, = (Yii1, Yaiz, Yeiss Ykia, D). Assuming
that each treatment group has 150 subject.s so 150 samples of each of the random
vectors Y;% and Y;; are simulated from multivariate normal distributions with mean

vectors pu1; = (400,395,390, 385,4.6) and pp; = (425, 435,445,409, 9. 0) and with
the same correlation/covariance matrix X (correlation in the upper and covariance

in the lower off-diagonal elements), where

2560 0.60 0.40 0.38 0O

- 1530 2560 0.60 0.40 O
Y =1 1026 1530 2560 0.60 O

0

2

980 1026 1530 2560
0 0 0 0

" The true treatment differences are ug = (25,40, 55, 70). For cach subject in each
treatment group the dropout time is determined by comparing D, and the time
points. The simulation process is repeated 1000 times, i.e. there are 1000 data
sets each has 150 subjects in each treatment group k, k£ = 1,2. This is an MCAR
situation because the dropout variable is independent of the response variable.
The dropout variables D; and D, have different means but the same variance.

The stochastic EM algorithm is applied to estimate the treatment differences.
In the S-step the missing values, Yi;im:s, are generated from multivariate normal
distribution with the appropriate mean vector and covariance matrix. It appears,
'usmg the Gelman-Rubin method, that the resulting chains converge welli Also
the LVCF, the AAD and the PI approaches are applied to estimate the treatment

- differences and the results are given in Table 1.
The LVCF approach underestimate the truc para.me ter values especially at the

last two time points where the dropout rate is high and the dropout distributions
are different. Also, the 95% confidence interval coverage is far from the nominal
~ level especially in the last time point. The parameter estimates using the AAD
approach, the PI approach and the stochastic EM approach are empirically un-
biased. The confiden¢e interval coverage are close to the nominal level using the

three approaches.

3.2' Simulation 2: informative dropout situation

In this simulation the response vectors in the first group are simulated from mul-
~-tivariate normal distributions with mean (400, 395, 390, 385, 4.4) and with the co-
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variance/correlation matrix I,, where

2560 0.60 0.40 0.38 0.75
1530 2560 0.60 0.40 0.75
B =| 1026 1530 2560 0.60 0.75
980 1026 1530 2560 0.75
54 54 54 G54 2

In the second treatment group the mean vector is (425, 435, 445, 455, 7.4) and the
covariance/correlation matrix £z, where

2560 0.60 0.40 038 0.75
1530 2560 0.60 0.40 0.75
T, =| 1026 1530 2560 0.60 0.75
980 1026 1530 2560 0.75
142 142 142 142 14

In this situation the dropout variable is related to the response variable hence
the dropout process is informative. Note that the dropout variable has equal cor-
relations with the response variable in both treatment groups but with different
mean and variance. From results in Table 2, it is noticed that the dropout rate
in the first treatment group is higher than the second treatment group except in
the week 12. The AAD analysis seriously underestimates the treatment difference
especially in the last time point and the empirical coverage of the 95% confidence
interval is far away from the nominal level. The AAD approach is less biased
than the LVCF approach but still underestimate the treatment effects. The em-
pirical coverage of 95% confidence interval is far from the nominal level in the
last time point. The PI approach gives almost unbiased treatment cffects and
a reasonable coverage of 95% confidence interval. The stochastic EM approach
provides unbiased treatment effects and the empirical coverage of 95% confidence
intervals is closer to the nominal level. It can be concluded that, in this situation,
the stochastic EM algorithm performs well and it is superior to the other three
approaches.

3.3 Simulation 3: informative dropout situation

In this simulation the same configuration is used as in the second simulation but
. Iy is defined as:

2560 0.60 0.40 038 0.51
1530 2560 0.60 0.40 0.51
Z=| 1026 1530 2560 0.60 0.51
980 1026 1530 2560 0.51
96 9% 96 96 14
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This is dependent dropout situation where the dropout variable is correlated
to the response variable. This correlation is different for the two treatment groups.
The four approaches are used to obtain mean differences for the two treatments
and the results are shown in Table 3.

The cumulative dropout rate in the first treatment group is higher than the
sccond treatment group except in the first tine point. Again the AAD approach
scriously underestimates the treatment effects and the cmpirical coverage of 95%
confidence intervals are very far away from the nominal level. The LVCF approach
and the PI approach results arc worsen comparable to the previous simulation
because the trentment effects are more biased. It can be noticed the the LVCF and
the PI approaches arc less binsex than the AAD appronch. The empirical coverage
of 95% conficlence intervals are far from the nominal level but more reasonable than
the AAD approach. On the other haud the stochastic EM approach provides less
binsed treatment cffects. Also the empirical coverage of 95% confidence intervals
are very close to the nominal level.

It can be concluded from the above simnulations that the stochastic EM ap-
proach provides less biased treatment effects when the dropout variable is corre-
lated to the response variable, i.e. the dependent dropout process. This includes
whether the dropout variable is equally correlated or not to the response variable.
"The AAD, the LVCF, and the PI approaches give similar results in MCAR sit-
uation. The PI approach improves the biasedness when the dropout process is
equally related to the response variable, comparable to the AAD and the LVCF
approaches. When the dropout process has different correlation in the two treat-
ment groups, the PI gives biased treatment effects similar to the LVCF approach
and AAD, although it is slightly improves the bias. In this situation still the
stochastic EM approach provides unbiased treatment effects.” In swinmary, the
stochastic EM approach can be considered as nn efficient way of estimating and
testing the treatment differences in the presence of dependent dropouts regardless
of the correlation type between the dropout and the response variable.

4 CONCLUSION AND DISCUSSION

In this paper the stochastic EM algorithm is presented as a way to estimate the
treatment differences in longitudinal clinical trials in the presence of informative
dropouts. This algorithm is simple and does not need sphosticated models. Under
normality assumption the simulation step (S-step) is performed using standard
techniques because the conditional distribution is still normal. Because this ap-
pronnhelnbevicwedulnimpuhtionproeedureitiamyeuytolmplunmt
from the practitioners point of veiw.

The stochastic EM approach can be recommended to estimate and test the
treatment differences of the response variable. The obtained estimates are unbi-
lled,mulunlubianed,u\dﬂwwvumofwnﬁdminmm:mwrydm
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to the nominal levels. This algorithm also can be used to cstimate the individual
treatment effects in addition to treatment differcnces. This is an advantage of this
approach comparable to other approaches, the PI approach for example. Wei and
Shih (2001) pointed out that their approach, the PI approach, can be applied only
for treatment difference estimation and testing. Also Wei and Shih (2001) stated
that the PI approach gives unbiased treatment differences under the assumption of
equal dependece between the dropout process and the response variable in the two
treatments. When this assumption is violated the PI approach gives less bias and
better empirical confidence coverage than the AAD and the LVCF approahces. In
such situation the stochastic EM approach still gives unbiased treatment differ-
ences and empirical confidence coverage very close to the nominal level.

In summary the stochastic EM algorithm is an appropriate approach to es-
timate and test the treatment differences (individual treatment effects), whether
the dropout varisble is equally correlated to the response varisble or not, and the
obtained estimates are unbiased or at least less biased.
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