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Essam K. AL-Hussaini

Mathematics Department, University of Assiut, Assiut 71516, A.R. Egypt

ABSTRACT

Bay density fi i of the median of a set of odd and even
numbcr of future order statistics are obtained when the observations (informative
and futurc) are assumed to follow a finite mixture of components of general form
and type 1 censoring is imposed on the informative sample. The prior belief of the
experimenter is measured by & general class of distributions which includes most
priors used in literature. A mixture of two Weibull components model is given as an
application. A numerical example presents Bayesian prediction bounds of the future
median of observations based on a finite mixture of two exponential components.

Key Words: Type 1 censoring; Finite mixture; Two-sample prediction; Prediction
intervals.

1. INTRODUCTION

Bayesian prediction of future order ststistics based on homogeneous populations,
that can be represented by single-component distributions, have been investigeted
by several authors. Among others, are Dunsmore [(1974), (1976)], Geisser [(1975),
(1985), (1986), (1990), (1993)), Lingappaiah [(1978), (1979), (1980), (1986), (1989)},
Howlader and Hossain (1995), Dunsmore and Amin (1998), AL-Hussaini and Ja-
heen [(1995), (1996), (1999)), AL-Hussaini [(1999)(®), (2001)(2)], Lec and Lio (1999),
Corcucra and Giummolg (1999) and Johnson, Evans and Green (1999). Prediction
of future records has been considered by AL-Hussaini and Ahmad (2003). Bayesian
prediction of future median based on a homogeneous population has been studied,
in the nonparametric setting, by Guilbaud (1983) and by AL-Hussaini and Jaheen
(1999), AL-Hussaini (2001)®) in the parametric case. For heterogeneous popula-
tions, that can be represented by finite mixtures of distributions, certain problems
in Bayesian prediction have been studied in AL-Hussaini [(1999)(¢), (2003)] and
AL-Hussaini, Nigm and Jaheen (2001).

Applications of finite mixtures in different disciplines are numerous. Examples
of such applications may be found in Everitt and Hand (1981), Titterington, Smith
and Makov (1985), McLachlax and Basford (1988) and Lindsay (1995). Applica-
tions to reliability and hazard were presented by AL-Hussaini and Sultan (2001).
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Suppose that a heterogeneous population can be described by a finite mixture
of k components whose density function is given by

k
f(z) =Y nfil3) , (1.1)

i=1

where the mixing proportions p; are such that 0 < p; < 1, Z:-‘_l pi =1 and the ith
component f;(x) represents the density function of the i** subpopulation. Suppose -
that, fori=1,...,k, > 0,

fi(z) = Xi(z)ezp[-Ai(z)] , (1.2)

where \/(z) is the derivative of A;(z) with.respect to z, which is assumed to exist,

and
Ai(z) = Ai(z:6) , €O (1.3)

The function A;(z) is chosen so that A;(z) — 0 as z — 0% and A;(z) — oo as
z — oo. It may be noted that the i** component f;(z), given by (1.2), is composed
of the product of the hazard rate function (HRF) A{(z) and survival function (SF)
ezp[—Xi(z)). This general probability demsity function (PDF) includes, among oth-
ers, the. Weibull, compound Weibull (or three-parameter Burr type XII) , Pareto,
beta, Gompertz and compound Gompertz dnstnbutlons, [see AL-Hussaml and Os-
man (1997)).

It was pointed out, in AL-Hussaini (2001)(®), that the class of all finite mixtures,
given by (1.1) and (1.2), is identifiable, provided that A,(z), ..., Ax(z) are distinct.
For the concept of identifiability and details, see Maritz and me (1989) or any of
the above references on mixtures.

A general iteration scheme was developed in AL-Hussaini and Osman (1997)
to compute the median of a finite mixture of k components whose PDF is given
by (1.1) and (1.2), with a slight parameter modification. From now on, we shall
restrict our study to the_ special case of only k = 2 components, so that

f(z) = pLi(2) + pafa(z) ,  (1.4)

where f;(z) is given by (1.2).

It is assumed that n items are subjected to a life testing experiment and that
r units have failed during the interval (0,zo) (type 1 censoring): r; units from the
first subpopulation and r2 units from the second subpopulation such that r=ry+r;
and n — r units, which cannot be identified as to subpopulation are still function-
ing. Suppose that the two sub-populations have density functions f,(z) and fa(z),
given by (1.2), mixed with proportions p; and pa=(1-p;), so that the population is
described by a mixture whose PDF is given by (1.4). The corresponding cumulative
distribution function (CDF) and SF are given by

F(z) = p1Fi(z) + pa Fa(z) , (1.5)

R(z) = p1Ry(z) + p2Ra(z) , (1.6)

;rhere, for i = 1,2, Fi(z) and R;(z), corresponding to f;(z), are given, respectively,
Y :

Fi(z) =1 — exp[-Xi(z)] , Ri(z) = exp[—Ai(z)] - (1.7)
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Let zi; denote the failure time of the j** unit belonging to the i** subpopulation
and that z;; < zg, j = 1, ..., 7;. The likelihood function is given, in Mendenball and
Hader (1958), by

202 o ([[ s [ pafaleas RGN .
Jm=l =2

Supposc that the prior belief of the experimenter is measured by a general density
function, denoted by x(8; %) of the form

x(0;7) x C(0;7)ezp[-D(0;7)] .0€© ,7€Q . (1.8)

It “:as shown in AL-Hussaini (2003), by using (1.2), (1.6), (1.7), L and =, that the
posterior density function, denoted by x*(0 | z) is given by

n=r

(012 « Y 15, (0: D)ezpl-;, (6:2)] | (1.9)

Jim0

where
75, (8:2) = Q;, (B DC(0;7) . ¢;,(0:2) = S, + D(6:;) , (1.10)

Q;.(0:2) = (" - ')p:'*"r;‘"""'m(om(o) . (L)
55,(8:2) = iuh(zo) + (1 = r = i)da(ee) +91(8) +¥a(6) ,  (112)

= (tu, sy Xiry 1 221 ...,I:") lnd, fori= 1,2,

0@ =[] Nz, 9@ =3 M. . - (13)
=t J=1

It is assumed, for r = r; + r3, that 2, = maz{zy)} < zo, where z, and ::'q are
rcalizations of the random variables X and X;;,i=1,2and j =1,...,r; and zq is
the censoring time.

Let Y, denote the ordered lifetime of the s** unit to fail in a future sample of size
m, 1 € s £ m, drawn from a population whose density function is given by (1.4)
and (1.2). It was shown in AL-Hussaini (2003) that the density function of Y, is
given by

fr.(v18) = AZ Ko pezpl—{Gad () + wra(¥) NP N (v)

exp{—Mi(y)} + P2 a(V)ezp{-22(¥)}] .y > 0, (1.149)
where A, is a normalizing constant, w = m — 8 + j3 — js,

=1 m=g+fz .
2= , Ky = (-1) s—=1\[m—3s+j2 . i
! ,.z_:,kz_o ! (l)j(.iz )( Js ) (1.15)

So that the predictive density functicn, denoted by fy, (v | z), was shown to be
Wl =ATiK(h+5),y>0, - (1.16)
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where A} is a normalizing constant, K} is given by (1.15),

n—-r n—r s—-1 m—s+ja2
=Y mn=) ) ¥ . (1.17)
=0 J1=0j2=0 j3=0
and, for £=1,2 .
L) = fe C3 (6 y)ezp[-D; (6;9))dy , (118) .

Ci(6:y) = PJ’HP';Xl(y)ﬂj: (6;2), D1 (6;y) = €5, (6;2) + (43 + 1) M (y) + wA2(y),
C3(6;9) = PPy 2o (y)m5, (6; 2), D3 (85 9) = G, (6; 2) + s (y) + (w + 1)A2(y).

(1.19)
The median of m obscrvations, denoted by Y, is defined by
~ Yiim 5 m=2k-1,

Y = { (1.20

" 1[Ykm+Yk+1m] , m=2k, )

where k isa posxtwe integer > 1.

2. PREDICTIVE DENSITY FUNCTIONS OF FUTURE MEDIAN

2.1. The Case of Odd m
It is easy to obtain the density function of Yy,, for a given 8, when m is odd,
by noticing, from (1.20), that in this case the median of m = 2k — 1 observations
is simply the kth order statistic. So, by substituting s = k and m = 2k -1 in
(1.14), we obtain the density function fy, _ (y | 6) of the median of m = 2k ~ 1

observations, where A, is a normalizing constant, I, = Zj,_o Z;:; B K,
-1y (%) (*75F) and w =k — 1+ j2 ~ ja. '
Simxlarly the predictive density function of the future median, f3 _ (v | z) takes
the form (1.16) with s = k and m = 2k — 1. In such case, A} is the normalizing
constant, K; and w are given above and £} = Y77 T1. The integrals I(y),
£=1,2 are given by (1.18) with the constituents C; (0 v), D;(0;y) as in (1.19).

2.2. The Case of Even m
2.2.1. Density function of the median
If m = 2k, tten the density function of the median of m observations is given,
for y > 0, by

fo, (v 1 6) = Da(k)Z2 K1 Ie(y | 6) , (21)

where
2(2k) k-1 ja3 k-1 4

D!(k) [(k 1)|]2 y Ta = Z Z Z Z ’ (2'2)

J2=0 j3=0 j4=0 2=1

ar (O e
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and, for £=1,2,3,4,
Ity | 6) = Gelpy) /: welt, 2 — t)ezp(~velt, 2y — )ek , @.4)

Gi(p) = p* V25, Ga(p1) = Ga(;1) = {0574, Gu(m) = 2 28™*2,  (25)
ul(tl 2” == t) - A'I(‘)All(zv - ‘) [ .‘z(tl 2!! - ‘) = A'l(t)A'I(zy - ‘)l .
us(t, 2y — £) = A()A 12y — t) , ua(t, 2y ) = 25()N5(2y —1),  (2.6)

- vt 2y = t) = (s + 1) (e) + (G2 — Fa)Aa(t) + (Ja + 1)Aa(2y — )+
(k—1-j)ra(2y - t),
v2(t, 2y — t) = (j3 + D) (t) + (2 — ja)A2(t) + Jahr(2y — t)+
(k - ja)Aa(2y - t),

vs(t, 2y — t) = jaAi(t) + (G2 — Js + 1)A2(t) + (Ga ++ D)Aa(2y — £)+
(k—=1-j)ra(2y - t),

va(t, 2y — t) = jada(t) + (2 — Ja + 1)Aa(t) + jada(2y - t)+
(k ~ ja)ra(2y - 2), 2.7)

wy = J3+ g . wp=k—=1+ja—ja—Jjs- (2.8)
For proof, see APPENDIX A.

2.2.2. Predictive density functit;n of future median
The predictive density function of the future median of m = 2k observations is
given by
w2 = [ fwionE1e,

where fp. (y | ) is given by (2.1) and the posterior density function x*(6 | z) by
(1.9). It then follows that the predictive density function ]‘;ﬂ (v | £) is given, for

y>0,by
55,018 = B L (v z) (2.9)

where A3 is a normalizing constant, I3 = Y57, L2, 7 is given by (2.2), K by
(2.3) and, for £=1,2,3,4,
t
510 = [ [ vittemni-vite, o, (2.10)

ug{t,4:.0) = Ge(pr)ue(t, 2 — t)my, (85 2), vz (. 33 0) = ve(t, 2y —£) + G, (6: 2), (2.11)

Ge(pr), ue(t, 2y — t) and ve(t, 2y — . 25), (26), (2.7) sad 1, (852,
ety ) sod w2y ) are ghven by (1.5}, (20), (2.7) and 5 (i)
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3. A SPECIALIZATION
3.1. Weibull Components
Suppose that, for i = 1,2 and z > 0, Ai(z) = 6;zP, so that \(z) = 6;8;zPi~1.
In this case, the itk subpopulatxon is Weibull(6;,8;), 6;, 8; > 0. It is assumed that
p1 and B, are known and that a prior density is of the form (1.8) where
C(0 7 =Pl T T , DB, =mbi4+mb2 , p2=1-p,
= (64, 02, p1) and = (a1, az, b1, b2,71,72). This prior assumes the independence
of 61, 62 and p;, where 6; ~ gamma(b;, v;) and p; ~ beta(a;, az).
It follows, from (1.11), (1.12) and (1.13), that

Q;,(6,2) ("J.“ ’)pi‘*"'p;'"*"'*e;*o;'. , 8;,(0,2) = c16y + a2 ,
1

where’

1 r2
) c1 = j1ZTo + Zzl,- , C2= ('n. —_—r - jl)ZO + Zzg,- 3 (3.1)
j=0 j=0

So that, from (1.10),
- 77_1; (0,;) (o8 (n; T)pfl—lpgz—lo;h—la;h—l ) C]x (glg) = 6161 +£202 L

“h=n+hatayfh=n—n-jtan=ri+bhé&= q+7: (1=1,2). (3.2)

3.1.1. Whenm=2k—-1
It follows, from (1.14) that the density function of Y2, is given by

Fop_, | 6) = A\ T K pipyexpl— {Jaﬂxy"'+w02y"}][p10:ﬁxy" 1

exp{-013"'} + p20289% " )ezp{-02y**}] , ¥ > 0, " (3.3)

where A is a normalizing constant, T; and K, are given by (1.15) with s = k and
m=2k-—1.
From (1.16), the predictive density function is given, for y > 0, by

o W1 D) = LI 0) + )] (3.4)

where
n—r k—1 k=143,

; =) Y, (3.5)

J1=0352=0 j3=0

. n— 1\ B(j3 + 01,w + 62)T'(m )T (2)

K, is given by (1.15) and B(.,.) is the standard beta function.

ooy - M(Fa+861)Biy? o ma(w+ 63)BayP?
Il (y) - B?i+lBi’; ’ Iz (y) = B-?{B"’.H' ’

(3.7)
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where

Bu=&+(@s+1)y" , Bu=&+uwy” ,
Bay = & + jar® , Bn=&6+(w+1)yP, (3.8)

3.1.2. When m=2k

In this case, the density function of future median is given, for y > 0, by (2.1)
where D, (k) and £, are given by (2.2), K2 by (2.3) and for £=1,2,3,4, I,(y | 6)
is given by (2.4), G¢(p1) by (2.5),
uy(t, 2y — t) = 82845 -1 (2y — t)Pr—1,
ua(t, 2y — t) = 618251 82t7 1 (2y — t)P2 Y,
u;(t 2y ~ t) = 010251ﬂ2tﬁ’ 1(2:(,[ - t)ﬁ‘_l
ug(t, 2y ~ t) = 0283tP2 1 (2y — t)P-1,
and U'[(t, 2]/ - t) =Dpnb, + Dy38s,

where

Dy = (ja + 1)tF* + (ja + 1)(2y ~ )P, D1z = (42 — ja)tP? + (k — 2 — jo)(2y — t)P2,
Dy = (j3 + 1)tPr + 4 (2y — )2 y D2z = (j2 = 4a)tP2 + (k= 1 — ja)(2y — )P,
Day = jathi + (ja +1)(2y — ), D3z = (j2 — ja + 1)tP2 + (k — 2 — j)(2y - t)"2
Dy = j3thr + js(2y — t)2 yDaz = (42 — j3+ D)tP* + (k — 1 — j4)(2y — ).

The predictive density function of future median is given, for y > 0, by (2.9),
where for £ =1,2,3,4, G¢(p1) is as in (2.5),
uj (t,y;g) - ("—r)ptfx-*w+lp61+wz-19m+10n:—1ﬂ2tﬂ|~1(2y _ t)ﬂ‘_l,
u(t, vi0) = ("")P‘”’“‘p"*“’f’"‘9"’Bxﬁzt"‘"(2y -1,
u3(t,y;6) = ("5;7)p O P07 67 BByt~ 2y — 1) 3
u;(t,y, 6) = ﬂ—r)p5|+u1—lp‘z+uz+lgm lovz+1ﬂ2tﬁ;-l( t)ﬂ’_l,
and, for £ =1, 2 3,4dandi=1,2,
v (t,y;0) = Huby + Hepabz, Hyi = & + Dy, & is given by (3.2)
By substituting in (2.9) and simplifying, we ﬁnally obtain the predictive densn‘.y
function in the form

fh. v le) = ALK (v) - (39)
where T3 = 3507 T, T, is as in (2.2),

K} =K, ("J; ’) B +wi+ 1,6 +wa+ ) + DI(72 +1),  (3.10)

Ky is given by (2.3) and I;*(v) = I;*(y | z),

(m + 16 +wy +1) [Y¥BIA-1(2y — t)ﬂl-ldt

I**(v) =
i) n2(02 + w2) 0 HLY?HD '
wpy Y BiBatPr 12y — t)Fa?
I3 (v) -—/ Wﬂ i
.- v tB3=1(9y — t)A1-1
- [ B,
o Hy " Hyj;
5% (m2 + 1)(62 +wa +1) [¥ B3thr—1(2y — t)B2~1
I3*(y) = 2 Y
() TR A A HE dt . (3.11)
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3.2. Predictive Survival Functions and Predictive Intervals
The predictive survival function (PSF) of the future median Y;, is given by

Pl > w1zl = [ fo o(y ]2y

By substituting fp,_*(y | z), when m is odd, given by (1.16), with s = k and
m = 2k — 1, we obtain _ '

TIK1[Ji (v) + Ji(v)]

P(Yor-1>v|z)= TiK:[Jr(0)+ J3(0)]

(3.12)

where, for £ = 1,2, J; (v) = [° I; (y)dy, I;(y) is given by (3.7).
By substituting f,-,'_*(_y | ), when m = 2k is even, given by (2.9), we obtain

3K3Tp(v)

Flf> vl = S

(3.13)

where, for £ =1,2,3,4, J;*(v) = [° I;*(y), I;*(v) is given by (3.11).
Observe that P[¥;, > 0 | z] = 1, so that A} = {Z3K;[J3(0) + J3(0)]}~! and
A; = {Z3K3J;7(0)} . .

Lower and upper bounds, L and U, of a 1007% predictive interval of future
median Y, are obtained by solving the following two equations for L and U:
l—-171

=P[?,,,>L|.-£],T=P[i'f,,.>v|a_c].' (3.14)

1471
2

where, for v > 0, P[¥;, > v | z] is the PSF , given by (3.12) and (3.13), respectively.

3.3. Special Cases

In the above application of a mixture of two Weibull components model, the

parameters B; were assumed to be known. Two important special cases may be
obtained by setting B; = 1,2 in the Weibull(6;, 8;) components.
The first case is that of Weibull(6;, 5; = 1) components, i = 1,2, in which A;(z) =
6;z. This leads to a mixture of two exponential(;), i = 1,2, components. -
The second case is that of Weibull(6;, 8; = 2) components, i=1,2, in which Ai{z) =
6;z2. This leads to a mixture of two Rayleigh(6;), i = 1,2, components.

The applications of the exponential, Rayleigh and Weibull distributions are nu-
merous, see for example Johnson, Kotz and Balakrishnan (1994). All of the re-
sults obtained under a mixture of Weibull(6;, 8;) components regarding the predic-
tive densities, survival functions and predictive intervals can be specialized to the
exponential(6;) and Rayleigh(6;) components by setting §; = 1,2 in the Weibull(8;, 6:)}}
components, respectively.

4. NUMERICAL EXAMPLE
-~ In this section, an example is given to illustrate how Bayesian prediction bounds
" for the median of m future observations are obtained when the underlying popu-
lation distribution is a mixture of two exponential components. In this case, the
predictive density functions are given by (3.4) and (3.9) in the odd and even cases,
respectively, where B; and B are set to be equal to 1 in (3.7), (3.8), (3.11) and the
functions Hy;, £=1,2,3,4and i =1, 2.
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In this example, the elements of the vector of parameters 6 = (6, = 2.23,6; =
2.35,p1 = 0.35) are generated from gamma(b, = 18,1, = 5.7), gamma(b; =
5.22,7, = 2.17) and beta(a; = 1.7,a, = 3.5) distributions, respectively, where
the elements of the vector of hyperparameters v = (a1, a2, b1, b2,71,7v2) have known
given values. If the hyperparameters are unknown, they could be estimated, based
on ‘past samples’ using empirical Bayes method [see, for example, Maritz and Lwin
(1989)] or by using hierarchical Bayes method [see, for example, Bernardo and
Smith (1994) or Geisser (1990)}.

" For n = 20, the following sample is generated from a mixture of two exponen-
tial components with parameters §; = 2.23, 6, = 2.35 and p; = 0.35, where the
censoring time is zo = 6.5:
0.1573,0.2914,0.3527,0.3981,0.4213,0.5213,0.7112,0.7932,0.9225,1.2113,2.5317 (n=
11),

3.1792,4.5170,5.5117,6.3790,6.4230 (r> = 5).

Lower and Upper Predictive Bounds of the Median of m
Future Observations from a Mixture of
Two Exponential Components

Table(1): Odd m Table(2): Even m

m k L U Length | m |k L Y Length
3 2 10.2101]0.56220.3521 2 |1 [0.1719}0.5440] 0.3721
S 3 10.295510.7176 | 0.4221 4 12 ]0.2133]0.6288) 04155
7 4 ] 0.35010.8418| 04917 6 |3[0.2944]0.7867| 04923
g 5 10.3922]0.9155] 0.5233 8 14(03371(08472|0.5101
11 [ 6 ]0.5320]1.2632|0.6212 10[5]04411|1.0133]05722
13 17 106119}1.5677|0.9558 126 1 0.5100 1.1351]0.6251
115 |8 [0.73122.1039] 1.3727 14 17 1 0.6831| 1.4964|0.8133
17 |9 10.8503]2.3515(1.5012 16 | 8 [ 0.7737]1.9892]1.2156
19 110]1.1331(3.0432] 1.9101 1819 |0.8935]2.5060|1.6125

201101 1.1311 | 2.9411| 1.8111
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Equations (3.14) are solved, when 7 = 0.95, with an initial value (equals 0.8575
in our example), chosen to be the median of the informative sample, to obtain the
lower and upper bounds L and U of a prediction interval with cover 7 = 0.95, for
the median of m future observations, when m = 2k — 1 and m = 2k.

Tables (1) and (2) show the lower and upper bounds of two-sided intervals with
cover 7 = 0.95 for the median of m of future observations for different values of

m, when m = 2k — 1 is odd and m = 2k is even and also show the lengths of the
intervals. -

5. CONCLUDING REMARKS .

1. In this paper, Bayesian predictive densities for the median of m future observa-
tions are obtained when m is odd or even, assuming that both of the informative
and future samples are drawn from a population whose distribution is a mixture
of two components each of which is a member of a general class that includes im-
portant distributions used in life testing (and other areas as well). The prior belief
of the experimenter is measured by a general class of distributions (1.8), suggested
by AL-Hussaini (1999)®), includes most priors used in literature. Lower and upper
bounds of a predictive interval with cover 7 of future median can then be obtained
by solving the two equations, given by (3.14).

2. Other heterogeneous populations (that can be represented by finite mixtures of
two (or more) components) than those composed of the Weibull components can
be similarly treated. For example, the predictive density functions, given by (1.16)
with s = k and m = 2k — 1 in the odd case, and by (2.9) in the even case hold true
for any components (such as the compound Weibull (or three-parameter Burr type
XII), Pareto, beta, Gompertz and compound Gompertz components) that belong
to the general class of density functions (1.2). Prediction bounds for the median of
m future observations, assumed to be drawn from any of such populations, can thus
be obtained by using the survival function corresponding to the predictive density
obtained.

3. It may be noticed, from Tables (1) and (2), that by increasing the value of m,
the lengths of the intervals increase since wider intervals are expected to include
larger m.

APPENDIX ;
To prove (2.1), we use the definition of the median of m observations Y, given
by (1.20), when m = 2k. That is,

1 .
Y = '2‘[Yk:2k + Yigrok] . - (A1)
This transformation is applied to the joint density function of Yi.2r and Yi41:2k
(written, for simplicity, as Y and Yk+.1), given by
2k)! . _
fraYin(z,2]0)= -[_(—k_(-:%ﬁiu — R(z)]" I[R(z)]k f(z)fl2),0<z <2, (A2)

where f(.) and R(.) are given by (1.4) and (1.6), respectively.
By expanding [1 — R(z)]*~! and then substituting (1.6) in (A.2), we obtain

VY (2, 210) = Dzz(k) TK,pt py? [Ri(z))? [Rz(z)]jz—jg |
) [Rl(z)]j‘[Rz(z)]k-l"j‘f(z)f(z),0 <z<sz, (A.3)
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where D;(k')‘ aind K, are glven by (2.2) and (2.3), respectively, w; and w2 by (2.8)
Z -— 3 = Z a .

By .umnu{m; in (A°3).’R.( ) and £(.), given by (1.7) and (1.4), where the com-

ponents f;(.), i = 1,2, are given by (1.2), it follows that

NV (5,21 0) = #)'szzat(m)ut(z. 2)exp[-ve(z,2),0 <z <z, (A4)

where £ = EY¢ and, for £=1,2,3,4, Ge(p,) is given by (2.5),

u(z, 2) = A (2)A1(2) + ua(=, 2) = Ay (z)A5(2)

us(z, z) = M (z)A(2) , ue(z,2) = A,(:)A,(z) s

un(z,2) =0+ 12 (z) + (2 — ja)a(x) + Ga + Dhafa) + (k= 1 - jadalz) ,
v2(z, 2) = (j3 + 1)Ai(z) + (ja — ja)Aa(z) + Jadi(2) + (k — ja)ra(2) ,

v3(z, 2) = jadi(z) + (J2 — Ja)da(x) + Jadr(2) + (k — ja)Aa(z)

v(z, 2) = jai(2) + (J2 — Js + 1)Aa(z) + Jadr(2) + (k — ja)Aa(2) .

Applying transformation (A.1) to the density function (A.4), [by writing y =
3#(z + z) and t = z, to obtain.the joint density function fy, P (t,y | 6) and then
integrating out t], we get the density function f?n (v | 8), given by (2.1), where,
for £ =1,2,3,4, u(t,2y —2) and vg(¢,2y —~ t) are given, respevtively, by (2.6) and
7).
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