@ ISSR, Cairo University, 2003

Change-point tests based on Integrated
Empirical Distribution Functions

Abd-Elnssser S. A. Rabou
Statistics Department, Faculty of Economics and Political Science
Cairo University. Cairo, Egypt.

Abstract

Three new nonparametric change-point test statistics, based on the integrated
empirical function (IEF) are introduced. Properties and distributions of these test statistics are
also discussed. We derived the limiting distributions of the tests and conducted a Monte
Carlo study to compare the powers of the new tests with their non-integrated counterparts.
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1. Introduction

Testing a change in the stochastic characteristics of given obscrvations with a
probabilistic model is a crucial aspect of data analysis. In practice, shift problems in
arcas such as , quality control, medical monitoring, econometrics, biological growth,
signal processing and image processing are a few examples of the theoretical change-
point problem. In this respect, much work has been done when the data arc assumed
to come from continuous distribution (see, c.g. Csdrgd and Horvith (1993, 1997)).
Many Parametric as well as nonparametric test statistics has been introduced for the
detection of a suspected shifi(s) in the distribution function of a sequeaco of
observations. Empirical distribution functions, empirical quantile functions, ranks,
likelihood ratios and other tools are used to construct test statistics for this change-
point problem. Researches and papers covered this problem for more than five
decades stretching from classical to non-classical approaches. They discussed many
aspects of this problem, such as test statistics construction, change-point estimation,
properties studying and the development of the statistics distribution theory. For
more details we refer the reader to, Shaban (1980), Basseville and Benveniste (1986),
Brodsky and Darkhovsky (1993), and Csdrgd and Horvith (1993, 1997).

L4

Let X =(X,,X,,..X,)be a random vector with independent components.
We consider the following problem of testing a hypothesis H, ( the sbsence of a
change-point ): The independent random variables X, X,,..,X, are identically
continuously distributed with a distribution function F(.). The alternative hypothesis
H, ( the presence of a change-point ); X,,X,,..,X, have a common continuous
distribution function F() and X,_,.X,....X, have a different continuous
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distribution function G(.). The change-point m =[nt],0<¢ <1 and the distribution
functions F(.) and G(.) are all assumed unknown.

Empirical functions and processes are frequently used to test the null hypothesis of no
change in the distribution function of a sequence of observations. Test statistics based
on these functions and processes such as Kolomogrov-Simemov, Cramér von Mesis,
Anderson-Darling and Erdés-Darling type statistics are some examples. Introduction
of these type of tests, their stochastic theory and performance are presented mainly in
Cs6rg6 et. al. (1986), Shorack and Wellner (1986), and Csdrg8 and Horvéth (1988,
1993).

In this paper we introduce new test statistics based on the integrated empirical
distribution function (IEDF) to detect a possible change in the distribution function.
Since the distribution of any random variable X with a distribution function, F(.), is
uniquely determined by its integrated distribution function, (see Klar (2001)), defined

by Fs)= ]’ F(x)dx, —w<s <w- Then, for hypotheses concerning the distribution_

function F(.), we may construct test statistics based on the empirical counterpart of
F(s). namely B (,)=]'F;(x)d,,' —m<s <o k=1,2,...,n, where F,(.)is the empirical

distribution function based on k sample observations. Henze and Nikitin (2000 &
2003), Giirtler and Henze (2000) and Klar (2001), proposed and studied several
goodness-of-fit and two-sample test statistics based on the so called integrated
empirical distribution function. In fact these types of integrated empirical test
statistics have proved to be serious competitors to classical tests in case of goodness-
of-fit tests, (see Klar (2001)).

Section 2, presents the problem and the new test statistics. In section 3, we derive the
asymptotic distribution theory of the proposed tests. We conduct a Monte Carlo study
to estimate the critical values of the proposed tests and their powers in section 4.
Finally, we present some proofs for the main results in section 5.

2. Processes and Test Statistics

Let X,X,,..X, be a sequence of independent continuous random
variables. Consider the change-point testing problem; )

H,:X,X,,.,X, have a distribution function F(.),
against, ' g '
H :X,,X,..,X, havea distribution function F() and .

X ps02X pazs-X , have a distribution function G(.), (2.1)
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where the change-point m =[n£],0<7 <1 and the distribution functions F(.) and
G(.) arc all assumed unknown. Define the empirical distribution function based on k
observations by;

\ :
F,(z)=kl§l(x,5x} ,k=12,....n 22
and the integrated empirical distribution function based on k observations by;

F.(;)= ]'F‘(x)dx, ~-o<s <o, k=12,...n (2.3)

Henze and Nikitin (2000), presented the following properties for IEDF in (2.3),
which will be ugeful in introducing our processes and tests.

Theorem A (Henze gnd Nikitin (2000)) -
The integrated empirical distribution function £, has the following properties:

LEG) =2 ()2 F.)).
lf.(x)=;l;§lh(x..x,:x »

‘where

k(u.v;x)=%(1(u Sv Sx}+I{p Susx}),

that is F,(x)is aV ~statistic for any fixed x.
B.F,(x)=;l;(k +(: )), X0y S% <Xy sk =01m,
where x,,, is the i* order statistic and x 5, = 0, , ) =0
45 (xy)-F (xy _‘,-o)=;"7, E=12.m,
ieF.()has a jumpof m%«:m&‘mwm.

s. _:?_W,(x)-%p’(x)po as. an-e,

For the change-point analysis here we introduce the integrated empirical change-point
process, {4, (s,f);-w0<s <x,0<¢ <1}, given by

A (s )=I5:|.](Pl_,(:)—li(:)). -0<s <®,081 <1, 2.4)
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: ';where [6] is the integer value of & and 17' () is defined in (2.3). We also define the
Kiefer process K(s,f),0<s <1,— <t <o, which is a Gaussian process with mean
zero and covariance structure,

E K(s,,t,)K(5,:2,)=(5, A5, —5:5,) (¢ ALL), 0<s,,5,<],—0<t,t, <0 , (2.5)
and the Gaussian process,

A(s ,t)=s {K(s,t)-t K(s,1)}, 0ss,t <1, (2.6)
with zero mean and covariance structure,

E A(s ot ) A@Sy0) =55, (5, A8, =8,5,) (At —t;),  053,8,S1, —e0<t,f; <oo.

Now we state our main result, which provide an ideal (Gaussain) approx1mat|on for
the change-point process in (2.4).

Theoren: (2.1)

Let A_(.,.)and A(.,.) be the processes in (2.4) and (2.6) respectively. Then
we have as n —>

sup sup |4, (5,1) - AF(),0)|=o ().

0%t Sl ~0<s <

By the continuity of the distribution function F(.) and the integral transformation
U =F(x), the limiting distribution in Theorem (2.1) above eventually does not

depend on the unknown distribution function F(.), (see Henze and Nikitin (2003)).
Thus the suggested test procedures below will produce distribution free test statistics.

For the change-point hypotheses in (2.1), we suggest the following integrated-type
" test statistics:

T, =sup sup |A,(s,0)l,
0<s S| —~0<s <0
T,= lj'.jA, (s 2 )F, (s)dt

@7
and

T, = [ [AXs £ )dF, (s)at.

By the kernel covariance of the process A(.,.) in (2.6), we can easily see that;
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Als) =B,() s By(s), Ve,s €[0T, @8)
where B,(.) and B,(.) arc two independent Brownian bridges.

Coroliary (2.1)
Let B,(.) and B,(.)arc two independent Brwonian bridges, then we have, as

n—>o,

7, SsplB()| supls By(s)pD,
T,:»;[B,(l)dt ;’:B,(:)ds =D,,
and

r,f»:ln.'c)a :I:'B:(:)«h =D,

The Corollary is a direct result of Theorem (2.1), (2.8) and the continuous mapping
Theorem. It is clear that each of the limiting random variables (rv's) D;, D; and D; is
& multiplication of two independent random variables. Some of these independent rv's
in each of the multiplications has a known distribution or 2 tabulated critical values.
But the distributions of D;, D; and D; are not known in the literature, at least to the
author best knowledge. Henze and Nikitin (2003), pointed out that the distributions of

:glsn(m and of ",zn-owmmhown.mmiedlhewmd. ';,.,.‘M.md

Mmmmfummmmhmmwd,uu

multiplication of two independent centered Normal rv's with variances |‘z and
u

respectively. Since the exact distributions of the limiting random variables of
Corollary (2.1) above are unknown, we will simulate the test statistics critical values.
We will also conduct a power comparisons between the proposed tests and their non-
mummw.mc-mm

4. Estimated critical values and Powers

The application of the integrated-type tests in (2.7) depends on the availability
of the critical points of the distributions in Corollary (2.1). But, because these
asymptotic distributions are unknown in the literature their critical values are not
available. For this reason we conducted a Monte Carlo study to calculate the sample
critical values of the proposed tests. For cach size n=10, 20, ..., 100 we generated
5,000 random samples under the null hypothesis model of no change from Normal,
Exponential and Cauchy distributions. In each sample we computed the test statistics
T1,,T,,andT,, then ordered the 5,000 computed values and obtained the (1-a)*
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percentiles for & =0.1,0.05,0.01 for each test. Tables (1), (2) and (3), below list the

90", 95™ and 99" estimated percentiles for different sample sizes and different
distributions. All calculations in this section were done by a Matlab version 5.1
programs and its associated subroutines. To see how close the estimated critical
values of each test statistic in different distributions, we graphed them at a =0.05.
Looking at the critical values graph of 7|, we notice that there is a little discrepancies

when the sample size is small but the values tends to agree in larger samples. In the
second and third test critical values graph we see no difference approximately in all
distributions in all samples. Hence we can say that these tests-are really distribution
free tests, especially in large samples. All test statistics critical values in all
distributions started a bit higher when the sample sizes were small, then it decreased
as the size increased. This show that the use of the test estimated critical values in
small samples give slightly liberal tests: That is the tests in this case tend not to reject
the null hypothesis in most cases. This is a logical result since the detection power of
the change point tests suppose to increase with the increase of the sample size. We
notice that the estimted critical values of each test converge approximately to the
same values in each significance level in all distributions as the sample size increases.
Finally, we can see that the variations of the first and third test critical values between
samples are less than those of the second test. This is due to the fact that the former
two take only positive values while the latter takes also negative values.

Table (1)
Finite sample critical values
(Normal case)
Test T, T, T,
a 1% 5% 10% 1% 5% 10% 1% 5% 10%

10 1.3282 1.I511  1.0499 | 0.3672 0.2991 0.2549 | 0.2414 0.1767 0.1392

20 1.3148 1.1180 1.0118 [ 03119 0.2426 0.2042 | 0.1843 0.12383 0.0969
30 1.3121 1.0954 0.9940 | 0.2891 0.2257 0.1847 | 0.1646 0.1085 0.0841
40 1.2934 1.1028 1.0056 | 0.2786 0.2130 0.1773 [ 0.1536 0.1008 0.0787
50 1.2796 1.0909 0.9809 | 0.2698 0.2018 0.1685 | 0.1451 0.0923  0.0721
60 - | 1.2883 -1.0754 0.9836 | 02666 0.1987 0.1622 | 0.1423 0.0909 0.0701
70 1.2671 1.0753 0.9787 | 0.2611 0.1906 0.1546 | 0.1363 0.0877 0.0674
80 1.2507 1.0694 0.9843 | 0.2540 0.1857 0.1540 | 0.1273 0.0835 0.0667
90 1.2782 1.0822 0.9803 | 0.2457 0.1866 0.1518 [ 0.1272 0.0849 0.0661

100 12715 1.0803 0.9863 | 0.2520 0.1823 0.1492 { 0.1335 0.0821 0.0653
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Table (2)
Finite sample critical values
(Exponential case)

Test TI TI' T!

a 1% 5% 10% 1% 5% 10% 1% % 10%
n
10 1.3282 L1511 10499 | 0.3648 0.2992 0.2571 | 0.2375 0.1739 0.1414
20 1.3148 1.1247 1.0286 | 0.3152 0.2422 0.2047 | 0.1854 0.1220 0.0982
30 1.3065 1.0954 1.0175 | 0.2893 0.2282 0.1924 | 0.1622 0.1105 0.0855
40 1.2997 1.0851 09843 | 0.2740 0.2053 0.1701 | 0.1480 0.0943 0.0751
50 12694 10668 09777 | 0.2663 02013 0.1655{ 0.1407 0.0911 0.0715
60 12852 1.0973 09901 | 0.2615 0.2000 0.1621 | 0.1385 0.0906 0.0710
- 70 12710 1.0646 0.9689 | 0.2549 0.1853 0.1509 | 0.1305 0.0840 0.0650
80 12608 1.07411 09804 | 0.2524 0.1385 0.1552 | 0.1260 0.0840 0.0679
% 12509 1.0719 09644 | 02434 0.1844 0.1514 | 0.1239 0.0819 0.0645
100 12726 1.0664 09785 | 0.2477 0.1843 0.1439 | 0.1266 0.0832 0.0648
Table (3)
Finite sample critical values
(Cauchy case)

Test T, T, T,

G % % 10% | 1% 5% 0% | 1% 5% 10%
n
10 12902 11511 10499 | 03718 02981 02565 | 0.2418 0.1715 0.1408
20 13204 1.1 130 10178 0.3237 02478 02077 | 0.1926 0.1259 0.0989
30 12938 IM‘M 0.9883 | 02954 0.2206 0.1844 | 0.1637 0.1044 0.0817
40 13260 1.1036 0.9985 | 02857 02170 0.1778 | 0.1584 0.10i3 0.0774
50 12851 1.0839 09860 | 02712 02016 0.1678 | 0.1438 0.0914 0.0725
60 12783 1.0886 09836 | 02551 0.1978 0.1642 | 0.1326 0.0895 0.0707
70 - | 12840 1.0842 09882 [ 02620 0.1962 0.1629 | 0.1354 0.0896 0.0698
80 12907 1.0812 09874 | 02569 0.1870 0.1532 | 0.1349 0.0866 0.0658
L] 12800 1.0795 09859 | 02573 0.1920 0.1574 | 0.1365 0.0855 0.0674
100 12623 1.0821 09826 | 02595 0.138! 0.1514 | 0.1314 0.0852 0.0660
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To measure the periormance of our integrated-type tests we compared their estimated
powers with those of the non-integrated counterparts. The non-integrated test statistics
can be easily obtained by replacing the integrated empirical distribution functions
F()'s of (2.3) by the classical empirical distribution functions F(.)'s of (2.2) in
(24). Let N\ N, and N, denote the non-integrated-type test statistics. We
obtained Monte Carlo powers for all the six tests. The powers were calculated for
sample size n = 20, taken from Normal, Exponential and Cauchy distributions. We
consider the change points m = [nr], re{0.250.50,0.75}. Four cases were
considered for the location shift size § at the change position m. The shift sizes were
computed as the solution of the equation P(Y >X,)=p and

o+l
p €{0.6,0.7.0.8,0.9}. To calculate the powers. we simulated 5.000 realizations of
samples of size n = 20 under the alternative distribution and computed the six tests in
each realization. Then for each test we obtained the fraction of the number of times
that the null hypothesis is rejected. The results of this power study are reported in
Tables (4), (5) and (6). Other values of this design parameters, e.g. n = 40 and p=
0.85, were also considered, but these yielded the same qualitative conclusions and
hence are not reported .

The main conclusions that can be drawn from the power study, reported in Tables (4),
(5) and (6), below are as follows:

1. As expected the estimated powers of all tests seem to increase with the
increase of p, the possibility of a change.

2. The estimated powers are always the largest whenever the change position is
assumed in the middle of the sample. This is because a change in the middle of
the sample gives enough observations on both sides of the change position to
show the difference.

3. Compared with the non-integrated tests, T}, T2, and T are very competitive
against the distributional change regardless the unknown parent model.

4. In case of symmetric distributions, like Normal and Cauchy, the integrated-
type tests have a general superiority over the non-integrated ones. But in case
of skewed distributions such as Exponential, the second non-integrated-type
test Ny, has a slight edge over the proposed integrated-type tests.

5. We also notice that N, generally has larger powers among his non-integrated-
type fellow tests.
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Table (4)
Percentages of 5,000 samples declared significant
n=20, Normal case
Probability | Change T T, T; N; - N, N3
Of change | position | -
=0.6 5 12 13 12 6 12 7
10 15 16 - 16 7 14 8
15 12 13 12 6 12 7
P=0.7 5 21 25 25 12 24 13
10 38 41 40 24 39 26
15 23 28 26 13 26 14
P=0.8 5 41 46 46 26 45 30
10 67 70 70 54 69 56
15 41 48 46 27 44 30
P=0.9 5 67 69 70 54 70 57
10 91 93 93 86 93 87
15 72 76 76 53 70 57
Table (5)
Percentages of 5,000 samples declared significant
n=20, Exponential case
Probability | Change T, T, T3 N; N2 N
Of change | position
P=0.6 5 9 12 11 8 13 8
) 10 11 14 14 11 17 10
i 15 8 11 10 8 11 7
P=0.7 5 - 15 23 22 15 26 17
10 23 33 - 31 30 39 29
15 15 22 20 16 24 15
P=0.8 5 28 41 40 32 46 34
10 48 60 59 60 67 61
15 30 41 39 32 42 30
P=0.9 5 55 70 68 61 70 65
10 84 89 88 88 91 89
65

15 72 79 76 75 79
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Table (6)
Percentages of 5,000 samples declared significant
n=20, Cauchy case
Probability | Change T T Ts N; N2 N
| Of change | position :
P=0.6 5 13 13 14 10 13 8
10 19 16 17 14 16 i1
15 11 12 12 9 11 7
P=0.7 5 27 26 28 21 24 16
10 43 38 42 38 37 31
15 28 26 27 22 24 17
P=0.8 5 49 43 50 43 42 35
10 74 71 72 7 65 65
15 56 48 51 44 43 36
. P=09 5 76 77 76 77 66 65
10 96 - 96 9% 96 91 93
15 88 76 81 76 67 65
5. Proofs

For the integrated process in (2.4), we have
A5, D) (R (5)-F (), 1SmSn, —0<f <
n In

-5';«#.(s)—F(:»-(E(s)—F'(sm
= K- FHN- (FX0)-F e+ Fu )= L)
=ﬁ;{(r.(:)+F(s»(F.(s)-r(s»-'(r.(s)+F(s)xr.(s)-r(«»
+Lh)-LF e
m n

=JEl(F.(s)+1-'<s»a.(.r)-ﬂl(mx)m:»a.(s)
n2 n2

1 m 1
"'mr.(')-:ml".(l)'
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L

(5.1)

where , (.)is the empirical process based on k sample observations.

By the almost sure convergence of the empirical distribution function, the last two
terms of (5.1) are (1) ass..

Let K(.,.)be the Kiefer process of (2.5), then for the first term in (5.1), we get as
n —»co,

A= max sup || 2(F, () +Fs)a, (s)—:lrF(s)K(F(s).m)l
Sm SUP l—(F $)+F(s)e,(s)- F(Y)TK(F(T)M)I

. Smax sup |—(F $)Y+F@E)a, (s)—-—-(F(s)+F(s))a ()]
+masx sup |F(s))ea, (s)- F(s)TK(F(s),m)I

S;max sup |a, (s)lmax sup [(F,(s)=-F(s))|

-0CK <D -ﬂ(l <o

+max sup |F(s)a, (s)-F(s)——=

MM gy < ‘\/—
0. (Mo, M)+, (1),

K(F(s)m)|

(5.2)
where the last results follow form the almost sure convergence of the empirical
process and empirical distribution function (see Cs6rgé and Horvéth (1986)) and
Koml6s et. al (1975, 1976) respectively.

Similarly, we get for the second term in (5.1), as # — oo,

A, =max sup |"-—( () +F(s)) a, (s')——F(s)TK(I"(s) )|
MM e N

=0, (1).

. ' . (5.3)
Combining (5.1), (5.2) and (5.3), we complete the proof of Theorem (2.1).
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