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Abstract

A two-stage sequential procedure is introduced to control the width and coverage
(validity) of confidence intervals for the estimation of the mean in unbalanced one-way
random effects models. The procedure uses unbalanced pilot sample data to estimate an
“optimal” group size and then proceeds to determine the number of groups by a stopping
rule. Several asymptotic results concerning the proposed procedure are given along with
simulation results to assess its performance in moderate sample size situations, under
varying degrees of imbalance. The proposed procedure was found to effectively control
the width and probability of coverage of the resulting confidence intervals in all cases.
The procedure is illustrated using a real data set.

key Words: confidence intervals, harmonic mean method, sequential estimation, stopping
time, two-stage sequential sampling, validity of confidence intervals.

1 Introduction

The unbalanced one-way random effects model can be generalized-to more complex designs
and has proven useful to practitioners in a variety of fields, where the investigator is often
interested in interval estimation of the mean, u, the between groups variance component, og
and/or certain functions of y and oZ, e.g., El-Bassiouni and Abdelhafez (2000), Hartung and
Knapp (2000), Bonett (2002), Krishnamoorthy and Guo (2005) and the references therein.

El-Bassiouni and Zoubeidi (2008) proposed sequential procedures to construct confidence
intervals for ;1 and o7, such that the width of these intervals is less than or equal to a desired
precision d, while the probability of coverage is greater than or equal to a nominal level 1 — a.
They considered two-stage sampling plans where the first stage is a pilot sample consisting
of ng groups of size 7o each, followed by a second stage consisting of n — ng groups of size
T each, where 7 is determined by the pilot sample data while n is determined by a stopping

rule. The proposed procedures were found to effectively control the width and the probability
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of coverage of the resulting confidence intervals in all cases considered, including moderate

sample size situations.

In this paper, we consider unbalanced pilot samples, where each group has size 13, i =
1,...,np, and develop a sequential procedure, parallel to that of El-Bassiouni and Zoubeidi
(2008), for estimating p. The performance of the proposed procedure is also assessed under

varying degrees of imbalance.

Regarding notation, we use x2 to denote the chi-square distribution with v degrees of
freedom, ¢, to denote the ¢ distribution with v degrees of freedom, N(p, o?) to denote the
normal distribution with mean p and variance o? and z1_, to denote the 100 x v upper
percentile of the N (0, 1) distribution.

This paper is organized as follows: In section 2 some preliminary results are presented.
In Section 3 the sequential procedure for estimating p is described and the theoretical results
concerning the width and probability of coverage for the corresponding confidence interval
are given. Since the results in Section 3 are asymptotic in nature, the empirical results
of a Monte Carlo simulation study are given in Section 4 to assess the performance of the
proposed procedures in moderate sample size situations, under varying degrees of imbalance.
An example is worked out in Section 5 to illustrate the proposed procedure. The conclusions

are provided in Section 6.

2 Preliminaries

Consider the unbalanced one-way random effects model
Yii = p47 + €y, (1)

forj=1,...,r;and i = 1,...,n, where u is a scalar representing an overall fixed effect, 7,
i > 1, are iid. N(0,0}), o‘g > 0, random variables representing the random effects and ¢;;,
i,7 > 1, are i.i.d. N(0,02), 62 > 0, representing the error term. Moreover, 7; and ey; are
independent for all 4,4,j. Let N = Y, 7, denote the total number of observations and
define

SSE n T 1 Ti
MSE, =", SSE.=) 3 (%-Yi)', Yi=—3 Y
i=1 j=1 GRS
= M-T)h Tu=13F
n n"’lt=l 1 k) b T 'n.‘=l 1

Note that ¥, and S2 can be recursively computed using the recurrence relations
n— 2 1 e — 2
n— 1572‘*1 Ta [Y“' - Y”‘I] : )

Under Model (1), El-Bassiouni and Abdelhafez (2000) showed that

Ya= % [(n - 1)}:-’?“_1 +P17'n‘] and S%=

Yn — 4 approx
~

Sn/

ton (3)

3
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Hence, one may derive the following asymptotic (1 — a)100% confidence interval for p

Ya £ tia/2,no15a/VR (4)

whose width is given by An = 2¢1_4/9, n_15n//n, where ty_q/2 n—1 TEpresents the 100x /2
upper percentile of the ¢,,—; distribution. From Lemma 1 in El-Bassiouni and Zoubeidi (2008),
one can easily show that the expected width of (4) is asymptotically equivalent to

22:1_ 2 a? -
Qn,r) = \/gf HJE—I—?E. (5)

Consider a two stage sampling plan where the first stage is a pilot sample consisting of ng

groups of size r; each, followed by a second stage consisting of n — ng groups of size i =T
each. Let SSEy = SSEn,, SSE, = SSEp — SSEy,
TR — V. -Fu) T = — Y
(™ aTmg=1 Z( =Yy Y e Z i

i=np+1

and note that 8{20} = Sﬁa, and i_’_(g) = ?nu-
Remark 1 Given r, it is easily verified under Model (1) that:
| n (n — T = == 2
(n—1)S2 = (no — 1)Sfg) + (n =m0 — 1)S7) + -E*n—o‘)' (Y(o) - Yu)) ; (6)
SSEy, Sky, Y() SSEi, S5 end Y are independent,

= — 2
(n —TNg — 1)5?1} on® nd ﬂg('ﬂ. e ‘?19) (Y(U) - Y(l])
ot +o?/r Ll n of + o2/

2
= Xl)

where v = nr#n, /[MoFne + (n — no)r} and n, denotes the harmonic mean of 71, ...,7ng-

3 A Two-Stage Sequential Procedure for Estimating p

A sequential procedure is proposed for estimating p where n (number of groups) and r (group
size in the second stage) are data dependent such that the width of the resulting interval is
equal to a desired precision d and its coverage probability is greater than or equal to 1 — a.

The proposed procedure is described next.

Proposed Procedure 1

1. For the pilot sample observe Y;, fori=1,---,7n0 and j =1,---,7;. Compute MSEy,
and SZ .

2. Compute an “optimal” number of replicates per group, 7, that depends on the data
only through MSE,, and S% . One such “optimality criterion” is to determine 7 that

minimizes (5) according to a steepest descent approach. To this end, consider the
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estimators 6> = max{S2, — MSE,, /7, ; 0}, which was proposed by Seely (1979),
and 6. = M SEn,. Following the argument outlined in El-Bassiouni and Zoubeidi

(2008), when &2 > 0, we sample groups of size r in the second stage, where

AP -2 a2
r=max{2, [E ( %+4m%—%)]1, (7)
2 3 ds° O J

and [z] is the smallest integer greater than or equal to z. When 6% = 0, r = ng.

3. Continue sampling one group at a time (i.e., for the kth group observe Yoing =lvesa®)
until the stopping time
R = inf {TL Zng: 23]_0;’2, n-18nla < d-\/'.f_?,} ) (8)

where d is the desired width of the confidence interval, I, = 1+ lg/n, and I is a
pre-specified positive constant. The damping factor l, is meant to correct for underes-

timation of the desired confidence level.
4. After stopping, estimate x using the interval
Yr+d/2. (9)

Let n*(r) denote the solution to Q(n,r) = d. Then,

422 2
‘=) = _{;.;i (ag + ff) ; (10)

The following proposition shows that, conditional on 52, and MSE,,, the number of groups,
R, is of the same order of magnitude as n*(r) and that R is asymptotically normally distrib-
uted, as d — 0.

PROPOSITION 1 Let r be a function of S2, and MSE,,. Then, given S%, and MSE,,, the
stopping time R defined in (8) satisfies

R
n_*(r_)_*l wpl asd—0

and

R—-n*(r) .
—— — N(0,2), as d—0.
e e

where n*(r) is given by (10).

Proof of Proposition 1: Using Remark 1, (6) can be re-written as

(n—1)82 = (ng-— 1)5‘20 + (0 + o‘?/r)

(n—no - 1)3(21) no(n —ng) (= = 2
of +oi/r " n(of +a2/v) (Vo -Fo)

no(n — ng)%(r — FaoJo2 = 2
rorn?(of + o2/y) - (Yw} B Ym) X
(orf + ag/r) (n — ng)Wn_n, + (gf + ag/r) (n —1)Gn, (11)

i
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where Wn—n, is the average of n —ng i.i.d x? random variables,

(np — 1}‘_;.10 ) (n — no)(r — 7"':,!])(73 .
(n = 1)(o} + a2/7) TrgTUR — 1)(ro} + 02)

G‘u =
and U is a x? random variable.
By (8), at stopping S2 < d*n/Al2 tl /2 which is by (11) equivalent to

-1
= T * 1
nly? | = Owﬂ goneE cn] > n*(r). (12)

By expanding and collecting the terms on the left hand side, (12) may be re-written as
Vi, + €n > (1) where V,, = SE2 - W), Wi, Waon, are ii.d. x} random variables
and &,, n > 1, are slowly changing candom variables, conditional on SZ and MSEn,. The
proof follows from Lemma 10.2 of Woodroofe (1982).

Next we present the main result of this section.
THEOREM 1 Let v be a function of MSEy, and Sa;. Under Procedure 1

lim Pr [l=’R—d/2§ﬁ$?R+d/2] >1-a

Proof of Theorem 1: Observe that the stoppmg time R depends on the data only througa
Sﬁu, MSE,, and §%, which are independent of Y, for fixed 7. Then, given S2, and MEEn,,
Y R is independent of R. Therefore, by (3), vR (Y r — 1)/Sg is approximately tp—1. given
S and MSEq,. Since, at stopping d =~ 2t;_4/2, r-15rlr/VR, the coverage probability of
the proposed confidence interval is

: =
PT‘[?R -05d < p< ?R + OSd] ~ Pr \:_'lﬁtl-—aﬂ,ﬂ—] < l'R_(Y_R__Ji)_

VRV k-
=E {PT {""!Rtl-aﬂ,ﬂ—l < (,SJ; 4) <lpti—a/2,R-1 15310' MSEnr, ¢,

which is, by Proposi't.ion 1 and the dominated convergence theorem. equivalent to

E[(I)(zl—aﬁzn'{r]) ™= Q('Zlﬁaﬁ’:n'(f))] 21-c
4  Simulation Results

Since the results of Theorem 1 are asymptotic, a Monte Carlo simulation study was conducted
to evaluate the proposed sequential procedures when the sample size ranges from moderate
to larme, under varying degrees of unbalancedness.

The simulation parameters were set as follows: u = 0, 62 =1, ¢f =91, 1 and 9,

ng = 6,10, ro = 5. and a = 0.05. To introduce unbalancedness ir the pilot sample, the
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number of replicates, r; (i = 1,...,n9), was generated from the binomial distribution with
parameters 7o and 1—4, where § = 0.1, 0.2, 0.5. Following Ahrens and Pincus (1981), we used
Y = Tno/Tne, Where Tp, denotes the arithmetic mean of rq, ... +Tng, t0 measure imbalance in

the pilot sample.

We also assumed that Iy = 0, d = (0.10, 0.15, 0.20, 0.30), (0.2, 0.3, 0.5, 0.7) and (0.6,
0.9, 1.2, 1.5) for 0 = 0.1, 1 and 9, respectively. Let 7* be given by (7) when the values of
o and o7 are used instead of 6,2 and &,?, respectively, and define N* = 7* x n* (r*). Thus,
Nx is the sample size based on the steepest descent approach had o7 and o2 been known.
For the selected values of 02, 07, d, ng and a we note that r* ranges from 2 to 7, n*(r*)
ranges from 42 to 577 and N* ranges from 96 to 2618. In each simulation setting, r was
determined as described in Step 2 of Section 3, then R was sequentially estimated from (8),
and the confidence interval was computed from (9) based on R. This process was repeated
1000 times to yield the following statistics: the average group size, T, the average number of
groups, R, the average sample size, N, the percentage of waste due to oversampling, %waste
=100 x (N — N*)/N*, and the estimated probability of coverage 7 (the proportion of times

that the interval (9) covers u), as well as summary statistics concerning .

The simulated unbalanced one-way models turned out to represent varying degrees of
imbalance, as the values of v ranged from a minimum of 0.580, for the setting (ny = 6,
To =5, 4 = 0.5), to the maximum value of 1. In fact, the average values of v were 0.97,
0.94, and 0.82 for § = 0.1, 0.2 and 0.5, respectively, indicating that imbalance increase with
d. Also, there were no violations in the desired confidence level in all settings where lo was
set to 0, suggesting that damping factors are not needed. Further, the relative error of R,
| R—n*| /n*, the relative error of 7, |T—r*| /r*, and %waste were found to slightly increase
with §. To save space, we report only the results for § = 0.5, which correspond to higher
degrees of imbalance (lower values of 7). _

Table 1 gives the results of the proposed sequential procedure for the interval estimation
of 11 in the two settings (ng = 6,79 = 5, § = 0.5,lo =0) and (ng =10,70 =5, § = 0.5, [y =
0). It is easily verified that the ratio R/n* converges to 1, as d — 0, in line with Proposition
1, and that the relative error of R was small, i.e., | R—n*| /n* < 0.12, except when of is
much smaller than ¢? in magnitude and § = 0.5, in which case the relative error of R could
be as high as 0.22 for (ng =6, ry = 5,0 =10.5, lo = 0) and 0.36 for (ny = 10, ry = 5, & = 0.5,
lo = 0). Further, the relative error of 7 was also small, i.e., |F—7% | /7* < 0.09, except when
o? is of the same magnitude as o2, in which ;:ase the relative error of 7 could be as high as
0.56 for (ng = 6, 1o = 5, § = 0.5, [y = 0) and 0.33 for (ng = 10, rg = 5, § = 0.5, lgp = 0).
Using the normal approximation to the binomial, if the true confidence coefficient is 0.95,
there is a 2.5% chance that an estimated confidence coefficient based on 1000 simulations

will be less than 0.936. Thus, the estimated probability of coverage 7 is seen to be consistent
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with Theorem 1. In both settings the waste was rather small except when o7 is of the same
magnitude as o2, in which case using ng = 10 produced a smaller waste (12.60 - 22.81%)
than ng = 6 (30.14 - 35.29%). It should be noted that the small negative waste that appears
in Table 1 at of = 0.1 under the setting (no = 6, 7o = 5, § = 0.5, lp = 0) represents a slight
undersampling.

We point out here that the coverage results of Table 1 agree with those of Hall (1981)
who found that when ng is fixed then as d decreases the coverage probability tends at first
to decrease and then to increase, which suggests that the value of ng is relatively important
for large values of d.

[Insert Table 1 about here]

5 Example

Consider the data set in Table 2 concerning the modulus of elasticity (y) in units of 1000
psi of test pieces of Eastern white pine trees, which was analyzed by Bliss (1967; p. 259)
under Model (1). To illustrate let us consider a pilot sample which consists of the six trees
numbered 1-4, 7, 8 (each with three replicates) and the four trees numbered 5, 6, 12, 14
(each with four replicates). For such a pilot sample we have ng = 10, v = 0.98, d.2 = 8551,
;2 = 18370. Based on the simulation results, lp was set at 0.

[Insert Table 2 about here]

Consider constructing a 95% confidence interval for estimating p such that the width
d = 160. Following Procedure 1, it was found from (7) that r = max{2,1.94} = 2. The
implementation of the stopping rule (Step 3 of Procedure 1) is illustrated in Table 3, which
shows that the procedure stopped at R = 14. Table 3 was calculated using Excel to sequen-
tially update the estimates as in (2), where the first update starts with n = ng + 1. Note
that the first two replicates of trees number 9, 10, 11 and 13 were sequentially used to yield
the confidence interval (862.22, 1022.22), according to (9).

[Insert Table 3 about here]

6 Conclusions

It has been shown both analytically and numerically that the goal of effectively controlling
both the width and validity of confidence intervals for the estimation of the mean in unbal-
anced one-way random effects models was always met. Furthermore, the simulation results

indicated that the proposed sequential procedures performed rather well even for moderate
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sample sizes and under varying degrees of imbalance. Moreover, it seems that damping factors
are not needed. In terms of circumventing unduly waste (oversampling), it is recommended
to increase the initial number of groups ng (which prevents premature stopping) whenever it

is expected that the two variance components (of and o2) are of comparable magnitudes.
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Table 1: Simulations of 95% confidence intervals for , based on Procedure 1,
when p = 0, 02 = 1, and the number of replicates is Binomial(s, 0.5)

np=6,170=549d=051lg=0 no=10,70=56=05,1l=0

o2 d 7 T Y%waste P 7 T  Ywaste P

9.0 1.500 2.03 65.58 425 0.938 2.03 66.30 7.30 0.943
9.0 1.200 2.04 101.92 3.26 0.955 2.02 102.81 431 0.952
9.0 0.900 2.03 180.70 1.97 0.944 2.03 180.16 2.42 0.941
9.0 0.600 2.04 405.14 2.32  0.949 2.03 407.99 2.51 0.937

1.0 0.700 3.08 44.62 30.14 0.944 3.95 43.10 12.60 0.936
1.0 0.500 3.11 85.86 34.80 0.943 3.90 82.67 18.87 0.947
1.0 0.300 3.09 236.33 35.29 0.944 3.98 225.06 22.81  0.947
1.0 0.200 3.04 533.58 35.13 0.950 3.90 505.26 21.72 0.946

0.1 0.300 4.69 63.52 -1.07 0.948 7.22 57.17 10.16 0.950
0.1 0.200 4.60 140.97 -1.48 0.956 7.13 115.61 547 0.944
0.1 0.150 4.53 249.63 -2.21  0.956 7.21  194.46 462 0.947
0.1 0.100 4.64 ©542.98 -1.92  0.948 7.16 424.69 2.49 0.948

Table 2: Modulus of elasticity y of test pieces of Eastern white pine trees

Tree y ri || Tree Y T
1 676 738 913 3 10 891 835 905 660 1049 806 6
2 962 872 772 3 11 779 801 795 797 554 736 9
3| 779 788 710 3. 881 790 839
4 | 1002 963 892 3 12 843 1021 968 948 4
7 | 1002 903 1022 3 13 | 1123 921 1239 1125 863 789 6
8 952 1184 1233 3 14 | 1217 1178 1151 1240 4
] 940 893 946 878 4 15 | 1068 a02 2
6 919 1071 1284 1140 4 16 | 1013 814 2
9 971 834 1144 779 941 1059 8 17 892 1039 2

803 605
Table 3: Computation steps of the 95% confidence interval for j in the example

n Tree(s) Pieces N Y. Yn s2 t0.975, n—1 2tg.975, n—15n /1
ng=10 1-8,12 14 all 34 34 961.36 20935.43 2.26 207.01

11 9 first2 36 902.50 956.01 19156.83 2.23 185.97

12 10 first 2 38 863.00 948.26 18136.16 2.20 171.13

13 11 first 2 40 790.00 936.08 18551.38 2.18 164.61
R=14 13  frst 2 42 1022.00 942,22 17651.61 2.16 153.42
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