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Summary

In the analysis of familial data, the primary aim is to estimate the degree of resemblance
between family members. Here we are interested in the special case where one group of
family members consists of one individual, as typified in the following mother-sib situation.
The degree of mother-sib resemblance is measured by the interclass correlation, and the
degree of sib-sib resemblance is measured by the intraclass correlation. We derive the
MINQUE estimators of the interclass and the intraclass correlation coefficients, also new
three tests are proposed. Based on Egypt' sibship size, a Monte Carlo simulation is used to
compare several different estimators of the interclass and intraclass correlation coefficients,
also to compare several different tests of hypotheses of the interclass correlation

Nationally representative hemoglobin level among ever marred women aged 15 to 49
and their children under the age of 5 were recently determined in conjunction with the Egypt
Demographic and Health Survey 2000 (2000 EDHS). The interclass correlation between
mothers and their children of hemoglobin level and the intraclass correlation among children
are estimated and tested.

1. Introduction

One of the main aims in the analysis of familial data is to estimate the degree of resemblance
among family member with respect to some biological and medical attributes. Examples are
given by Higgins and Keller (1975), Tager et al. (1976), An et al. (1999), Smeeth and Ng
(2002), Wu et al. (2003), Adams et al. (2004), Mularski et al. (2004), Parker et al. (2005) and
Witham et al. (2007).

To estimate the interclass correlation, séveral estimators have been proposed, some of
these estimators have been discussed in detail by Rosner et al. (1977) and include, the
pairwise estimator where each child in a family is paired with mother of that family, the sib-
mean estimator where the mean offspring score from a family is paired with mother of that
family, the random-sib estimator where a random offspring is chosen for each family and is
paired with the mother of that family, and the ensemble estimator, a variant of the random-
sib estimator whereby an ‘expected value’ for the random-sib estimator is computed over all
possible choices of random sibs from each family. For the pairwise, sib-mean and random-sib
estimators, an ordinary Pearson correlation is computed form the set of pairs formed over all
families in the sample. It was shown by Rosner et al. (1977) that the pairwise estimator and
the ensemble estimator are far superior to the sib-mean and the random-sib estimators in
terms of mean squared error with the pairwise estimator being superior in the case of low

' Almost all the previous Monte Carlo simulations, the sibship sizes were randomly generated based on the
distribution of sibship size in U.S. in 1950
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intraclass correlation between sibs, and the ensemble estimator being superior when the
intraclass correlation is high.

Rosner at al. (1977) derived explicit expressions for the maximum likelihood
estimators when the sibship sizes are equal for all families in this case the maximum
likelihood estimator of interclass correlation is equivalent to the pairwise estimator. When the
sibship sizes are not all equal, Rosner (1979) proposed an algorithm for finding the maximum
likelihood estimates, which involves iterative maximization (the technique is iterative and
uses standard Newton-Raphson procedures to facilitate convergence) of an implicit function
of interclass and intraclass correlations. This algorithm is difficult to implement and as
Rosner pointed out, his algorithm may not converge for some sets of data. The work is
parallel to the extensive work on the maximum likelihood estimation of the intraclass
correlation (Patterson and Thompson, 1971; Hemmerale and Hartley, 1973; Harville, 1977)

Mak and Ng (1981) used a linear model approach of Kempthorne and Tandan (1953)
to derive the maximum likelihood estimate of interclass correlation when the families have
unequal numbers of offspring. It leads to an algorithm which involves the maximization of an
explicit function of a variable for estimating one parameter and direct substitutions for other
parameters. This algorithm is believed to be much simpler and more practical than that
proposed by Rosner (1979).However; nothing is known about the convergence of the
procedure. Another iterative method of finding the maximum likelihood estimate has been
given by Smith (1980a). An alternative approach was given by Srivastava (1984) which
requires solving only one equation.

Smith (1980 a, b) noted that an iterative method for determining the maximum
likelihood estimate may fail to converge. Srivastava and Keen (1988) found that the quasi-
Newton method failed to convergent for 18% to 36% of the samples for each combination for
the interclass and intraclass correlation coefficients. Therefore a number of noniterative
estimators have been proposed in the literature. Srivastava and Keen (1988) showed that
some of these estimators associated with special cases of the generalized estimator derived
from weighted sums of squares of measurements on parents and offspring.

All estimators except the ML estimator are derived by principles which are ad hoc in
nature and do not minimize a clearly defined loss function, all of them are based on
estimators of parent offspring covariance and among parent and among offspring variances
which also do not exhibit optimal properties. ML estimators have been widely ignored
because of computational difficulties. Kleffe (1993) derived simple explicit expressions for
C. R. Rao’s MINQUE (Minimum Norm Quadratic Unbiased Estimator/ Estimation) for the
unknown parameters of the within-family covariance matrix and he used these optimal
estimators to improve estimation of interclass and intraclass correlations in case of family
data contained father, mother and siblings scores. He showed that in this case the father-
sibling and mother-sibling covariances utilize father’s and mother’s scores. So if we use his
method, we should observe both even though interest may focus on mother-sibling or father-
sibling correlation only like our interest in this paper. In this paper we derive the MINQUE
estimators for familial data contend mother’s and her sibling’s scores only.

For the intarclass correlation, several estimators have been proposed; some of these
estimators have been discussed in detail by Donner and Koval (1980) and include the
pairwise estimator, the ANOVA estimator and the maximum likelihood estimator. The
pairwise estimator, introduced by Fisher in 1925, can be defined as the Pearson product-
moment correlation as computed over all possible pairs of observations that can be
constructed within families (each distinct pair is computed twice in this process) this
estimator perhaps the oldest measure of intraclass correlation (Fieller and Smith, 1951;
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Donner and Koval, 1980; Karlin et al.,, 1981). As shown by Fieller and Smith (1951),
however, the pairwise estimator is an inefficient estimator of intraclass correlation for
varying sibship size, since it tends to give too much weight to large-sized samples. For fixed
sibship size the maximum likelihood estimator of intraclass correlation reduces to the
pairwise estimator (Donner and Koval, 1980 and Rosner et al., 197 7). The ANOVA estimator
as suggested by Fisher in 1938 is widely accepted as the estimator of choice (see Rosner et
al., 1979; Donner and Koval 1980, 1983; Coreil and Searle, 1976a, 1976b, Merwin and
Harris, 1998, Donner and Zou, 2002). A question that sometimes arises in the calculation of
the ANOVA estimate is whether or not those families having only one member should be
included. Some available evidence indicates that they should not. In particular, a study by
Swiger et al. (1964) suggests that inclusion of the one-member families in the analysis will
tend to increase the standard error of the ANOVA estimator when both the ANOVA estimate
and the numbers per family are small. Donner and Koval (1980) suggested that the ANOVA
estimator of intraclass correlation coefficient can be computed over those families having two
or more siblings only.

As regards significance testing of interclass correlations, four tests have been
discussed in detail by Rosner et al. (1979), the classical pairwise test, the conservative
pairwise test, the sib-mean test and the adjusted pairwise test. The classical pairwise,
conservative pairwise and adjusted pairwise tests are based on the pairwise estimator. The
classical pairwise, whereby one degree of freedom is attributed to each pair, the conservative
test, whereby one degree of freedom is attributed to family, the adjusted pairwise test where
number of degrees of freedom in a family are estimated as a function of the number of
siblings in the family and the estimated sib-sib (intraclass) correlation, the aggregate degrees
of freedom are then summed up over all families. The sib-mean test is based on the sib-mean
estimator and one degree of freedom is attributed to each family in conducting the
significance test. Rosner et al. (1979) showed that use classical pairwise test provides
overstated type I error yielding estimated significance levels two to five times larger than the
nominal levels, and the adjusted pairwise test was shown to compare favorably in power to
three (the classical pairwise, conservative and sib-mean) other tests.

Other procedures have since been proposed for testing the significance of the
interclass correlation. Konishi (1982) derived the large sample variance of the pairwise
estimator, and proposed this expression as a basis for significance testing of interclass
correlation. Procedures based on the method of maximum likelihood may also be developed,
as discussed by Elston (1975) and Smith (1980a, 1980b). One advantage of the maximum
likelihood approach is that it unifies the general problem of estimating and testing interclass
correlation. One disadvantage, at least form the practical point of view is that the resulting
procedures generally require complex, iterative procedures which are not widely available. A
new three tests are presented in this paper based on the large sample variance of the
ensemble, the Srivastava and the family-weighted estimators.

2. Definitions and terminology -
Suppose we have a sample of measurements from » families and let x,, y,, y,,, ....,

Y & represent measurements from the ith family where x;is the mother’s score (in general,

the parent’s score) and y,,, ¥;;, .---- » Y a, are scores of her k; siblings. Let us assume the
following model holds
Z; = (xi'yl’l’yﬂ ,............,y“l ) = (x,,,]f:.") = N(#,‘szr‘) (21)
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Further the mother-sib resemblance or interclass correlation is denoted by p,, . and sib-sib or
intraclass correlation is denoted by o, where p,, 20. We are thus assuming that p, and

Pss are constant, and in particular, are independent of sibship size. We will assume that the
sibship sizes are not necessarily the same in each family, since this the problem most
frequently encountered in practice.

In order to estimate the intraclass correlation, a more frequently adopted model in
epidemiological research is the components of variance model (Sahai, 1979) which states that

the observations y ; can be mathematically described as .
Yy =H*a; +&;, (2.2)
where u is the grand mean of all scores, the family effects {a;} are identically distributed
with mean 0 and variance o2 , the residual errors { &, }are identically distributed with mean 0
and variance o, and {a;}and {s, }are completely independent. The variance of y ; is then
given by o’ =0} +0?, and the intraclass correlation p, is then defined as —ﬁj——-.

o; +a?

Equivalently, since
P =E{y; - )y, '#)}/az =E{(a; +¢, )a; +8ﬂ)}/02
_E@)__d:
o' oi+a;

-_—

The components of variance model (2.2) is more appropriate in the analysis of family
data than the common correlation model if there is interest in obtaining separate estimates of
the parameters o> and o7, while both model are satisfactory if interest focuses solely on

estimating the intraclass correlation.

3. Estimation of Interclass Correlation

3.1. The pairwise estimator

The pairwise estimator is analogous to the method of computing the ordinary product-
moment correlation, and is obtained by pairing each mother’s score with each of her sibling’s
scores and considering the collection of all such pairs over all families. In this case the
pairwise estimator of interclass correlation is given by:

2 & =D 0, -7)

o 30,001
whercf='Zk,.x,./K,)7'=Z:;yﬁ./1{, K =$k.~

Several authors including Higgins and Keller (1975) and Tager et al. (1976), have
used this method as an estimator of p,, . despite the fact that the independence assumption is
not appropriate one for two reasons (1) a mother with more than one sibling appears in

pm_’ =

, (ER))
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several different pairs and (2) two siblings in the same family are in general correlated
- (p, 20)

3.2. The family- weighted pairwise estimator

Karlin et al. (1981) suggested weighting the pairs in the pairwise estimator by the inverse of
the number of pairs contributed by each family, to reduce the disproportionate effect of large
families in the final estimate. In this case the family-weighted pairwise estimator of interclass

correlation is given by:
| 2, =EXVEN)Y. vy =)
i J

Puspus = ; (3.2)

|-

{Z(x; —f)’}’ {Z(l/k,-)Z(y;,- -f)’}
i i J

1 - 1 - le
Wl’lmx=;“Zx,.y;_=k_zy(—;,y=‘;’lzy'-_.

Another formula of the fa.m:ly—welghted pairwise estimator was given by Eliasziw
and Donner (1990) which is:

> (5 - DG, - )
Py = ' : (3.3)

e [epo-smnlpo-r]

3.3. The corrected pairwise estimator
Srivastava and Keen (1988) obtained the corrected pairwise estimator; the difference between
the corrected pairwise estimator and the pairwise estimator is that the corrected pairwise

estimator uses an unbiased estimator of the sibling variance o7 in place the biased in the
definition of the pairwise estimator. The corrected pairwise estimator of interclass correlation

1sg1venby
PACIEIINCPESY)
Pase = i : , T, (34)
2 2
{Zkr'(xi ‘f)z} {Zl‘:(}_'i.-f)z"'”t ZZ(J"@ _5’-;.)2}
where n*=;—j‘-(fc_-—-l) s} = Z(k k) [n-1,k = Zk /n.

3. 4. The sib-mean estimator

Falconer in 1960 (Rosner et al., 1977) has reccommended paring each mother’s score with the
mean of her sibling scores for each family and then constructing a product- moment
correlation coefficient. The resultant estimator is then given as follows

Z(x.f -X)y;.-Y)
ﬁm:.m = 1 (3'5)

{Z(x —x)} {Z(y y)’}

Poms m 18 known to be biased (O’Neill et al., 1987).
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3. 5. The modified sib-mean estimator
Konishi (1982) pointed out that the sib-mean estimator is not consistent for the interclass
correlation coefficient parameter. The modified sib-mean estimator, obtained by Konishi

(1982), adjusts the sib-mean estimator in such a way that the new estimator is asymptotically
unbiased and consistent. '

- - 1
Prsom =[5 +A=50,  Prams | (3.6)

)
where k, = {-I—Zki} is the harmonic mean family size and 5, may be estimated by any
n

consistent estimator of the intraclass correlation

3.6. The random-sib estimator e

Another method which may be used to deal with the lack of independence is to select a
random sibling from each family and compute the correlation from the set of pairs of mothers
and propositi. The resultant estimator is then given as follows:

Y x, =~y -7

e o]

i

Prus.r = , (3.7)

where y; denote a random sibling from itk family and 7 = dyiln.
i

3.7. The ensemble estimator

The practical problem with the random-sib estimator is the loss of information resulting from
considering only one sibling per family. The ensemble estimator was proposed by Rosner et
al. (1977), which is an attempt to modify the random-sib estimator. The ensemble estimator is
given as follows:

2 (x =3~ 5)
ﬁm.e= i 1° (3'8)

{Z(xf _f)z}% {[2;0’# -J—;‘._)’/k,.:l[l—%}zil(i -5’)2}E

1
It is noted that the expression ) (x, =¥ )(7, - ) / {Z(x ,=X) }2 appears in both

Prusm (3.5) and B, , (3.8). The estimators differ only in the latter term of their respective
denominators and in particular, Rosner et al. (1977) showed that | ,5_”|$l Prns m| - Equality is

achieved only in the degenerate case when there is no within-sample variability within any
family. Also from (3.3) and (3.8), it is observed that j,, sp and p, . are equivalent since

(1-1/n)in p,,, tends to unity as » increases.

3. 8. The maximum likelihood estimator
Srivastava (1984) used the transformation g =o,, /o? = Pus(0,/0,), 6=(c7 - B*c?)[y?,
vi=cl(l-p,), u= K =P, , & =5-a,, where a, =1-k". Thus, the transformation
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from the six parameters (u,,4,,0%,07,p,..p,) o (4,,1,02,8,8,7}) is one to one.
Srivastava (1984) obtained the maximum likelihood of the parameters as follows

Pu =% 60 =200 =5Y [n, p=e (o5, - BYex,),
B=teXery, ~(Lex ) (Eeg) [leXex! ~(Tex ),
7 =K"{Z[;y; —;lf(z_y,;)’]-ktch(ﬂ -4-px, )},

where ¢, =& and ¢ = ZCJ . Also 6 (;anfbe estimated from the equation

Y& - j’fz £y, - ;’.‘: ~ Bx;)* =0, after substitution the values of /i, £, 72and & . This

equation will involve only one unknown parameter &, the solution of which can be obtained
iteratively. Having obtained &, 4, f, 7* and 67 can be obtained. Hence, the maximum
likelihood estimate of p,, is given by

Prssu = P6,./6, (3.9)

3.9 The Srivastava estimator
Srivastava (1984) obtained a noniterative estimator for interclass correlation which is easier

to compute than the maximum likelihood estimator. the Srivastava estimator is given as
follows

D&, =F)F, - ¥)

(n -1, {Z(xi —x')’}

where G =(n-1)"Y. (7, - 7)’ +n"7f(Z(l-k,-") v =Z:Z(Jqr -F;,)z/(K -n),

substituting 67 into (3.10) results in the form of estimator given later by Srivastava and Keen
(1988)

Prnss = , (3.10)

B |

>, =T, -7)

B = : (3.11)

2

(Se -0} {si-rr 0250, 5.7
n-1 -1
where k’ —E(l—k“ )

3. 10 The MINQUE

The MINQUE is obtained by equating certain quadratic forms to their expectations. These
quadratic forms are chosen to minimize local variance and depend on a priori information
about the variance and covariance parameters. The MINQUE estimators are unbiased, have
locally minimum variance given normality distributed data, are strongly consistent for
bounded k; as n tends to infinity and are asymptotically normal if the ratios of different k;
converge. These asymptotic properties also extend to the case of random sampling of families
(see Kleffe, 1993)

The Egyptian Statistical Journal Vol.51, No.2, 2007




108 ; Zakaria A. AbdEl-Wahed

The first and second moments of Z; (2.1) can be written as.

2 /
= m = ) TS 5 YA =}V = . 3.12)
E(Z,) [#slt,] [0 11:, ](}J,) X.a,cov(Z,)=V, (O’ lk, 0_2}. s Jg‘ (

where o” and o7 are covariance parameters. Here I, is the unit matrix of order k;, 1, isa

1 0
k-vector with all elements are ones, X, = ,a=|""land J, =1,1;, . The interclass
0 lh ,U,
and intraclass correlations can be expressed as
2
o, o
Pms = o T 2 P =_2__:__2-' (313)
{02 (o] +af)}i Ta+%
: ., OSSR '
The MINQUE estimator of o2 and o, are given by & =-;l—_1L_ and

a2
6, = a—;‘o'm ~C;'Q . Also the MINQUE estimator 67 and &} can be obtained from the
aﬂm

flowing equations
~2

0,=C,67+C,[6 +‘;w (:~ -26,)] . (3.14)
a2
0, =C,62 +C,[62 + T :;* 0, —26,,)] | (3.15)

where SSR, =) (x;, -X)’, SSR, ZZ(yaT 7.0, 0= Zx(x -%), 0= ZK,,

QZ =SSR3+Zx'/k, ’K|'=[‘i{am(xf_x)-(yi.—y)}! X =.S_mlzl+j.k
-_-__].'....Z._k.l_....j}' , A:m L =k, {1+k (O'M —0' )} C Sm S; m:
B4 1+_:uc,. ) o..

[

y
C,=80-28:50 +Szuslo » Cy=8,,- 2S3|S|:1I +SziSzoS|o ’

h k
Co=K-n+8,-25,,8+8:81, Sy = Z g = (h=1,2,3, k=0,1,2) and o,
1+ Ak, k
o

s » Ooc and 07, are the priori parameters of o2 , o, , o7 and o?

The estimator for the &2 does not depend on a priori information and is the uniformly
minimum variance invariant unbiased estimator given normality (Rao, 1971).The estimators
for o] and o} do not depend only on sibling scores but also on mother scores. Chose of
O,us =0 removes the mother scores from the constants «;, and the estimation of ¢’ and

o, reduced to the MINQUE estimators under the well-investigated under unbalanced one-
way classification model for the sibling’s scores only.

4. Estimation of Intraclass Correlation
4.1. The pairwise estimator

The pairwise estimator of intraclass correlation j, ,, can be defined as the Pearson product-
moment correlation as computed over all possible pairs of observations that can be
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constructed within families (each distinct pair is computed twice in this process, which
eliminates the need to designate one member as X and other as Y). If k, =k (i=/, 2,...., n),
the pairwise estimator is given by

R &k
,2.:?-;(’“ -F)yu-7)

Kk -1S:} ’

where § f is the qamplc variance, computed over all X observations.

Py = (4.1)

As shown by Fieller and Smith (1951), however, P, , is an inefficient estimator of

p,, for varying k;, since it tends to give too much weight to large-sized samples. In the special
case where k; =k (i=1,2,....,n) the maximum likelihood estimator of intraclass correlation
reduces to the pairwise estimator (Donner and Koval,1980a and Rosner et al. , 1977)

4.2. The ANOVA estimator
Using the one way variance component model (2.2), we can estimate the variance
components (o and o?) and then estimate the intraclass correlation, the analysis of

variance (ANOVA) method is very frequently used (see Donner and Koval 1980, 1983,
Coreil and Searle, 1976a,1976b, Merwin et al., 1998, Donner and Zou, 2002). The ANOVA
estimator of the intraclass correlation p, is given by

& (MSA - MSE)
u4 = IMSA + (k,-)MSE]’
2K
wherek, =(n-1)"[K—"T],MSA =8SA/(n-1), MSE =SSE /(K —n), §54 and SSE are
the among groups and within groups sum of squares.

(4.2)

A question that sometimes arises in the calculation of A, , is whether or not those

families having only one member should be included. Some available evidence indicates that
they should not. In particular, a study by Swiger et al. (1964) suggested that inclusion of the
one-member families in the analysis will tend to increase the standard error of j, , when

both g, , and the numbers per family is small. Donner and Koval (1980) denoted that the

analysis of variance estimator of intraclass correlation coefficient as computed over those
families having two or more siblings only by 4, ,, -

4.3. The maximum likelihood estimator

A maximum likelihood approach to the estimation of variance components and then
estimation of intraclass correlation has some attractive features. The maximum likelihood
estimators are functions of every sufficient statistic and are consistent and asymptotically
normal and efficient (Miller, 1977). In spite of these properties, the maximum likelihood
estimators of variance components take no account of the loss in degrees of freedom resulting
from the estimation of the model’s fixed effects, also, the maximum likelihood estimators are
derived under the assumption of a particular parametric form, generally normall, for the
distribution of the data vector. The first of these problems has in effect been eliminated by
Patterson and Thompson (1971) through their restricted maximum likelihood approach. With
regard to the second problem, Harville (1977) showed that the maximum likelihood estimator
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derived on the basis of normality may suitable even when the form of the distribution is not
specified.

Donner and Koval (1980) showed that the maximum likelihood estimator 5, ,, of
P, 1s given by the value of p,_, that minimizes
-2InL=K(1+Iné? +In27)+(K-n)In(1-p,)+ 3 W, , . 4.3)
i

8= {Z(W ””}}:(yt, AN, 3y el "’)}/KG— )

i=l j=] [wj i

k
i / Z W, =1+(k, ~Dp, .
i

This estimator also correcponds to the maximum likelihood estimator of p, under the
random effects model (2.2).

where

4.4. The restricted maximum likelihood estimator

The restricted maximum likelihood (RML) method consists of maximizing the likelihood, not
of all the data, but of a set of selected error contrasts. When the sibship sizes are equal
(balanced case) results are identical with those obtained by the method of Neder (1968).

- Based on the one way vanance components model (2.2), the first and the second
moments  Of Y= (Vs Y yp s Y gpsereeensY gp pesseseen oV s Y, )CAD be  written as

EY¥)=Xp=1,p and covly )=V =V,o; +V,0., where V, = Diag(J, Yand V', =1, . The
RMLE of o7 and o7 calculated from the following equation.

O =F'G, 4.49)
where Gy, =(62 qis Glan)» the ijth element of Fis tr(RV RV ), the ith element of G is
Y'RV,RY and R=V 'V X (XV X)XV

The system of equation (4.4) cannot be solved analytically because the elements of R

in contained o} and o7, then an iterative procedure must be adopted. Finally the RMLE of
P, is given by

A2
O4nme
Punma = A 4.5)
;. i ¥ i

4.5. The MINQUE
a2
The MINQUE estimator of p, is p, \wous = 6'::- — Wwhere 65 and 67 are the MINQUE
o,

4
estimators of o and o as given in subsection 3.10. As shown in subsection 3.10, chose of

Oom; =0 removes the mother scores from the constantsx;, and the estimation of o and

o; reduced to the MINQUE estimators under the one way variance components model (2.2)
for the sibling’s scores only.
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4.6. The unweighted means estimator
A well known alternative to the ANOVA method for estimating o, is an analysis based on

the unweighted group means. The unweighted means estimator of the intraclass correlation is
given by :
V

W & N 4.6

YT (4.6)

YGF. - LX0-7)
Whel'e V, =L et d —
n-1 - (K =n)k,

4.7. The Srivastava estimator

Srivastava (1984) obtained an estimator for intralass correlation; this estimator is given as
follows '

Pu,=1-72[G2. (4.7)
where 7’and &7 are givenin 3.9

5. Test of hypotheses about interclass correlation
The null hypothesis H,: p,, =0 versus Hy: p,, #0 is investigated. In this section ten
possible tests are presented.

5.1. The likelihood ratio test
The likelihood ratio (LR) test statistic is computed by (1) setting p,, =0 in the likelihood
function (2) minimizing the resulting expression for -2logL, (L, is the likelihood function

under H,) with respect to all remaining parameters and (3) subtracting this minimum from the
minimum value of -2log L as computed over all parameters in the model. It follows from
standard likelihood theory that the resuiting test statistic W is approximating chi-square with
one degree of freedom under H,.

W =-2logL —(-2logL,) (5.1)

Mak and Ng (1981) discuss a regression approach to testing H,: p,, =0.1If p_=0,

standard regression method may be used, with the child score as the dependent variable. For
the case of unknown p, , they provide an LR test for H, which , unlike the LR test derived

by Donner and Bull (1984) , is valid whether the parent score is assumed to be nonstochastic
or random. They also provide an algorithm which may be useful for implementing this test.

5.2, A test based on the large sample variance of the maximum likelihood estimator
Rosner (1982) showed that the large sample variance of g, ,,, the maximum likelihood

of p,, , is given under H,: p,, =0 by

var(p,. .u)o =[Zk, /{1+(k,. -1)p,,}] ; (5.2)

Therefore an appropriate large sample test of significance for interclass correlation is given

by
Zoi = P/ VA (Prcrar)o » (5:3)

where Z,, is referred to tables of the standard normal distribution. Since p,, will, in general,
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be unknown, it is replaced by the maximum likelihood estimator. The resulting test is referred
to as the Z,, procedure.

5.3. The classical pairwise test
The most straightforward procedure is to assume that each of the mother-child pairs mthm a

family is independent and thus to assume that one has K =Zk, independent pau's over n
i=
families. One then can compute the test statistic

@

t., =K _2y Prss / Ja-5%). , (5.4)

which under H_ would have a ¢ distribution-with (K-2) d.f.. H_ would be rejected if

I’da:"”x L a»Wherer s 100(1-%)percentile of a ¢ distribution with K-2 d.f.
215 215

5.4. The conservative pairwise test

If the pairs are not independent, the one effectively has less than K d.f. over all families and
one would expect that the true significance level for the classical pairwise test will be larger
than the nominal level of & . Indeed, in the extreme case where p, =1, one has exactly one

d.f. per family or n d.f. over all families, and one could propose a significance test based on
the test statistic

e =(0 =2 p,, , [JU=52,,). (5.5)

which under H_,would have a ¢ distribution with (r-2) d.f.. H would be rejected if
| £one| > ¢ . If one applies this test procedure when 0< p_ <1, the test is likely to be

11—
S

conservative and will yield true significance level lower than the nominal level of a, since
one is surely understanding the total d.f. over all families.

5.5. The adjusted pairwise test

The problem remains of assessing the true aggregate d.f. over n families. Under the model in
(2.1), Rosner et al. (1979) showed that the "effective degrees of freedom" among
observations in the ith family is given approximated by

d, =k [{1+(k;, -Dp,} i=12.c...cn
Since p,, is in general unknown, d, is estimated in practice by
di =k, [{1+(k; =Dpsur} i=12,.ccm

where p, . is the truncated ANOVA estimator of the intraclass correlation p, . Letting

D" =)"d;, denote the aggregate degrees of freedom over all n families, this result implies

i=]

that H, : p,, =0may be tested using the statistic

=0 205, [ JT . 59)

Then approximately under H, ¢, has t-distribution with n-2 d.f, and H, is rejected if

|r,,j >t o,
]

The Egyptian Statistical Journal VoL51, No.2, 2007

&



On Interclass and Intraclass Correlations of Familial Data With Application on Hemoglobin Level
From EDHS 2000 Familial Data

113

5.6. A test based on the large sample variance of the pairwise estimator
Konishi (1982) Showed that the large sample variance of g,, ,under H, : p,, =0is given by

G
var(p,, ,), =1+ p, ""K -1|p= ! :
Sk,
inj
Thus H,:p,, =0 may be tested by referring the statistic Z, =5, /,fvar(ﬁm.p ), totables
of the standard normal distribution. The unknown parameter p_ is again replaced by the

ps:.AT *

(5.7

5.7. A test based on the sib-mean estimator

If k, =k i=1,.......,n then a test of significance with appropriate type I error is given by the
test statistic (see Rosner et al. ,1979)

1 3
-1, =(n=-2)2p,,.. /,/1- ! (5.8)
which under H_ would have a ¢ distribution with (#-2) d.f. H_ would be rejected if
k.|>t . .Velu and Rao (1990) showed that the distribution of ¢, is student's ¢ with n-2

u—l.l—-i
degrees of freedom under the assumption that p, =0even where the ks are not the same.

Thus ¢, may be referred to tables of the t-distribution with n-2 degrees of freedom to provide
an approximate p-value for testing H,,.

5.8. A test based on the large sample variance of the ensemble estimator

O’Neill et al. (1987) showed that the asymptotic variance of the ensemble estimator is given
by:

% | = 1
var(pp, ) = —[ky' (1= ) + 1=k (o = PR )= )+ 5 P (-2 )] (59)
Thus the large sample variance of g, under H, : p, =0is given by
A 1 - R
var(B,, o =—Lky" +p, (1=K, . (5.10)

Therefore H, :p,, =0 may be tested by referring the statistic Z, =5,,, / ,fvm-(ﬁm_,)n to
tables of the standard normal distribution. The unknown parameter p is again replaced by

ﬁu.d?‘ *
5.9. A test based on the large sample variance of the Srivastava estimator
Srivastava and Katapa (1986) showed that the large sample variance of the Srivastava
estimator p,, , is
1
var(p, )=-l-[p:u +p:‘{-l—c2-2/1—-—}+ﬁ.] (5.11)
ms3 n 2 2
where ¢? =1-2(1- p, J(1-k; ) +(1-p,)’ {}Z(I -k +(l—i?.“)’/(?—l)} and

A=1-(1-p,)1-k;")
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Thus the large sample variance of Do under H, : p_ = 0is given by
— — — —-I -
var(p,, )y =~ LudlZhs ) (5.12)

n

Therefore H, :p,, =0 may be tested by referring the statistic Z, = 3,,,/ ,/vg:(ﬁ_,,, ), to
tables of the standard normal distribution. '

5.10. A test based on the large sample variance of the family-weighted estima_tor .
Eliasziw and Donner (1990) showed that the large sample variance of family-weighted

estimator J,, ., equals the large sample variance of ensemble estimator
Thus the large sample variance of p,, ,,, under H, : p,, =0 is given by

V(b ), =1+ £, (=) (5.13)

Therefore H, : p,, =0 may be tested by referring the statistic Z, =5, . / , fva.r(,bﬂ_ fp)e 10
tables of the standard normal distribution.

6. Test of hypotheses about intraclass correlation
Donner and Koval (1980) showed that the test of significance for H, : p,, =0is provided by

the usual procedure of comparing the calculated value of F (F = MSA/MSW ) toF,, the

tabulated value of the F-distribution with n-/ and K-n degrees of freedom at the chosen level
of significance. A significant value of F implies that o, >0

7. Monte Carlo simulation study

The theoretical properties of the estimation methods and the test procedures are for the most
part intractable, then a Monte Carlo study was undertaken to compare the mean square errors
of the estimation methods and the powers of the test procedures. Brass in 1958 (Donner and
Bull, 1984) has shown that the negative binomial distribution, truncated below one, fits
observed distribution of sibship sizes very well in a wide variety of human populations for
appropriate choice of the parameters m and p in the probability density. Almost all the
previous Monte Carlo simulations, the sibship sizes were randomly generated based on the
distribution of sibship size in U.S. in 1950. In this section the sibship sizes were randomly
generated based on the distribution of sibship size in Egypt in 2000.

First: Based on the distribution of sibship size in U.S. in 1950. Rosner et al. (1977)
showed that the pairwise and ensemble estimators are more efficient that the sib-mean and
random-sib estimators in terms of mean squared error. In particular the pairwise estimator
was found to be superior in the case of low sib-sib correlation, whereas the ensemble
estimator was found to be superior when the sib-sib correlation is high. They observed that
the pairwise estimator has a smaller mean squared error than the ensemble estimator
whenever the intraclass correlation was less than about 0.3 with not much to distinguish then
when p, =0.3, similar results were obtained by Konishi (1982). Rosner (1979) in a further

simulation study showed that the pairwise estimator is roughly equivalent in mean squared
error to the maximum likelihood estimator for small values of the intraclass correlation,
although the former loses efficiency as intraclass correlation increases. By contrast, the mean

squared error of the ensemble estimator is approximately equal to that of the maximum
likelihood estimator for large values of the intraclass correlation.
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Also, O’Neill et al. (1987) showed that the pairwis estimator is better than the sib-
mean and ensemble estimator, certainly when the interaclss correlation is less than about 0.3
this “watershed” value has been observed by other workers in simulation studies, and varies
from about 0.3 for families with a low mean number of offspring to about 0.1 for those with a
high mean number. Both pairwis estimator and ensemble estimator on average
underestimate p__ . '

Compared with the corrected pairwise estimator, the Srivastava estimator wa§
recommended by Srivastava and Keen (1988) when Pss 20.3and the corrected pairwise

estimator was recommended when pg; < 0.3 ". They showed that the proportion of samples

for which the quasi-Newton method converged to the ML estimates did not exceed 82%, the
maximum likelihood estimator for the interclass correlation cannot be unconditionally
recommended.

With respect to the intraclass correlation, Donner and Koval (1980) showed that
Pe 2 1S more effective estimator than P,, 4 at the extreme values of p, (0, 0.1, 0.8) while the

Ps,and p, ,are about equally effective at p, = 0.3 and 0.5. Donner and Koval (1983)

showed that the method of unweighed means is preferable to the ANOVA method of
estimating p, onlyif p_ >0.5.

As regards significance testing of interclass correlations, Rosner et al.(1979) showed
that the classical pairwise test of significance gives true significance levels that are two to
five times as large as the nominal level of a = 0.05. Thus, the significance levels from much
of the published work based on this test procedure are likely to be overstated and many
reportedly significance result may in fact be non-significance especially for cases in which
P,, is moderately large. Similarly, the conservative pairwise test gave significance levels that

were as little as one over ten of the nominal level of @ =0.05 and generally had very low
powers which would imply that many reported non-significance results based on this
- procedure may in fact be significant. Finally, they showed that the adjusted pairwise test and
sib-mean test yielded type I errors that were approximately correct for all parameter
combinations tested. However they believed that the procedure of choice for assessing
statistical significance of interclass correlations is the adjusted pairwise test since it generally
had higher power than the sib-mean test.

Donner and Bull (1984) compared the powers of various procedures for testing the
statistical significance of the interclass correlation. They compared the power of procedures
based maximum likelihood methods to the power of the adjusted pairwise test and the power
of the test based on the ratio of the pairwise estimate to its large sample standard error. It is
seen from the Monte Carlo that the likelihood ratio test and the test based on the large sample
variance of the likelihood estimator procedure, known to be asymptotically equivalent, also
have very similar powers in small to moderate-sized samples. Comparing these procedures to
the two tests based on pairwise estimator, it is seen that the relative advantage of the
likelihood based procedure tends to increase with the underlying value of p,, . For example,

the average difference in empirical power between the likelihood ratio test and the Z, test at

n=25 is virtually zero at p,, =0.1, 0.02 at p,, =0.2, 0.06 at p,, =0.3 and 0.08 at p,, =0.4. In
one instance (n=50; p,, =p, =0.1) the likelihood ratio test is significantly less powerful than

the Z, procedure.
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Also Donner and Bull (1984) showed that the test based on the large sample variance
of the pairwise estimator may be used to test the statistical significance of interclass
correlation in studies of 25 or more families especially for values of p,_, near to zero. The
simplicity of this statistic is quite appealing, since it allows the statistical significance of
Pms, to be judged almost immediately. Moreover, this procedure compares very well in
power to tests based on maximum likelihood theory. The adjusted pairwise test, which may
be regarded as a studentized version of the Z ptest is also a reasonable alternative to

likelihood- based procedures. However, it tends to be somewhat anti-conservative at high
values of p,, and not quite as powerful as the Z, when both p,, and p,, are close to zero.

Second: Based on the distribution of sibship size in Egypt in 2000, we generated the
scores x;, vy in (2.1) by implementing the following algorithm for each of the » families
(Rosrier et al., 1979) ;

(i) Gererate a collection of standard normal deviates v S ——— » Ve ~ N
(1) Set x, =v,, = mother’s score for the ith family, and
(iii) Generate the sibling scores for the ith family y,,,......... » Y i iteratively as follws:
Yy =0, +u, | J=l. ki
Where etting Y, =1+ -2)p, -(j -i)£l,
P..(i'Pu)x:/yj ! ifj =1

ﬂ = ‘-1 s (7.1)
L Q=02 + X0, =P a1 [y, iff 1

=1
0! =21=[p,, (1~ p, )+ VP (P = L2y,  J=liunk,.
In the formule above g end &.° are ‘ae conditional mear and variance, respectively of
YyBIVE XY ey gy d =1 Ky
The parameters usec for this simulation include
(1) The total numbers of families n = (25, 5C).
(2) The mother-sibling (intsrclass) correlation Pn=0,01,03,05,08
(3) The sib-sib (intraclass) corrsiation p, =0.1, 0.3, 0.5, C.8

Regarding the choice of interclass and in‘raclass correlation for the simulation, we did
not use al! combination oS ( g, , p,, ), siace it is a necessary and sufficient condition that for
variance covariance matrix of Z ‘o Ye positive definite for all ki, we must have
1+(k-Y) p, - pok, > C, for ali 4>0. Eowever, it can be clearly seen that the condition
1+(k;-2) p,, - Lk, > C, for all 5> is equivalent to the condition that p2, <p, - This
latter condition was satisfied for the pars (0, 0.1), (0, 0.3), (0, 2.5), (0, 0.8), (0.1, 0.1),

(0.1,0.3), (0.2, €.5), (2.1, 0.8), (0.3, 0.2}, 0.3, 0.3, (0.3, 0.5), (0.3, 0.8), (0.5, 0.3), (0.5, 0.5),
(0.5, C.8), (9.8, 0.8).

In addition, we rcquired an underlying distribution of sibship sizes which we
s:mulatec using Mon's Carlo method. In this simulation the aim was to use a distribution of
sibship size which is typicai o that found in Egyot. Brass in 1958 (Donner and Bull, 1984)
has shown that the negative Yinomial distr:bution, truncated below one, as specified in (7.2)

The Egyptian Statistical Journal Vol.51, No.2, 2007




On Interclass and Intraclass Correlations of Familial Data With Application on Hemoglobin Level 117
From EDHS 2000 Familial Data

‘fits the observed distribution of sibship sizes in different countries very well for appropriate
selection of the parameters m, p.

{m €£r=1)lg ™™ (£)

r!(m -1)!

Pr(r offspring) = q=1+p r=12, .. (7.2)
Based on the distribution of sibship size in Egypt in 2000, m = 8.94 and p = 0.38
(Based on the distribution of sibship size in U.S. in 1950, m = 2.84 and p = 0.93). We
therefore use this distribution, truncated further above 15, and with m = 8.94 and p = 0.38.
We performed 1000 iterations of the algorithm described in (7.1) to obtain the mean square

errors which we utilized to compare the estimators and to obtain powers which we utilized to
compared the power of the test procedures.

Tables (7.1) and (7.2) show the mean squared errors of interclass correlation
estimators for different combinations of p, and p_, for n = 25, 50. For n = 25 , the pairwise

estimator is the superior estimator followed by the maximum likelihood estimator when
P, <0.3, the maximum likelihood estimator is the superior estimator followed by the

family-weighted pairwise estimator when 03<p <05 and p 208 except for
03<p,, <0.5, it followed by the modified sib-mean estimator. But for 0.5< p, <0.8 the

modified sib-mean estimator is the superior estimator followed by the maximum likelihood
estimator.

Table 7.1: Mean squared errors of interclass correlation estimators for different
combinations of p,, and p_ (n = 25)

Pos> P | Pris | Pusm | P | Puse | Prssw | Prscr | Pusiom
0, 0.1 0.01526( 0.03982 | 0.03891| 0.01928 | 0.01889 | 0.01576 | 0.01946
0,03 0.024391 0.03966 | 0.03879| 0.02367 | 0.02329 | 0.02495 | 0.02389
0, 0.5 0.03361] 0.03972 | 0.03890] 0.02816 | 0.02783 | 0.03405 | 0.02389
0,0.8 0.04762| 0.03992 | 0.03935| 0.03514 | 0.03496 | 0.04756 | 0.03539
0.1, 0.1 0.01507| 0.04042 | 0.03857| 0.01893 | 0.01855 | 0.01553 | 0.01894
0.1,0.3 0.024191 0.03949 | 0.03856( 0.02333 | 0.02297 | 0.02471 | 0.02339
0.1,05 0.03339] 0.03929 | 0.03870} 0.02782 | 0.02751 | 0.03380 | 0.02798
0.1,0.8 0.04740| 0.03949 | 0.03911f 0.03479 | 0.03462 | 0.04732 | 0.03500
0.3,0.1 0.01184 0.04498 | 0.03375| 0.01559 | 0.01535 | 0.01203 | 0.01418
0.3,0.3 10.02019] 0.03735| 0.03410( 0.01967 | 0.01943 | 0.02044 | 0.01858
0.3,0.5 0.02868 | 0.03466 | 0.03435( 0.02384 | 0.02362 | 0.02889 | 0.02317
0.3,0.8 |0.04172]0.03417 | 0.03459] 0.03029 | 0.03017 | 0.04161 | 0.03016
0.5,0.3 0.01230] 0.03575 | 0.02419| 0.01274 | 0.01270 | 0.01214 | 0.00991
0.5,0.5 0.01904| 0.02647 | 0.02483| 0.01608 | 0.01602 | 0.01892 | 0.01403
0.5,0.8 |0.02981(0.02386 | 0.02522| 0.02143 | 0.02138 | 0.02965 | 0.02071
0.8,0.8 |0.00670{ 0.00602 | 0.00641| 0.00486 | 0.00492 | 0.00653 | 0.00361
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For n = 50 , the corrected
pairwise estimator is the superior
estimator followed by the pairwise
estimator when p,_ <0.3 except for
0.3<p,, <0.5, the pairwise estimator
is the superior estimator followed by
the maximum likelihood estimator.
The maximum likelihood ‘estimator is
the superior estimator followed by the
corrected pairwise estimator when
P, 203 except for p 203, it
followed by the modified sib-mean
estimator when p_ >0.5, and it
followed by the pairwise estimator for
combinations 03<p, <05 and

03<p, <05, but it followed by the

family-weighted pairwise estimator for
combinations

Table 7.1:

continue

pm’ p.u

Puss

ﬁluﬂl.

pnl.lfm

0,0.1

0.02198

0.01536

0.02269

0,03

0.02622

0.02173

1 0.02890

0, 0.5

0.03031

0.02716

0.02992

0,0.8

0.03622

0.03493

1 0.03515

0.1,0.1

0.02156

0.01514

0.02280

0.1,0.3

0.02581

0.02134

0.02475

0.1,0.5

0.02991

0.02700

0.02892

0.1,0.8

0.03584

0.03457

0.03579

0.3,0.1

0.01771

0.01192

0.02976

03,03

0.02158

0.01737

0.02061

03,05

0.02543

0.02275

0.02495

0.3,0.8

0.03111

0.03007

0.03165

05,03

0.01378

0.00977

0.01826

0.5<p, <08

03<p,, <0.5.

and

0.5,0.5

0.01682

0.01493

0.01510

0.5,0.8

0.02181

0.02143

0.02270

0.8,0.8

0.00465

0.00460

0.00474

Table 7.2: Mean squared errors of interclass correlation estimators for different
combinations of p, and p, (n = 50)

pm’ pn

~
pnu,p

ﬁﬂl.ﬂ

-
pnu.r

-

puls-e'

Pusis

ﬁ ms.mm

0,0.1

0.00715

0.02011

0.01814

0.00969

'0.00959

0.00361

0.00983

0,03

0.01167

0.02002

0.01834

0.01194

0.01184

0.00581

0.01206

0,0.5

0.01639

0.02000

0.01874

0.01419

0.01410

0.00811

0.01431

0,0.8

0.02385

0.02407

0.01950

0.01760

0.01756

0.01178

0.01769

0.1,0.1

0.00713

0.02157

0.01809

0.00958

0.00949

0.00454

0.00963

0.1,03

0.01163

0.02063

0.01837

0.01187

0.01178

0.00681

0.01193

0.1,05

0.01633

0.02023

0.01883

0.01416

0.01408

0.00915

0.01425

0.1,0.8

0.02381

0.02001

0.01963

0.01761

0.01757

0.01288

0.01769

0.3,0.1

0.00568

0.03120

0.01590

-0.00789

0.00783

0.01115

0.00711

0.3,0.3

0.00974

0.02295

0.01628

0.01008

0.01002

0.01349

0.00948

0.3,0.5

0.01400

0.01940

0.01680

0.01226

0.01220

0.01584

0.01189

03,08

0.02090

0.01778

0.01762

0.01556

0.01552

0.01952

0.01546

0.5,03

0.00587

0.02823

0.01139

0.00637

0.00636

0.02630

0.00475

0.5,0.5

0.00914

0.01747

0.01188

0.00816

0.00814

0.02862

0.00696

0.5,0.8

0.01465

0.01270

0.01272

0.01094

0.01093

0.03209

0.01051

0.8,0.8

0.00295

0.00407

0.00289

0.00223

0.00224

0.06273

0.00158
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Its noted that t!le. Herstive Table 7.2: continue
method for determining the - - -
maximum likelihood estimate of Prss P | Pmss Pms ML Pms Mivg
interclass °°"§(‘]‘:;i°:l ted > [o.01  Joouns Joooz62 [oo1140
{s::rrrll‘;:izelfl':)rfzrach :ombina:ion for 0,03 0.01328 | 0.00496 | 0.01457
the interclass and intraclass 0,0.5 0.01531 | 0.00768 | 0.01510
correlation coefficients 0,0.8 0.01814 |0.01750 |0.01811
Tables (7.3) and (7.4) show 0.1,0.1 0.01105 |0.00726 |0.01154
the mean squared emors of 6793 1001322 |0.00646 |0.01263
:;tffrzcriftsf;::a:;’"pzsg?a’:°f ;‘; 0.1,0.5 | 001528 |0.00874 | 0.01579
50. For small and large samples | 0:1:0.8 | 0.01816 |0.01751 |0.01819
(n = 25, 50), the pairwise estimator 0.3,0.1 0.00933 |0.00587 | 0.01506
is the superior estimator when 103 03 (001127 [0.00890 |0.01261
p, <03, while the maximum o5 G 001370 [0.01170 | 001355
hkf:hhood eStimator is the superior 03,08 001601 | 001522 1001698
estimator when p,, 20.3 followed
by the restricted maximum 0.5,0.3 0.00733 | 0.00489 | 0.00913
likelihood and the MINQUE 0.5,0.5 0.00874 | 0.00658 | 0.00829
estimators. . 05,08 |0.01117 |0.01094 [0.01135
0.8,0.8 0.00219 | 0.00211 | 0.00297
Table 7.3: Mean squared errors of intraclass correlation estimators for different values of
p,, (n = 25)
P | Pusp Pus.ap Pus.s Pum Purur | Pusmo | Puu Pacs
0.0 | 0.00358 | 0.00883 | 0.00924 | 0.01180 | 0.00983| 0.00993 | 0.02382 | 0.02612
0.1 |0.00784 | 0.01195 | 0.01417 | 0.00983 | 0.01215] 0.01205 | 0.02205 | 0.02457
0.3 |0.02254 | 0.02168 | 0.03582 | 0.01259 | 0.01968| 0.01958 | 0.01940 | 0.01965
0.5 |0.0246Y | 0.02149 | 0.03811 | 0.01140 | 0.02049| 0.02050 | 0.01262 | 0.01178
0.8 |0.02490 | 0.00164 | 0.00203 | 0.00082 | 0.00154| 0.00153 | 0.01321 | 0.01254
Table 7.4: Mean squared errors of intraclass correlation estimators for different values of
P, (n=50)
Py | P Pus.ap Pua P Pumn | Purmg | Pua Piss
0.0 | 0.00193 | 0.00675 | 0.00767 | 0.00960 | 0.00677 | 0.00667 | 0.02672 | 0.09602
0.1 | 0.00499 | 0.01040 | 0.01052 | 0.00829 | 0.01030 | 0.01020 | 0.02487 | 0.09516
0.3 |0.02126 | 0.01979 | 0.02300 | 0.01106 | 0.01879 | 0.01869 | 0.01991 | 0.09331
0.5 |0.02550 | 0.01985 | 0.02381 | 0.01053 | 0.01775 | 0.01765 | 0.01249 | 0.06291
0.8 |0.02613 | 0.00178 | 0.00182 | 0.00089 | 0.00153 | 0.00150 | 0.01462 | 0.00377
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We present in tables 7.5 and 7.6 the empirical significance levels corresponding to the
nominal level @ =0.05 for each of the ten significance testing procedures. The classical
pairwise test gives empirical significance levels that are higher than the nominal level of 0.05
for all values of p, for both n = 25 and n = 50 ( two to eight times larger than nominal
levels). The adjusted pairwise test gives empirical significance levels that are higher than the
nominal level of 0.05 for p_ 2 0.5 for both n = 25 and n = 50, but the conservative pairwise
test gives empirical significance levels that are lower than the nominal level of 0.05 for
P, <0.5. In general, all other seven significance testing procedures give satisfactory

significance levels for all values of p, for both n = 25 and n = 50.

Table 7.5: Empirical significance levels of interclass correlation tests for different
combinations of p,, and p, (n = 25)

pnu ’ pu ZP tﬂi 'rm tdan Im Zl zl zf zﬁﬂ- LR
0, 0.1 0.045 [ 0.048 | 0.001]0.111(0.042] 0.051 | 0.071 | 0.051 | 0.048 | 0.042
0,0.3 0.036 [ 0.063 | 0.009] 0.201 | 0.042| 0.046 | 0.062 | 0.044 | 0.042 | 0.039
0,0.5 0.041 | 0.072 | 0.025] 0.270{ 0.042| 0.044 | 0.056 | 0.044 | 0.035 | 0.043
0,0.8 0.037 | 0.087 | 0.067| 0.393{ 0.047| 0.047 [ 0.051 | 0.046 | 0.031 | 0.031

Table 7.6: Empirical significance levels of interclass correlation tests for different
combinations of p,, and p, (n = 50)

pm ’ Pu zp tﬂ&' ‘cou: !cﬁm ’m zc z: z)' ZML LR
0,0.1 0.042 | 0.048 | 0.002| 0.106] 0.048 0.046 | 0.058 | 0.046 | 0.037 | 0.042
0,0.3 0.042 [ 0.064 | 0.014]| 0.106} 0.046| 0.042 | 0.054 | 0.042 | 0.035 | 0.037
0,0.5 0.048 | 0.082 | 0.032| 0.254| 0.056| 0.052 | 0.060 | 0.052 | 0.038 | 0.042
0,0.8 0.036 | 0.094 | 0.074{ 0.376| 0.050] 0.048 | 0.052 | 0.048 | 0.032 | 0.032

Table 7.Y: Empirical powers of interclass correlation tests for different combinations of

pm » P, 33 Zp rﬂb‘ tm t:.fn: tn Zl' Z.r Zf ZMI. LR

0.1,0.1 10.102]0.111 |0.003}0.209{0.105} 0.111 | 0.134 [ 0.106 | 0.095 | 0.106
0.1,03 0.074|0.091 |0.021{0.285|0.090|0.100 | 0.116 | 0.097 | 0.081 | 0.091
0.1,0.5 10.05910.100 |0.043]0.354|0.088] 0.090 | 0.104 |0.088 | 0.107 | 0.114
0.1,0.8 ]0.052]0.114 |0.086| 0.430 0.080] 0.080 | 0.087 | 0.080 [ 0.133 | 0.143
0.3,0.1 |0.6610.668 |0.156|0.788]0.616] 0.594 | 0.653 | 0.580 | 0.630 | 0.646
03,03 |0.430)0.521 [0.216]0.741] 0.511) 0.505 | 0.555 | 0.495 | 0.462 | 0.463
03,05 |0.309]0.417 [0.260{0.711) 0.422]| 0.422 | 0.458 |0.416 | 0.456 | 0.462
0.3,0.8 {0.226 ] 0.373 | 0.329]0.704] 0.351 0.364 | 0.374 | 0.361 | 0.304 | 0.425
05,03 10.925)0.943 [0.780] 0.990{ 0.932] 0.935 | 0.959 [0.934 | 0.942 | 0.942
0.5,0.5 [0.794) 0.867 |0.746] 0.967 [ 0.891] 0.890 | 0.902 | 0.889 | 0.895 | 0.905
05,08 [0.635]0.752 |0.719]0.932] 0.812 0.815 | 0.824 | 0.814 | 0.826 | 0.835
0.8,0.8 |0.998]0.999 |0.998]1.000]1.000{ 1.000 | 1.000 | 1.000 | 1.000 | 1.000

The empirical powers corresponding to the ten significance testing procedures are
shown in tables 7.7 and 7.8 . Since the classical pairwise test gives empirical significance
levels two to eight times larger than nominal levels then it is ignored from this comparison.

The Egyptian Statistical Journal Vol.51, No.2, 2007




