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Abstract

Intermittent missing data are not uncommon in longitudinal data studies. In
selection models, the probability of being missing for any observation is modeled
as a function of the current observation and the previous observations. The pa-
rameter that relates the probability of missingness and the current observation has
special interpretation. The degree of informativeness of the missing data process
depends on this parameter’s value. We conduct sensitivity analysis to evaluate
the effect of this parameter value (the sensitivity parameter) on study results. In
the proposed approach, the sensitivity parameter is assumed to be fixed at a set
of plausible values. This allows us to examine several degrees of informativeness
of the missing data process. The stochastic EM algorithm is used to obtain pa-
rameter estimates. The proposed method is evaluated via a simulation study and
then applied to a real data set. Sensitivity analysis shows that the conclusion
depends on the degree of informativeness. Hence, when estimating the sensitivity
parameter the results should be interpreted cautiously.
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1 Iu‘troduction

In longitudinal studies each subject 1s measured on several occasions. Missing

observations are not uncommon in longitudinal studies. In dropout pattern

(monotone missing) a missing observation is never followed by an observed

value, whereas in intermittent pattern (non-monotone missing) a missing

value may followed by an observed value. l.ess attention has been paid to

intermittent missing values in literature. The focus of this article is on in-

termittent missing values, where responses are available for a subject even
after a missing response. ‘

Little and Rubin (1987, Chapter 6) and Little (1993) have introduced the
terminology of the missing data process. A missing data process is said to be
missing completely at random (MCAR) if the probability of missingness is
independent of both observed and unobserved data and missing at random
(MAR) if, conditional on the observed data, the probability of missingness
is independent of the unobserved data. A process that is neither MCAR nor
MAR is said to be missing not at random or informative (MNAR).

Many approaches that deal with missing data are formulated as selection
models (Heckman, 1976). In selection models the joint density function of
the response and a missing data indicator is factorized into a distribution
of the response conditional on the missing data indicator and a marginal
distribution of the missing data indicator. Diggle and Kenward (1994) have
proposed a selection model for longitudinal data with informative dropout.
The probability of dropout is assumed to depend on the unobserved mea-
surement and the measurement history. They use the normal model for the
responses and the logistic regression model for the dropout process. This
approach has been generalized to the intermittent setting by Troxel et al.
(1998) and Gad and Ahmed (2006).

It has been noted by many discussants to Diggle and Kenward (1994) that
study conclusions of this model relies on assumptions which cannot be veri-
fied from the observed data. So, sensitivity analysis of study conclusions to
such assumptions is needed. Sensitivity analysis is a set of tools showing the
influence of the model assumptions on the study conclusion. Several sensi-
tivity analysis tools have been proposed in dropout setting; see, for example,
Daniels and Hogan (2000), Molenberghs et al. (2003), Minini and Chavance
(2004) and Verbeke et al. (2001). However, in the intermittent setting few
work concerning sensitivity analysis are available and many research need to
be done.

In selection models context, the missingness model is a key assump-
tion for conducting sensitivity analysis. Ibrahim et al. (2001) propose the
Monte Carlo EM algorithm for estimating parameters in the generalized lin-
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ear mixed model with non-random non-monotone missing data. Several sen-
sitivity analyses were conducted by fitting several models for the missing data
mechanism based on various covariates. They concluded that parameter es-
timates are quite robust with respect to changes in the missingness model.
Minini and Chavance (2004) suggest using a shared parameter (sensitivity
parameter) that relates the response variable and the dropout process. A
range of different values of this parameter is considered, which allow us to
assess the sensitivity of study conclusions to the dropout mechanism.

Celeux and Diebolt (1985) have introduced the stochastic EM algorithm
as an alternative to the EM algorithm. The stochastic EM algorithm can be
used when the E-step of the EM algorithm is intractable. The stochastic EM
algorithm involves iterating two steps. In the S-step, the missing values are
imputed with a single draw from the conditional distribution of the missing
data given the observed data. In the M-step, the likelihood function of the
pseudo complete data is maximized using any conventional procedure. For
more details on the stochastic EM algorithm; see, for example, Diebolt and
Ip (1996).

The purpose of this paper is to conduct sensitivity analysis of study
conclusion, in the intermittent setting, using different assumptions of the
missingness process. The proposed approach is an extension to the Minini-
Chavance’s approach (Minini and Chavance, 2004) to the intermittent set-
ting. A shared (sensitivity) parameter relating the response and the miss-
ingness process is introduced, so different degrees of informativeness can be
considered. The rest of the paper is outlined as follows. In Section 2 the
basic notation are described. In Section 3 the proposed method is described.
In Section 4 the proposed approach is applied to a data set concerning qual-
ity of life among breast cancer patients in a clinical trial undertaken by the

International Breast Cancer Study Group. The final section is devoted to
concluding remarks.

2 Notation

Assume that m subjects are participating in the study. Assume that for the
ith subject, ¢ = 1, ...,m, a sequence of responses Y;; is planned to be measured
at times j = 1,...,n. The responses of the ith subJect are gathered into a
vector Y, Y; = (Y, ..., Yin)'. The vector Y; is split into two sub-vectors Y
and Y, where Y["” contains the missing components and Y;?** contains
the observed components. Also, assume that R;; is a missing value indicator
~ that takes the value of one if Y;; is observed and the value of zero if Yi; is
missing. Let R;; are grouped into a vector R; = (Ry, ..., Rin)’. Assume that
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Y; satisfies the linear regression model
)/i ~ M\IN(XIﬁ, ‘/1)7

where X is a known n x p matrix of explanatory variables, 3 is a px 1 vector of
fixed effect parameters, and V; is an n x n positive definite covariance matrix.
The matrix V; can be unstructured with n(n + 1)/2 parameters. Also, the
covariance matrix V; can be structured, i.e. its elements are.functions of
vector of parameters «, and can be written as V;(a). The main reason for
modeling the covariance matrix as a function of parameters « is to examine
different covariance structures, and for parsimony. The parameters 3 and a
are grouped in a vector of parameters § = (5, &’)’.

In selection models the density of the complete data, Y; and R;, is factor-
ized into two components as

f(Yi Ril6,9) = f(Yil0)P(Ri|Yi, ),

where the parameter vectors § and v describes the measurement and miss-
ingness processes respectively. Following Diggle-Kenwards’ model (Diggle
and Kenward, 1994) the missingness process is modeled as a function of the
current response and the measurement history, i.e. P(Ri; = ry;|history) =
P;;(Y3;, Hij; ). The marginal distribution of the response f(Y;|6) is assumed
to be the normal distribution. The logistic model is used to model the miss-
ingness process, assuming that the dropout time is d;, as

d;
logit { Pai(Ha;, Yai; ¥)} = 9o + Z¢di—j+1ydi—j+1~ (1)
j=1
For simplicity we assume that the probability of missingness depends only
on the current and the previous responses as

logit{Py; (Y, Hij; )} = wo + ¥1 Yi5-1 + 2 Yy, (2)

In this model, if the 1, = 0 the missingness process is MAR whereas the
situation is MNAR if 1, is different from 0. In the later case inference con-
cerning the measurement process cannot be performed independently from
inference concerning the missingness process. The sensitivity parameter i,

is of main interest in the proposed approach. Finally, let 2 denote the pa-
rameter vector contains all parameters except 15, i.e. Q = (6,0, 11

3 The proposed approach

The parameter 1, is fixed at a range of plausible values, zp{ . For each
value w{ , the stochastic EM algorithm is used to obtain parameter esti-
mates. Gad and Ahmed (2006) develop the stochastic EM algorithm to
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handle longitudinal data with informative intermittent missing values. At
the S-step, the missing data Y;™* are simulated from the conditional dis-
tribution f(Y;™*|Y,°* R;) at the current parameter estimate Q) and z[)ff .
Direct simulation is not possible from this distribution. So, the accept-reject
procedure proposed in Gad and Ahmed (2006) can be used. This imputa-
tion provides us with a plausible pseudo complete data set. At the M-step,
any maximization procedure for the complete data can be used to update
parameter estimates. In this paper we use the Jennrich-Schluchter algorithm
(Jennrich and Schluchter, 1986).

The estimated parameter values corresponding to each pseudo-complete
data form a Markov chain. This Markov chain converges reasonably quickly
to its stationary distribution, which is unique (Diebolt and Ip, 1996). The
SEM estimate, ), is the mean of points generated by the stochastic EM
algorithm ignoring the early first points as a burn-in period.

The stochastic EM algorithm does not provide the estimate standard
errors. Louis’ formula (Louis, 1982) relates the observed information matrix
to the conditional expectation of the second derivatives of complete data
log-likelihood function and the covariance of the first derivatives of complete
data log-likelihood function. Evaluating the integrals in this formula, in the
current setting, may not be easy. Efron (1994) suggests using simulation (the
Monte Carlo method) to approximate the integrations. The missing values
are simulated from their conditional distribution and then each integration
is evaluated by its empirical version. Gad and Ahmed (2006) have developed
the Monte Carlo method for longitudinal data with informative intermittent

missing. This method is used in this paper to obtain the estimates standard
errors.

4 Simulation study

A simulation study is conducted to evaluate the proposed method. It is
based on a data set with m subjects and n observations for each subject.
We adopt the simple model E(Y;;) = p1;, where i =1,...,m and j =1, ..., n.
A stationary first-order auto-regressive, AR(1), process is used to generate
the residual component of the repeated measurement, i.e. V(e;;) = o and
Cov(eij, €x) = 0®p~H. The missingness model is assumed as in Eq. (2).
The data are simulated to satisfy the multivariate normal distribution, the
AR(1) covariance structure and the missingness model (2), with number of
subjects m = 100 and time points n = 5. According to this setting the
parameters vector is (u1, ft2, 43, i, K5, 02, p, %0, ¥1,%2). These parameters
are set to the values j; =6, o =6, 3 =6, pg =5, us =5, 02> =4, p = 0.5,
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Table 1: Simulation results: the relative bias (RB) of parameter estimates
and 95% confidence coverage (CP) ;

i
-2 -1 0 1 2
Par. RB P RB CP RB O RB CP RB CP
I —-0.2 95 -02 95 =02 95 =02 95 =02 95
Lo -75.3 12 —-683 20 -—-144 88 —-134 94 -—-139 94
nug | —70.2 15 -61.0 26 -—-122 91 -11.5 94 —-119 94
e | —52.3 33 —44.7 48 -10.1 93 -9.2 94 -9.6 96
s =777 14 -679 26 -—-153 89 -—=13.5 91 —14.1 90
o2 235.6 4 180.4 11 -70 91 -10.1 91 —-98 92
Joj -96.6 26 -97.7 27 -195 92 -—181 94 —-19.1 93

Yo =0, Y1 = —1, 9, = 1. We used 5000 replication (samples) according to

“this setting.

The choice of the fixed values of the sensitivity parameter 1, is a crucnal
step in the proposed approach. Assume that these values are labeled as sz
which are used for estimation process. We assume that 1] is fixed at the val-
ues {—~2,~1,0,1,2}. This is a reasonable range and allow the true value (1)
to be underestimated, accurately estimated or overestimated. The stochastic
EM algorithm, as described in Section 3, is used to find parameter estimates,
for each replication. Also, the coverage percentage of 95% confidence interval
are obtained. The estimates mean are shown in Table 1.

There is no missing values at the first time point by design, so the esti-
mates of y; are very close to the true value. Also, the percentage coverage of
95% confidence interval is very close to the nominal level. The mean param-
eters are generally underestimated. The relatlve bias for negative values of
1/)2 are greater than those for positive values of 1,[)2 This means that the bias
is smaller when v, is accurately estlmated or overestimated. The smallest
bias is at the true value of 1, w2 1. The coverage percentage is closer
to its nominal level when 1, is accurately estlmated whereas we have poor
percentage coverage for negatlve values of 7,[12 The relative bias is positive for
o? for negative values of 1,/)2 with poor percentage coverage. The parameter
p has a negative bias with smallest value when 1, is accurately estimated.

Other covariance structures have been tried. Also different values for
missingness model parameters have been used. The qualitative results are
the same as the above results, so they are not reported.
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5 Application: breast cancer data

The proposed method is applied to the breast cancer data. This data con-
cerning quality of life among breast cancer patients in a clinical trial taken
by the International Breast Cancer Study Group (IBCSG). In the IBCSG
trial VI (Hiirny et al., 1992), premenopausal women with breast cancer are
followed for traditional outcomes such as relapse, death and also focused on
quality of life. Each patient is randomly allocated to one of four chemother-
apy treatments: A, B, C and D. It was planned to collect six measurements
from each patient during the treatment period, one every three months. The
study objective were to compare the quality of life for patients among the
four treatment regimes. Each patient was asked to complete quality of life
questionnaire.

The Perceived Adjustment to Chronic Illness Scale (PACIS) was an in-
tended response. This is one-item scale comprising a global patient rating of
the amount of effort costs to cope with her illness. Some patients refused in
some visits to complete the questionnaire, resulting in intermittent missing
values. A patient may not appear to fill the questionnaire if her mood is poor,
and therefore the missing data mechanism is nonrandom (informative). The
total number of patients survive the study period is 446 patients where 10
patients died during the study. Those patients are excluded from the analy-
sis, so the missing values ‘are not due to death. There are 64 patients with
missing response at the first assessment and those are also excluded from the
analysis. So, the number of subjects included in the analysis is 382 patients.
Only 89 (23%) patient with no missing values whereas 293 (77%) patient
with at least one missing measurement. For consecutive visits, starting from
the second visit, the percentage of missing values are 29%, 36%, 47%, 54%
and 62% respectively. The PACIS measured on a continuous scale from 0 to
100 where a larger score indicates that a greater amount of effort is required
for the patient to cope with her illness. Following Hiirny et al. (1992), we
use a square-root transformation to normalize the data.

These data have been analyzed by Hiirny et al. (1992) ignoring the missing
data (complete cases analysis) for responses of the first four measurements.
Troxel et al. (1998) have analyzed the responses for the first 6 months of the
study, including the missing values. Ibrahim et al. (2001) have analyzed the
PACIS variable for the patients remain on the study long enough to have all
assessments. Gad and Ahmed (2006) have analyzed the the PACIS variable
for all assessments considering the missing data.

We adopt a mean model that allow each treatment to have its own effect.
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Table 2: Application results: paramete

r estimates at different values of (U

v}
Par. -5 -2 -1 0 1 2 5
Ho1 6.45 6.47 6.49 6.21 6.18 6.19 6.20
Ho2 3.80 3.78 3.89 6.01 6.03 6.02 6.01
Mo3 | 298 290 292 587 592 591 588
tog | 1.45  1.32 1.24 540 553 547  5.43
Hos | 049 029 008 499 532 517 5.09
tos | —0.13 —-0.40 -0.71 5.25 5.60 - 5.49 5.44
a | -015 -0.16 -0.17 -0.13 -0.09 -0.10 -0.12
az | —0.53 -0.56 —-0.60 0.03 0.07 0.04 0.04
az | —0.95 -096 -1.01 -0.52 —0.48 —-0.50 —-0.52
o? 19.91 2224 2264 6.16 5.74 5.80 9.85
P 046 047 050 0.52 051  0.52  0.52
That is:
Hji = Hoj + 01T + Qoo + Q3T3 for j=1,..,6,

where Lo, is a constant shift at each assessment time and

(1,0,0) for treatment A

(0,1,0) for treatment B

(21,22, 25) = (0,0,1) for treatment C
| (0,0,0) for treatment D.

The first order auto-regressive AR(1) model is adopted for the covariance
structure. In this model, the (,7)th element of the covariance matrix, Oij
equal to o2pl~7l for 4,7 = 1,...,6. For the missing data mechanism, we use
the logistic regression model as in Eq. (2.1) including only the previous and
the current responses to keep the model simple. That is:

logit(ry; = 1| ) = Up + ¥1Yi-1 + LYy,

for i=1,..., 382 and j= 1,2, ..., 6.

Gad and Ahmed (2006) estimate the parameter estimates of the same
model for these data. The parameter estimates were o1 = 6.27, g =
5.38, tog = 5.77, pos = 6.35, puos = 5.43, 7 = —0.20, 0 = 0.04, a3 = —0.72, 0
4.49,p = 042,79 = 1.22,%, = 1.61 and 1, = 1.06.

The proposed approach is applied to these data. Hence, the values of
¥, need to be fixed at a plausible range of values. Minini and Chavance
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(2004) suggest obtaining the plausible range of v, according to the drop-
out probabilities at a given visit. As indicated by Gad and Ahmed (2006)
that subjects with higher responses tend to be missing. This means that
the 1, could be a positive value. Also, some subjects may forget to fill-in
the questionnaire. So, both positive and negative values of 1, should be
considered. A plausible range for ¥, could be between —5 and 5. The results
are shown in Table 2.

For negative values of 1/:5 the mean estimates decrease when 1), moves
towards zero for all treatments. Also, the mean estimates for negative values
of 1), are smaller than those at ¥ = 0 (MAR process). This reasonable
because the negative values of 1, mean that smaller responses tend to be
missing. The mean estimates for positive values of 1, are higher than those
at 12 = 0. This may be because, with positive values of 1,, subjects with
higher responses are more likely to be missing. The variance parameters
o? for negative values of 9, are higher than those for positive values of Us.
However, the estimates of p for negative values of 1, are smaller than the
estimates at positive values of 5.

In this study, the conclusion are different for different values of 15, i.e.
the conclusion depend on the missing data mechanism. Hence, the missing
data should be considered a serious source of concern.

6 Concluding Remarks

Modeling the missing values in the longitudinal data context have gained
popularity in recent years. Selection model is one of these modeling ap-
proaches. However, as noted by many discussants to Diggle and Kenward
(1994), such model depends on un-testable assumptions. The results are sen-
sitive to the assumptions have been made. Many articles have been focused
on the sensitivity analysis from different point of views.

The MNAR parameter v, is of major concern. Estimating this param-
eter confused with other parameter estimates. In this paper we study the
sensitivity of results, in the presence of intermittent missing values, by fixing
¥, rather than estimating it. If the chosen range for v, is wide enough, one
can expect that the true value of 1), can be within this range. Also, different
degrees of informativeness can be considered. This approach have been used
by Minini and Chavance (2004). The main difference is that here we are
interested in intermittent missing values not the special case, the dropout
setting, as in Minini and Chavance (2004). Also, here we depend on the
approach proposed by Gad and Ahmed (2006) which is a generalization of
The Diggle-Kenward’s model to the intermittent setting.
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