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ABSTRACT 

The present study discusses the influence of dispersing lubricating oil by aluminium 

oxide (Al2O3), silicon oxide (SiO2) and silicon carbide (SiC) nano and microparticles 

on the friction coefficient and wear displayed by the scratch of copper sheet. 

 

The experimental results showed that clean oil showed the highest friction coefficient 

and wear values followed by oil dispersed by nano and microparticles of SiO2, Al2O3 

and SiC. As the normal load increased, friction coefficient and wear remarkably 

increased. The reduction of both wear and friction coefficient observed for dispersed 

oil with the tested nano and microparticles may be from the embedment of nano and 

microparticles in the surface of substrate and forming a protective layer on the 

substrate. It was observed that nanoparticles showed higher friction and wear values 

than that detected for microparticles due to their agglomeration in the contact area 

and increasing the shear stress between the stylus and substrate as well as the 

particles themselves. Besides, nanoparticles polish the asperities of the scratched 

substrate. 
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INTRODUCTION 

The lubricating properties of greases are enhanced by solid lubricants, [1, 2], that 

adhere into the sliding surfaces. Some of the solid lubricants are hard polymers that 

roll on the sliding surfaces and decrease. Certain nanomaterials, such as sulphides, 

[3 - 5], zinc sulphide (ZnS), copper sulphide (CuS) and molybdenum sulphide (MoS2), 

copper oxide (CuO), silicon oxide (SiO2) and zinc oxide (ZnO), [7, 8], and metals, [9], 

proved to have significant improvement in operation.  

  

It was generally acknowledged that materials referred to as oil additives give the oil 

special properties for a range of applications, [11 - 13].  A variety of oil additives, 

including viscosity improvers, detergents, anti-rust, anti-foam, and anti-wear 

additives, were studied.  
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Lithium grease was dispersed by aluminum oxide (Al2O3) nanoparticles and carbon 

nanotubes (CNT), [14, 15]. It was observed that friction coefficient displayed by the 

grease dispersed by CNT and Al2O3 showed the highest values, while wear values 

drastically decreased. Zinc sulphide nano particles dispersed paraffin reduced the 

friction and wear of metallic surfaces, [16].   

 

The present study discusses the effect of dispersing lubricating oil by Al2O3, SiO2 and 

SiC nanoparticles on the friction coefficient and wear displayed by the scratch of 

copper sheet. 

 

EXPERIMENTAL 

Experiments were conducted by the scratch tester, Fig. 1. It consists of 90° apex angle 

steel stylus assembled in the loading lever. Load was applied by weights of 2, 4, 6, 8 

and 10 N weights. The scratch (friction) force was measured by load cell by means of 

digital monitor. The scratch test was carried out by scratching copper sheet 

lubricated by oil dispersed by Al2O3, SiO2 and SiC nanoparticles of 0.5 wt. % content. 

Friction coefficient was calculated by measuring the scratch force. Wear scar width 

was measured of an accuracy of ± 1.0 µm by optical microscope.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Arrangement of scratch test rig.                     

 

RESULTS AND DISCUSSION 

Friction coefficient displayed by the scratch in the presence of clean oil showed the 

highest values followed by oil dispersed by microparticles of SiO2, Al2O3 and SiC, 

Fig. 2. Friction coefficient significantly increased with increasing normal load. Figure 

3 illustrates the action of the microparticles in the surface of substrate. Because the 

tested particles have higher hardness than the copper substrate, it is expected that 

the particles are embedded in the copper substrate forming a protective layer that 

withstand the abrasion of the stylus. Based on the observations in Fig. 2, it seems that 

the embedment of SiC microparticles was much pronounced than that displayed by 

SiO2 and Al2O3. Because the hardness of the stylus is relatively higher than the 

hardness of the substrate, the particles will embed in the substrate.  

 

Dispersing the oil by nanoparticles of the tested abrasive showed relatively higher 

friction values than that observed for microparticles, Fig. 4. That behavior may be 
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from the agglomeration of the nanoparticles that increased their layers and 

consequently shear stress between these layers increased, Fig. 5. Al2O3 showed 

relatively higher friction than that recorded for SiO2 and SiC. The size of the 

nanoparticles enables them to interact with the asperities of scratched substrate and 

abrade them or they enter into and adsorb on the asperities of the substrate. It is 

suggested that, the presence of the nanoparticles combines the sliding with rolling 

friction. Because the embedment of nanoparticles into the contact surfaces is low 

compared to that of microparticles, they tend to roll and decrease the shear force 

acting on the asperities. It can be suggested that the mechanism of action of the 

nanoparticles depend on their adsorption into the sliding surface, where they form 

protective layer and prevent the contact between the asperities of the two sliding 

surfaces. 

 

 

 
Fig. 2 Friction coefficient displayed by scratching in presence of oil dispersed by 

abrasive microparticles. 
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Fig. 3 Illustration of the action of the microparticles in the surface of substrate.  

 

 

 
Fig. 4 Friction coefficient displayed by scratching in presence of oil dispersed by 

abrasive nanoparticles. 
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Fig. 5 Illustration of the action of the nanoparticles in the surface of substrate.  

 

Wear of the test specimen was evaluated by the wear scar width. It was noticed that 

wear showed the same trend observed for friction. Clean oil displayed the highest 

wear values. When the oil was dispersed by microparticles, Fig. 6, Al2O3 pronounced 

the highest wear compared to SiC and SiO2. The contaminated oil showed lower wear 

than clean oil. It seems that the microparticles act as rolling bearings, where separate 

the two contact surfaces. As the load increases, they suffer from fracture retarding 

the rolling action, [17 – 21]. Wear scar width displayed by scratching in presence of 

oil dispersed by abrasive nanoparticles is illustrated in Fig. 7, where nanoparticles 

showed slight wear increase due to their polishing the asperities of the substrate.   

 

 
Fig. 6 Wear scar width displayed by scratching in presence of oil dispersed by 

abrasive microparticles. 
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Fig. 7 Wear scar width displayed by scratching in presence of oil dispersed by 

abrasive nanoparticles. 

 

  
Fig. 8 Photomicrograph of scrath at 4 N 

load. 

Fig. 9 Photomicrograph of scrath at 8 

N load. 

 

 

 

 
 

Fig. 10 Photomicrograph of scrath at 10 

N load. 

Fig. 11 Photomicrograph of the surface 

texture of the wear scar.  

 

The improvement of the wear resistance offered by micro and nano particles 

dispersed in the oil is attributed to the action of the hard particles presented between 
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the sliding surfaces that prevented their direct contact, [22 - 24]. Al2O3 plastically 

deformed the contact surface, where Al2O3 nanoparticles slide, roll and polish the 

asperities of the sliding surfaces. The rolling of the nanoparticles decreased the 

formation of the transfer layer and wear, [25, 26]. Their nanosize of the tested 

particles enables them to enter into and adsorb on the asperities of the rubbing 

surfaces. Besides, the nanomaterials form thin plastic layer on the sliding surface. 

 

The rolling of the nano and microparticles is defined as ball bearing mechanism that 

offers reduction of friction and wear. Added to that, the tested particles polish the 

asperities and improve the texture of the contact surfaces. The photomicrographs of 

the wear scar are shown in Figs. 8 – 11. The surface texture at 4, 8 and 10 N load 

when the oil was dispersed by Al2O3 microparticles is illustrated in Figs. 8, 9 and 10 

respectively. The polishing process conducted by Al2O3 nanoparticles is shown in Fig. 

11, where their agglomeration is responsible for that behavior. 

 

CONCLUSIONS 

1. Clean oil showed the highest wear and friction coefficient values followed by oil 

dispersed by nano and microparticles of SiO2, Al2O3 and SiC, where friction 

coefficient and wear remarkably increased with the increase of the normal load.  

2. Embedment of nano and microparticles in the surface of substrate influences the 

frictional behavior through forming a protective film on the substrate.  

3. Embedment of SiC microparticles was much higher than that displayed by SiO2 

and Al2O3. 

4. Nanoparticles dispersing the oil displayed higher friction values than that recrded 

for microparticles. This is due to the agglomeration of the nanoparticles increasing 

the shear stress between these particles. 

5. The nanoparticles can interact and polish the asperities of the scratched substrate. 

6. The highest wear values were displayed by clean oil. While contaminated oil 

showed lower wear. It seems that the nano and microparticles work as rolling 

bearings that separate the two contact surfaces.  

7. Nanoparticles showed higher wear due to their polishing the asperities of the 

substrate. 
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