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Abstract: The Motif finding problem is important in bioinformatics, aiming to find recurring sequences in 

biological data. These motifs, are important for understanding how genes work, how proteins function, and 

how cells operate. Accurately detecting these patterns is essential for understanding of biology, aiding in 

scientific research, and developing treatments for diseases. Addressing the motif finding problem efficiently 

across heterogeneous CPU architectures presents significant challenges in computational efficiency and 

resource utilization. The variation in the number and speed of cores across CPUs requires developing 

scheduling strategies to efficiently distribute workloads among these architectures. This paper presents an 

efficient strategy for optimizing task distribution across heterogeneous CPU architectures. The proposed 

approach makes performance enhancement with 9 % solving Motif finding problem in CPU heterogeneous 

architectures. This improvement significantly speeds up the process of identifying important biological 

patterns, making bioinformatics research quicker and more cost-effective. In addition, it has a significant 

impact on enhancing computational efficiency and reducing costs in high-performance computing 

environments. 
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1. Introduction 

 

Motif finding problem (MFP) is a cornerstone of bioinformatics research with wide-reaching implications in 

understanding biological systems, elucidating disease mechanisms, and guiding therapeutic interventions. 

Understanding motifs can help us find out why diseases happen and how to treat them. It can even lead us to 

create personalized medicine, where treatments are customized for each person based on their unique genetic 

patterns. The motif finding problem encapsulates a significant computational challenge in bioinformatics, 

characterized by its inherent complexity and the vastness of biological data. At the heart of this challenge is 

the combinatorial explosion of possible motifs as sequence length and dataset size increase, creating a vast 

search space that is impractical to explore exhaustively with conventional computing resources. This 

complexity is compounded by the variability and degeneracy of biological motifs, where slight variations 

can still result in functionally equivalent motifs, further expanding the search space and complicating the 

identification process. Given these challenges, high-performance computing (HPC) solutions become 

indispensable.  

 

HPC can handle the problem from multiple fronts:  

• Offering the computational power necessary to process large datasets. 

• Enabling parallel processing to explore the search space more efficiently. 

• Simplifying the use of advanced algorithms that require significant computational resources. The 

deployment of HPC resources can dramatically reduce the time required for motif finding, making it 

suitable to handle the increasing scale and complexity of biological data. 

 

This paper contributes an innovative strategy for scheduling motif finding, optimizing task distribution in 

heterogeneous CPU architectures that is both accurate and computationally efficient. This contribution 

represent significant advancement in the fields of bioinformatics and high-performance computing, offering 

practical solutions to some of the most pressing computational challenges.  

The rest of this paper is organized as follows: Section 2 describes background of Motif finding strategies 

and Speed-based scheduling strategy. Section 3 presents the experimental setup, including description of the 

architectures used in the experiments. Section 4 presents an Exact Solution approach for solving MFP and 

Task Scheduling algorithm used to ensure that bioinformatics analyses are both fast and cost-effective. 

Section 5 presents experimental results. Finally, in Section 6 we conclude our work. 

 

2.  Background and Related Work: 

 

This section provides an overview of the motif finding problem, including its biological importance and 

computational challenges. In addition, we review existing algorithms for motif finding, highlighting their 

limitations. This section also covers previous efforts to leverage high-performance and heterogeneous 

computing for bioinformatics, setting the context for the contribution of this paper. 

 

Definition of motif finding problem: Given a set of sequences, each not necessarily has the same length, 

the goal is to find a motif of fixed length (usually relatively short) that occurs in each sequence of the set 

with few or no mismatches[1], [2], [3].  
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Key components of the motif finding problem: 

 

a. Input: Set of (𝑛) sequences 𝑆 = { 𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑛} each of length (𝑁) characters over an alphabet 

( 𝐴, 𝐶, 𝐺 𝑎𝑛𝑑 𝑇 for DNA sequences or 𝐴, 𝐶, 𝐺 𝑎𝑛𝑑 𝑈 for RNA sequences, etc.), permitted mutation, 

(Hamming Distance), (𝑑) and the desired motif length (𝑙). The motif length indicates the number of 

characters that the motif should consist of. 

b. Task: Find motifs of length (𝑙) that appear as a subsequence in each sequence (𝑠𝑖) in the input set (𝑆) 

allowing for a certain number of  (𝑑) possible mutations at maximum. 

c. Output: The output of the motif finding problem is the discovered motif, which is a string of characters 

of the specified length (𝑙) that appears as a subsequence in every sequence of the input set (𝑆), allowing 

for a certain number of mismatches (𝑑) at maximum. 

 

Motif finding Algorithms and Limitations: Motif finding algorithms are key tools in bioinformatics for 

discovering patterns in biological sequences, essential for understanding gene regulation, protein functions, 

and more. However, these algorithms have several challenges: 

 

• Brute-Force Algorithms[4]: They search all (4𝑙 ) possible sequences for motifs, becoming impractical 

for large datasets due to the huge number of possible motifs. This method is limited by the exponential 

growth in computational needs. 

• Recursive Brute-Force Algorithms[5], [6]: They handle the motif finding problem by breaking down 

the search process into smaller, more manageable tasks. Starting with a part of the motif, these methods 

recursively build up to the full motif length by exploring all possible extensions one base (or amino acid) 

at a time. Like their brute-force counterparts, recursive brute-force algorithms are exploring all possible 

motifs up to the specified length. This systematic exploration can ensure high accuracy in identifying 

motifs. The recursive nature allows for more flexible exploration of the search space, potentially making 

it easier to incorporate conditions or optimizations that reduce the search space at each step. While 

recursive methods may offer slight improvements in managing the search space, they still face significant 

scalability issues due to the exponential growth of possibilities with increasing motif length and dataset 

size. Recursive algorithms can introduce additional computational overhead, especially if not carefully 

optimized. The repeated function calls and stack operations can lead to inefficiencies, particularly for 

deep recursion levels. 

• Greedy Algorithms[7]: By iteratively building motifs and choosing the best match at each step, these 

algorithms can miss the best global motifs due to getting stuck in local optima, depending heavily on the 

starting sequence. 

• Expectation Maximization (EM) Algorithms[8]: These refine motif predictions iteratively but are 

sensitive to initial conditions and may not find the best solution, needing substantial computational 

resources. 

• Gibbs Sampling[9]: This probabilistic method avoids some deterministic pitfalls but can be slow to find 

the best motifs due to its random nature. 

• Position Weight Matrices (PWMs) and Hidden Markov Models (HMMs)[10], [11]: While PWMs 

struggle with motifs that include variations like insertions or deletions, HMMs are complex and demand 

significant computational power, depending on accurate model parameters. 
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• Machine Learning Approaches: Require extensive labeled data and can be challenging to interpret, 

especially with complex models like neural networks. 

In summary, Motif finding algorithms can be categorized into two major groups, exact and approximate 

solutions: 

• Exact solution[5], [12], [13], [14]:  

• Apply exhaustive enumerations. 

• Guarantee global optimality. 

• Examples: Brute force, Skip Brute force, Recursive Brute force (R-BF). 

• Approximate solution [7], [8], [9]: 

• Based on probability. 

• Apply some form of local search. 

• Doesn’t guarantee global optimal solution. 

• Examples: Gibbs sampling and Expected maximization (EM). 

 

A common thread among these algorithms is balancing accuracy with computation efficiency. More accurate 

methods (Exact Solutions) are computationally demanding, while faster ones (Approximate solutions) may 

lack precision. Brute-force and recursive brute-force algorithms represent foundational approaches in the 

quest to handle the motif finding problem, a key computational challenge in bioinformatics. These methods 

aim to identify recurring patterns or sequences (motifs) within a set of biological sequences by exhaustively 

searching through all possible sequence combinations. Despite their simplicity, these approaches have paved 

the way for understanding the complexities and computational demands of motif finding.  Biological data's 

variability adds complexity, with motifs often being variable and not perfectly conserved. Addressing these 

issues while managing computational costs remains a key challenge, especially as data grows in size and 

complexity. 

Parallelization efforts have tried to speed up motif finding by using multi-core CPUs, GPUs, and HPC 

clusters to analyze data segments concurrently, showing significant time reductions. For the purpose of 

enhancing motif finding and similar computational tasks, the focus is on heterogenous CPU architectures. 

The main idea benefits from the fact that the number of the operations required to solve Motif finding can be 

divided into parts. Each part can work on a specific data size called “chunk”. Consequently, we can have a 

deterministic number of operations in almost all cases[15], [16], [17].   

 

• Considering task scheduling strategy: speed-based scheduling strategy, which is displayed in figures 

[1], [2], is recently used in  scheduling [3], [18], [19]. This strategy considers the speed of different 

architectures. It assumes that tasks of each chunk are executed by only a specific core related to specific 

architecture. This assumption eliminates the factors of sharing resources that may affect the overall 

system performance. Faster architecture handles a larger number of chunks. Slower architecture gets 

smaller number of chunks that can be exactly processed in the same time granted to the fastest 

architecture. Initially, execution time (T) required by the fastest architecture to handle all chunks, must 

be determined. Other slower architectures, that can’t handle at least one chunk in the same execution time 

(T), are excluded as ineligible architectures.   
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Speed-based scheduling strategy [3], [18], [19] doesn’t consider the actual execution time of a single chunk. 

In addition, each time we add a new architecture to the fastest one; we get a new execution time (𝑇′) of 

hybrid architecture smaller than (T) which should be considered on the comparison process to determine and 

exclude other slower architectures. This research addresses a common schedule problem, however the 

proposed algorithm dynamically distribute workload among different architectures. In addition,  we proposed 

a mechanism to discard ineligible architectures efficiently. 

 

Solving MFP needs advanced algorithms and enough computing power to search through the data efficiently, 

showing the vital role of high-performance computing in bioinformatics. 

 
Pseudo Code for the Scheduling Strategy  

 
Input (t1, t2, …, tp) ; The execution times for performing the operations of a  

                 ; single chunk on A1, A2, …, Ap respectively in ascending order  

Input (C)                  ; The number of chunks C = N-L+1 in case of MFP  

Output (C1, C2, …, Cp) ; The number of chunks assigned to each architecture  

 
Function Distribute_Chunks(ti, C)  

 
  For each i:=1 to p  

        if ((t1 * C) > ti) 
   ; for each architecture satisfies this condition where  

                 ; (2 ≤ i ≤ p) Decide which architectures will be eligible  

                   ; to perform operations on chunks 
        then Ri := C / ti    ; find the weight of each eligible architecture  

        else Ri := 0 
  End  

; or exclude ineligible architecture  

 
     R := R1 + R2 + … + Rp    ; find the total weights  

     Ru := C / R    ; find the unit assigned for each weight  

  For each i:=1 to P   
        Ci := Ri * Ru 
  End  

              ; assign number of chunks Ci to each eligible Ai  

 
Return (C1, C2, …, Cp)   
End  

 

Fig. 1 Pseudo code of speed-based scheduling algorithm[18]. 
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1.  𝑷𝑹𝑶𝑮𝑹𝑨𝑴 𝑴𝒐𝒕𝒊𝒇𝑻𝒂𝒔𝒌𝑺𝒄𝒉𝒆𝒅𝒖𝒍𝒆𝒓 
2. 𝐼𝑛𝑝𝑢𝑡 ∶ 𝑆[1, …, T]  
3.  𝐼𝑛𝑝𝑢𝑡 ∶ 𝐿 
4.  𝐼𝑛𝑝𝑢𝑡 ∶ 𝑑 
5.  𝑩𝑬𝑮𝑰𝑵 
6. 𝑡[𝑡1, … ,𝑡𝑝] ← 𝑙𝑜𝑎𝑑 𝑠𝑖𝑛𝑔𝑙𝑒 𝑡𝑎𝑠𝑘 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑎𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒𝑠  
7. 𝑡𝑚𝑖𝑛 ← 𝑀𝐼𝑁𝑖=1

𝑝
(𝑡𝑖 ) ∗ 4𝐿    ; find the smallest run time  

8. 𝑭𝑶𝑹  𝑖 = 1 𝒕𝒐 𝑝  
9.        𝑰𝑭 ti ≤ 𝑡𝑚𝑖𝑛 𝑻𝑯𝑬𝑵  
10.              𝑅𝑖 ← 4𝐿 / 𝑡 𝑖    ; find the weight of each architecture  
11.      𝑬𝑳𝑺𝑬  
12.              𝑅𝑖 ← 0 ; this architecture is very slow and will be ignored  
13.      𝑬𝑵𝑫  
14. 𝑬𝑵𝑫  
15. 𝑅𝑡𝑜𝑡𝑎𝑙 ← 𝑅1 + 𝑅2 + ⋯ + 𝑅𝑝 ; sum the weights  
16. 𝑅𝑢 ← 4𝐿 / 𝑅𝑡𝑜𝑡𝑎𝑙 ; find the tasks assigned to each weight unit  

𝑜𝑓𝑓𝑠𝑒𝑡 = 0  
𝑠𝑡𝑎𝑟𝑡𝑖 = 0  

17. 𝑭𝑶𝑹 𝑖 = 1 𝒕𝒐 𝑝  
18.          𝐶𝑖 = 𝑅𝑖 ∗ 𝑅𝑢 ;tasks assigned to architecture  

         𝑠𝑡𝑎𝑟𝑡𝑖 = 𝑠𝑡𝑎𝑟𝑡𝑖 + 𝑜𝑓𝑓𝑠𝑒𝑡 ; determine the start index of tasks  
         𝑒𝑛𝑑𝑖 = 𝑠𝑡𝑎𝑟𝑡𝑖 + 𝐶𝑖 – 1 ; determine the end index of tasks  
         𝑜𝑓𝑓𝑠𝑒𝑡 = 𝐶𝑖  

19.         𝑆𝑐𝑜𝑟𝑒𝑖  
        ← 𝑺𝑷𝑨𝑾𝑵 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑖 (𝑆, 𝐿, 𝑑, 𝐶𝑖 , 𝑠𝑡𝑎𝑟𝑡𝑖 , 𝑒𝑛𝑑𝑖 )  

20. 𝑬𝑵𝑫  
21. 𝒓𝒆𝒕𝒖𝒓𝒏 𝑀𝐴𝑋𝑖=1

𝑝
 (𝑆𝑐𝑜𝑟𝑒𝑖 ) ; find the motif of highest occurrence  

22. 𝑬𝑵𝑫 
 

Fig. 2 Pseudo code of speed-based scheduling algorithm[3], [19]. 

 

This paper has the following main objective: 

 

Objective : Optimize Task Distribution Across Heterogeneous CPU Architectures 

 

• Develop and implement a strategy for distributing the computational tasks involved in motif finding 

across a heterogeneous computing environment. This environment includes CPUs with varying numbers 

and speeds of cores, maximizing the utilization of available computational resources. 

 

• Achieve Significant Reductions in Computation Time: Through development of efficient task 

scheduling algorithm and the efficient use of heterogeneous CPU architectures, aim to significantly 

reduce the overall computation time required for motif finding. This involves balancing the load across 

different resources applying efficient task scheduling algorithm to minimize total execution time.  

 

3. Methodology: 
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This section describes in detail the methods used in the research, divided into two main parts: Considering 

an exact solution algorithm for motif finding and the strategy for optimizing task distribution in 

heterogeneous computing environments. It explains algorithmic design, and considerations for efficient 

computation across diverse CPU architectures. 

 

3.1. Considering an Exact Solution Algorithm: 

 

Given input set of (𝑛) sequences = { 𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑛} , each consists of 4 repeated characters  {𝐴, 𝐶, 𝑇, 𝐺} for 

DNA sequences or {𝐴, 𝐶, 𝐺, 𝑈} for RNA sequences, not necessarily has the same length (𝑁), the goal is to 

find a motif of fixed length (𝑙) that occurs in each sequence of the set with mutation (Hamming Distance) of 

(𝑑) mismatches at maximum [2].  

 

The research represents the following exact solution algorithm: 

 

a. Rearrange the input set of (𝑛) sequences 𝑆 = { 𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑛} in ascending order according to its 

length where length of  {𝑠1 < 𝑠2 < 𝑠3 <, … , < 𝑠𝑛} 

b. Using the shortest string (𝑠1) to extract set of all possible ( 𝑁 − 𝑙 + 1) windows { 𝑤1, 𝑤2, … … , 𝑤𝑁−𝑙+1} 

where (𝑁) is length of string (𝑠1) , and ( 𝑙) is the length of the motif. These windows are used as bases 

for generating all possible motifs of each chunk. 

c. Dividing tasks into chunks, for each window { 𝑤1, 𝑤2, … … , 𝑤𝑁−𝑙+1} generate all possible motifs 

(𝑚) 𝑎𝑠 𝑖𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (1) that have mutation (Hamming Distance) of (d) mismatches at maximum with 

the given window. In total, we have ( 𝑁 − 𝑙 + 1) chunks, each chunk has the same total number (𝑚) 

of Lmers (generated m)  

 𝑚 = ∑ (𝑣 − 1)𝐻𝐷𝐶𝐻𝐷
𝑙  = 

𝑑

𝐻𝐷=0
∑ (𝑣 − 1)𝐻𝐷 𝑙!

(𝑙−𝐻𝐷)! 𝐻𝐷!
 

𝑑

𝐻𝐷=0
                                       (1) 

          𝑤ℎ𝑒𝑟𝑒 𝑣 = 4 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠 {𝐴, 𝐶, 𝑇, 𝐺} 𝑓𝑜𝑟 𝐷𝑁𝐴 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 𝑜𝑟 {𝐴, 𝐶, 𝐺, 𝑈}𝑓𝑜𝑟 𝑅𝑁𝐴 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 

𝐻𝐷 𝑖𝑠 ℎ𝑎𝑚𝑚𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛), (𝑑) 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑎𝑙𝑙𝑜𝑤𝑒𝑑 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛, 

(𝐶) 𝑖𝑠 𝑓𝑜𝑟 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 (𝑙) 𝑖𝑠 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝐿𝑚𝑒𝑟. 

𝐶𝐻𝐷
𝑙 = 𝐶(𝑙, 𝐻𝐷) =  

𝑙!

(𝑙 − 𝐻𝐷)!  𝐻𝐷!
 

d. For each chunk, decide if generated motif 𝑚𝑖 of a given window is eligible. Each eligible motif must 

match with one window at least in each sorted sequence { 𝑠2, 𝑠3, … , 𝑠𝑛}. The motif is ineligible and 

neglected once it has mutation greater than (𝑑) with all extracted windows of any sequence 

{ 𝑠2, 𝑠3, … , 𝑠𝑛} respectively. 

 

Used exact solution algorithm for motif finding is represented in Figure (3). 
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1. Start: Begin the algorithm. 

 // Sort sequences by length to minimize search space. 

2. Rearrange Sequences: Sort the input set of sequences 𝑆 = {𝑠1, 𝑠2, … . . , 𝑠𝑛} in ascending order 

based on their length.  

3. Identify Shortest Sequence: Select the shortest string 𝑠1 from the sorted set. 

// Generate all possible motifs for the shortest sequence. 

4. Extract Windows: Using 𝑠1 , extract all possible windows 𝑊 = {𝑤1, 𝑤2, … . , 𝑊𝑁−𝑙+1},  
                                                   where N is the length of 𝑠1 and 𝑙  is the motif length. 

// Process each chunk independently for parallel execution. 

5. Loop Through Chunks: For each chunk (associated with a window from 𝑤): 

• Generate Motifs: Generate all possible motifs 𝑚 for the chunk. generate all possible 

motifs (𝑚) that have up to 

                                                 d mismatches with each window (Hamming Distance ≤ 𝑑). 

• Loop Through Motifs in Chunk: For each generated motif 𝑚𝑖: 

• Check Eligibility Across Sequences: For each sequence 𝑠𝑗 in {𝑠2, 𝑠3, . , 𝑠𝑛} 

• Match Motif with Windows in 𝒔𝒋: Check if 𝑚𝑖  matches at least one window in 𝑠𝑗with 

mismatches ≤ 𝑑  . 
• Decision: If 𝑚𝑖  has mismatches > 𝑑 with all windows of any 𝑠𝑗  , mark 𝑚𝑖  as ineligible. 

• End Loop Through Motifs in Chunk 

• End Loop Through Chunks 

6. Collect Results: Aggregate all eligible motifs found across all chunks. 

7. End: Conclude the algorithm. 
 

 

Fig. 3 Exact solution approach. 

 

Task scheduling strategy: 

 

In this modified algorithm, we consider both actual execution time of a single chunk and new execution time 

(𝑇′) of hybrid architecture that result each time we add a new architecture to the fastest one; where (𝑇′ <
𝑇 ).  New execution time (𝑇′) is considered on the comparison process to exclude ineligible architectures as 

explained in figure (4) that represents the pseudo code of the proposed scheduling algorithm. 
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1 Input:  
2 𝑪′ : Predefined number of chunks 
3 
4 
5 
6 

Input (𝑇1, 𝑇2, … … . , 𝑇𝑝)       : Total execution time for a predefined number of chunks 𝑪′ (respectively in ascending order) 

for different architectures 𝐴1, 𝐴2, … , 𝐴𝑝  

where  𝑇1 < 𝑇2 < ⋯ < 𝑇𝑝 

7 𝐴1, 𝐴2, … , 𝐴𝑝 : Architectures 𝐴1, 𝐴2, … , 𝐴𝑝 

8 𝑛1, 𝑛2, … . . , 𝑛𝑝 : Number of cores for 𝐴1, 𝐴2, … , 𝐴𝑝 

9 
10 
11 
12 
13 

𝑡1, 𝑡2, … . , 𝑡𝑝 : Execution time for performing the operations of a single chunk on 𝐴1, 𝐴2, … , 𝐴𝑝 

respectively  

where  𝑡𝑖 = 𝑇𝑖/(
𝐶′

𝑛𝑖
)    and 𝑖 = 1,2, … … . , 𝑝   

This doesn’t mean that (𝑡1 < 𝑡2 < ⋯ < 𝑡𝑝 ) 

14 Input(𝑙)                           : Length of lmer  𝑙=15 
15 Input(𝑁) : Length 𝑁 of shortest string 𝑠1. 
16 Input(C)                             : Total number of chunks 𝐶 = (𝑁 − 𝑙 + 1)  
17 Output:  
18 Output (𝑐1, 𝑐2, … … , 𝑐𝑝)  : Number of chunks assigned to each architecture 

19 Output 𝑐1
′ , 𝑐2

′ , … … , 𝑐𝑝
′ ) : The number of chunks per core assigned to each architecture where 𝑐𝑖

′ = 𝑐𝑖/𝑛𝑖  

20 Output (𝑇′)   : Total execution Time of hybrid architecture 

21 Begin  

22 𝑅1, 𝑅2, … , 𝑅𝑝 : 𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓𝐴1, 𝐴2, … , 𝐴𝑝 

23 𝑅 : Total Weight 

24 𝑐1 ≔ 𝐶 : Total chunks for 𝐴1 is set to equal to total chunks 𝐶 = (𝑁 − 𝑙 + 1) 

25 
26 
27 
28 
29 

𝒄𝟏
′ ∶= 𝒄𝟏/𝒏𝟏 

𝑹𝒆𝒎𝒂𝒊𝒏𝒅𝒆𝒓 ∶= 𝒄𝟏%𝒏𝟏 
  If  Remainder != 0 
      𝒄𝟏

′ ∶= [(𝒄𝟏 − 𝑹𝒆𝒎𝒂𝒊𝒏𝒅𝒆𝒓) / 𝒏𝟏] + 𝟏 
𝑬𝒏𝒅 

: The maximum assigned number of chunks per core in architecture 𝐴1 

30 
31 

𝑇 ≔ 𝑡1 ∗ 𝑐1
′  

𝑇′ ∶= 𝑇   

: Minimum Total execution time of fastest architecture 𝐴1 

: Setting initial value of 𝑇′ 

32 𝑅1 ≔ (
𝑐1

𝑡1
) 𝑛1 

: Weight of 𝐴1 

 

33 𝑅 ∶= 𝑅1 : Total Weight 

34 𝑅1, 𝑅2, … , 𝑅𝑝 ≔ 0 : Weight of 𝐴1, 𝐴2, … , 𝐴𝑝 

35 for each     𝒊 ∶= 𝟐 𝒕𝒐 𝒑     : For each 𝐴𝑖 decide which one is eligible 

36            𝑖𝑓(𝑇′ > 𝑡𝑖)  

37 
            𝑡ℎ𝑒𝑛 𝑅𝑖 ≔ (

𝐶

𝑡𝑖
) 𝑛𝑖 

: Get weight of eligible architecture 𝐴𝑖 

38           𝑒𝑙𝑠𝑒 𝑅𝑖 ∶= 0 : Or exclude ineligible architecture 

39             𝑅 ∶= 𝑅 + 𝑅𝑖 : Find the total weight 

40             𝑅𝑢 ≔ 𝐶/𝑅 : Find the unit assigned for each weight 

41                   𝑜𝑓𝑓𝑠𝑒𝑡 ∶= 0  

42                    𝑠𝑡𝑎𝑟𝑡𝑗  ≔ 0  

43                              𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝒋 ∶= 𝟏 𝒕𝒐 𝒑  

44                                        𝐶𝑗 ≔ 𝑅𝑗 ∗ 𝑅𝑢 : Total number of assigned chunks to each eligible 𝐴𝑗 

45                                       𝑠𝑡𝑎𝑟𝑡𝑗 ≔ 𝑠𝑡𝑎𝑟𝑡𝑗 + 𝑜𝑓𝑓𝑠𝑒𝑡 : Start index of chunks 

46                                       𝑒𝑛𝑑𝑗 ≔ 𝑠𝑡𝑎𝑟𝑡𝑗 + 𝐶𝑗 − 1 : End index of chunks 

47                                       𝑜𝑓𝑓𝑠𝑒𝑡 ∶= 𝐶𝑗  

48 𝑐𝑗
′ ∶= 𝑐𝑗/𝑛𝑗 : Total Maximum chunks per each core in Architecture 𝐴𝑗 

49 
50 
51 
52 

                                                𝑹𝒆𝒎𝒂𝒊𝒏𝒅𝒆𝒓′ ∶= 𝒄𝒋%𝒏𝒋 
                                               If  Remainder’  != 0 
                                                  𝒄𝒋

′ ∶= [(𝒄𝒋 − 𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟′ ) / 𝒏𝒋] + 𝟏 

                                              𝑬𝒏𝒅 

 

 

 

53                              𝑬𝒏𝒅  

54                              (𝑐1, 𝑐2, … … . . , 𝑐𝑝) : Total number of assigned chunks to each eligible 𝐴𝑗 

55 
56 

                            (𝑐1
′ , 𝑐2

′ , … … … , 𝑐𝑝
′ ) : Total chunks per each core in architecture 𝐴𝑗 

57 
58 
59 

                            𝑇′ ∶= 𝑡1 ∗ 𝑐1
′  

                                  ∶≃ 𝑡2 ∗ 𝑐2
′  

                                 ∶≃ 𝑡𝑝 ∗ 𝑐𝑝
′  

: Updating the new total execution time of hybrid architecture that is considered 

 

60           𝑬𝒏𝒅  

61  𝑬𝒏𝒅  
 

Fig.4 Pseudo code used in proposed scheduling strategy. 
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4. Implementation: 

 

In this section, we present the detailed description of experimental setup including description of CPU 

architectures and the total required comparison calculations. In addition, we investigate each CPU 

architectures to calculate the actual average execution time of a single chunk. These results serve as crucial 

inputs to the scheduling algorithm, which is designed to optimize resource utilization and minimize job 

completion times for motif finding problem. 

 

4.1 Experimental Setup: 

 

In this subsection, we present the detailed description of the architectures used in the experiments and 

required comparison calculations. In our research, we conduct experiments using a set of diverse CPU 

architectures. 

 

Central Processing Units: The CPU architecture represents a traditional and versatile computing resource. 

We use CPUs with multiple cores and high clock speeds to handle a broad range of computational tasks, 

from general-purpose computing to complex simulations and data processing. Software developments, such 

as OpenMP and MPI (Message Passing Interface), enable bioinformatics algorithms to be parallelized and 

optimized for multi-core architectures. This significantly enhances the capability to process large datasets 

and perform complex analyses. 
 

Description of CPU architectures: 

We use 3 heterogenous CPU architectures as described in table (1). The three architectures will be denoted 

by Arch1, Arch2, and Arch3 respectively in the results section. 
 

Required comparison calculations: 

In this paper we consider motifs finding where 𝑛 = 20 strings, 𝑁 = 600 characters, 𝑑 = 4 𝑎𝑛𝑑 𝑙 = 15 

and 𝑣 = 4 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠 {𝐴, 𝐶, 𝑇, 𝐺} 𝑓𝑜𝑟 𝐷𝑁𝐴 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 𝑜𝑓 𝑠𝑎𝑚𝑒 𝐿𝑒𝑛𝑔𝑡ℎ 𝑁.  
𝐼𝑛 𝑐𝑎𝑠𝑒 𝑡ℎ𝑎𝑡 𝑎𝑙𝑙 𝑛 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 𝑜𝑓 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 ℎ𝑎𝑣𝑒 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑁,  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑊𝑖𝑛𝑑𝑜𝑤𝑠 𝑝𝑒𝑟 𝑠𝑡𝑟𝑖𝑛𝑔 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶ℎ𝑢𝑛𝑘𝑠 = (𝑁 − 𝑙 + 1) 

Applying equation (1), we get the total generated 𝐿𝑚𝑒𝑟𝑠 (𝑚) per each chunk that have 𝑑 = 4 characters 

mutations at maximum. 

𝑇ℎ𝑒𝑛 𝐿𝑚𝑒𝑟𝑠 (𝑚) = ∑ (3)𝐻𝐷𝐶𝐻𝐷
15  = 

4

𝐻𝐷=0
∑ (3)𝐻𝐷 15!

(15−𝐻𝐷)! 𝐻𝐷!
 

4

𝐻𝐷=0
= (𝟏𝟐𝟑, 𝟖𝟒𝟏)𝐋𝐦𝐞𝐫𝐬/𝐜𝐡𝐮𝐧𝐤          (2) 

Extracted Lmers of a given window, starting from 𝐻𝐷 = 0,1,2,3, 𝑎𝑛𝑑 4 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦, 
𝑎𝑛𝑑 𝑙 = 15 characters per Lmer are displayed in table (2). 
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Table 1: Architectures (1), (2) and (3) CPU-based Compute Node. 
 

 

Attribute 

Architecture (1) 40 cores Architecture (2) 24 cores Architecture (3)4 cores 

Value Value Value 

Architecture x86_64 x86_64 X86-64 

CPU(s)  40 vCPUs x intel® Xeon® Silver 

4114  

24 vCPUs Intel (R) Xeon(R) 

CPU E5-2630 

4 vCPUs x86 Family 6 Model 15 

Stepping 6 GenuineIntel 

Thread(s) per core 1 2 1 

Core(s) per socket 20 6 2 

Socket(s) 2 2 2 

CPU MHz 2.20GHZ 2.3 GHZ  2.660 GHZ 
Memory 64 GB 40 GB 4 GB 

 
Table 2: Number of extracted Lmers corresponding to each Hamming Distance (mutation). 

 

Hamming Distance (𝑯𝑫)  Number of extracted Lmers 

0 1 

1 45 

2 945 

3 12,285 

4 110,565 

Total extracted Lmers per window  123,841 Lmers 

 

To solve motif finding problem, we convert each string into sequences of binary bits {0,1} where  

{𝐴, 𝐶, 𝑇 𝑎𝑛𝑑 𝐺} are represented by {00, 01, 10 𝑎𝑛𝑑 11} respectively. Accordingly, 𝑣 = 2 𝑏𝑖𝑡𝑠 {0, 1}. Then 

each Lmer (window) has length of 𝑙 = (30) 𝑏𝑖𝑡𝑠 which is equivalent to 15 characters, and each string consists 

of (1200) bits which is equivalent to 600 characters. 

For a given window 𝑤𝑖 , We need to generate up to 𝑑 = 8 bits mutations that equivalent to 𝑑 = 4 characters 

mutations. Applying equation (1), we get the total generated 𝐿𝑚𝑒𝑟𝑠 (𝑚) that have up to 8 bits mutations. 

𝑳𝒎𝒆𝒓𝒔 (𝒎) = ∑ (𝒗 − 𝟏)𝑯𝑫𝑪𝑯𝑫
𝒍  = ∑ 𝑪𝑯𝑫

𝒍  
𝒅

𝑯𝑫=𝟎
= 

𝒅

𝑯𝑫=𝟎
∑

𝒍!

(𝒍−𝑯𝑫)! 𝑯𝑫!
 =  ∑

𝟑𝟎!

(𝟑𝟎−𝑯𝑫)! 𝑯𝑫!
 

𝟖

𝑯𝑫=𝟎

𝒅

𝑯𝑫=𝟎

              (3) 

Where 𝑣 = 2 𝑏𝑖𝑡𝑠 {0, 1}, 𝑙 = 30 𝑏𝑖𝑡𝑠 𝑎𝑛𝑑 𝑑 = 8 bits. 
Table (3) represents all generated Lmers applying 8 bits mutations at maximum. All generated motif 

generated for 𝑑 = 0 bits mutation up to 𝑑 = 4 bits mutations at maximum, don’t need to be checked with its 

basis window. Accordingly, only total number of required comparisons will follow equation (4) 

𝑹𝒆𝒒𝒖𝒊𝒓𝒆𝒅 𝑪𝒐𝒎𝒑𝒂𝒓𝒊𝒔𝒐𝒏𝒔 = ∑ 𝑪𝑯𝑫
𝟑𝟎             

𝟖

𝑯𝑫=𝟓
                                                                                      (4) 

These comparisons are applied with each (𝑁 − 𝑙 + 1) window to get a list of (123,841) Lmers that have total 

of  4 characters mutations at maximum for a given window, 𝑤𝑖 that are displayed in table (2). 

Accordingly, total number of comparisons calculations = 

= (Number of strings * Number of windows per string* Number of chunks* Number of generated Lmers per 

chunk) + (Number of chunks* Required comparisons of each chunk) 

= [(𝑛 − 1) ∗ (𝑁 − 𝑙 + 1)2 ∗ ∑ (3)𝐻𝐷𝐶𝐻𝐷
15  

4

𝐻𝐷=0

] + [(𝑁 − 𝑙 + 1) ∗  ∑ 𝐶𝐻𝐷
30  

8

𝐻𝐷=5

]                                                  (5) 

mailto:CPU@2.20GHZ
mailto:CPU@2.20GHZ
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Considering that all calculations of a single chunk, are carried by only a specific core inside the given 

architecture, including creation of motifs and comparison operations with all extracted Lmers of given 

sequence of strings are displayed in equation (6) to investigate all accepted Lmers.  

Total calculations of a single chunk  = [(𝑛 − 1) ∗ (𝑁 − 𝑙 + 1) ∗ ∑ (3)𝐻𝐷𝐶𝐻𝐷
15  

4

𝐻𝐷=0
] + [∑ 𝐶𝐻𝐷

30  
8

𝐻𝐷=5
]    (6) 

Table 3: Number of extracted Lmers corresponding up to 8 bits mutations at maximum. 
 

𝑯𝑫 (𝒃𝒊𝒕𝒔) 𝒍 (𝒃𝒊𝒕𝒔) 𝒍 − 𝑯𝑫 𝒍! 𝑯𝑫! (𝒍 − 𝑯𝑫)! 𝑳𝒎𝒆𝒓𝒔 (𝒎) 
0 30 30 2.65253E+32 1 2.65253E+32 1 

1 30 29 2.65253E+32 1 8.84176E+30 30 

2 30 28 2.65253E+32 2 3.04888E+29 435 

3 30 27 2.65253E+32 6 1.08889E+28 4,060 

4 30 26 2.65253E+32 24 4.03291E+26 27,405 

5 30 25 2.65253E+32 120 1.55112E+25 142,506 

6 30 24 2.65253E+32 720 6.20448E+23 593,775 

7 30 23 2.65253E+32 5040 2.5852E+22 2,035,800 

8 30 22 2.65253E+32 40320 1.124E+21 5,852,925 

Total Extracted Lmers (up to 8 bits mutations at maximum) per window 8,656,937 

 

4.2. Calculating the Actual Average Execution Time of a Single Chunk: 
 

We apply two different solvers to extract motifs. In the first solver we use recursive function to generate 

motifs of each chunk, while the second solver replace recursive function with iterative one. For both solvers, 

we use MPI paradigm. We start by investigating each CPU architecture to calculate the actual average 

execution time of a single chunk. These results serve as inputs to the proposed scheduling algorithm, which 

is designed to optimize resource utilization and minimize job completion times for large-scale problems. We 

have a total chunks of (𝑁 − 𝑙 + 1) = 586.  

 

Firstly, we investigate execution time for each chunk in case of activating only 1 core in each architecture. 

Secondly, we reinvestigate execution time for each chunk in case of activating all cores in each architecture.  

 

Figures [5] display average execution time of a single chunk in different CPU architectures, applying 

different number of cores and two different solvers. In case of applying solver1 (recursive one), average 

execution time of a single chunk is represented in blue bar, while it is represented in black bar when applying 

solver2 (iterative one)  for each architecture.   Investigating figure [5], solver2 (iterative one) outperforms 

solver1 ( recursive one), Accordingly, solver2 is used to get better execution time. Figure [6] display average 

execution time for a single chunk in both cases of activating only one core and activating all cores of each 

architecture. 

 

Investigating figures [5-6], we conclude that: 

 

1. For all architectures, average execution time of a chunk using the second solver (iterative one) 

outperforms that of the first solver (recursive one). 
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2. For all architectures, average execution time of each chunk increases as the number of cores increase 

whatever which solver is used due to communication overhead between master core and all remaining 

cores. We get the maximum execution time of a single chunk, displayed in black line, when all cores 

of a given architecture are used in the computational process. 

 

Accordingly: 

 

1. We apply the best problem solver (iterative one) to get best execution time. 

2. To get actual execution time of a single chunk,  we consider the architecture that has maximum 

number of cores. Accordingly, we set the predefined number of chunks (𝑪′ = 𝟒𝟎) to ensure that all 

cores of each architecture are used and activated. 

 

As a result, we get actual average execution time of each chunk applying the best solver (iterative one) of 

each architecture as displayed in figure (7).  To get average total execution time of all chunks, we multiply 

average execution time of a chunk by the maximum number of chunks assigned to single core for each 

architecture. 

Table (4) represents both of actual total execution time of all 586 chunks and average execution time of a 

single chunk (activating all cores) for different architectures. These results are displayed in figures (7, 8). 
 

 
Fig.5 Average Execution time of each chunk for all 

Architectures, applying two different solvers. 

 
Fig.6 Execution time of a single chunk, applying 

solver2 (iterative one). 

 

Table 4: Total execution time and actual average execution time (Sec.) of single chunk for different architectures. 
 

#Chunks Architecture 

Arch. (1), 40 cores, 2.20GHZ Arch. (2), 24 cores, 2.3 GHZ  Arch. (3), 4 cores, 2660 Mhz 

𝑁 − 𝑙 + 1 = 586 661.0124 1242.3385 5191.6137 

1  43.21405 49.14978 34.82841 

 

mailto:CPU@2.20GHZ
mailto:CPU@2.20GHZ
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Fig.7 Average execution time of single chunk, 

activating all cores in each architecture. 

 

 
Fig.8 Actual total execution time of all 586 chunks 

for different architectures. 

 

5. Experimental Results: 

 

This section presents the findings of the study, starting with the validation of the exact solution algorithm's 

accuracy and efficiency. It then evaluates the effectiveness of the task distribution strategy, demonstrating its 

impact on computation time and resource utilization. The results are compared with existing methods to 

highlight the improvements achieved. 

 

5.1.  Problem Complexity Reduction: 

 

1- Applying Skip Brute Force[20]: 

For a given length ( 15) of L-mer, we get the total number of 415  L-mers that need to be investigated 

with each window in the first string to extract all accepted (123,841) L-mers that will need to be 

investigated with (𝑛 − 1)(𝑁 − 𝑙 + 1) windows where 𝑛 is the number of strings, 𝑁  is the length 

of each string and 𝑙 is the length of L-mer. 

2- Applying used algorithm: 

Instead of investigating all of 4𝑙 L-mers as in case of skip brute force with each window in the first 

string, we only need to investigate a specific number of Lmers presented in equation (4) applying 8 

bits binary bit mutations at maximum for each window as displayed in table (3).  

Accordingly, we get a reduction in total number of L-mers that need to be investigated. 
 

Percentage of Total Reduction =
𝟒𝟏𝟓 −∑ 𝑪𝑯𝑫

𝟑𝟎  
𝟖

𝑯𝑫=𝟓

𝟒𝟏𝟓 
= 99.2%                                                                          (7) 

 

5.2. Applying Proposed Scheduling algorithm:  

 

A- The proposed scheduling algorithm considers actual execution time of single chunk while activating 

all cores of each architecture in the computation process. Using results in table (4) and applying 

scheduling algorithm in figure (4), total number of 586 chunks are divided between different 

architectures as displayed in table (5). Combining these architectures result in a hybrid architecture 

that consists of 68 cores (ranks) that take index from 0 to 67 and start its work in parallel.  
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Total execution time of the hybrid architecture is the execution time of the latest rank finishing its 

work.  

B- Speed-based scheduling strategy, which is displayed in figures [1-2], are recently used in scheduling 

[3], [18], [19]. This algorithm doesn’t consider the new execution time (𝑇′) of hybrid architecture to 

exclude illegible architectures. In addition, This algorithm activates only one core to handle all 

computations for this process. Accordingly,  execution time of single chunk, activating only one core, 

is taken as a reference for each architecture which is represented in blue line in figure [6]. 

Accordingly, speed-based scheduling algorithm [3], [18], [19] doesn’t consider the actual execution 

time of single chunk that is represented in black line in figure [6]. Tables (5, 6) represent a comparison 

of assigned chunks for each architecture and total execution time between scheduling algorithm [3], 

[18], [19] and the proposed approach. 
 

Table 5: Chunk assignment based on different scheduling algorithm. 
 

Scheduling 

Algorithm 
Architecture 

Arch. (1), 40 cores, 2.20GHZ Arch. (2), 24 cores, 2.3 GHZ  Arch. (3), 4 cores, 2660 Mhz 

Proposed approach 355 chunks 187 chunks 44 chunks 

Algorithm [3], [18], [19] 376 chunks 180 chunks 30 chunks 

 

Table 6: Total execution time for algorithm [3], [18], [19] and new proposed approach. 
 

Total Execution Time in Seconds 

Enhancement % Scheduling Algorithm [3], [18], [19] New Proposed Approach 

4.3214E+02 3.9320E+02 9% 

 

Performance Enhancement =
𝑇𝑜𝑙𝑑−𝑇𝑛𝑒𝑤

𝑇𝑜𝑙𝑑
 = 9% 

 

6. Conclusion: 

 

In this study, we proposed scheduling strategy to optimize resource utilization and minimize job completion 

times for large-scale problems across heterogeneous CPU architectures. The research aimed to address the 

challenges associated with CPU heterogeneous architectures, leading to inefficient resource utilization and 

extended job completion times. To achieve our objectives, we first conducted a series of experiments using 

various CPU architectures and initiating different number of cores to calculate actual execution time of single 

chunk. Based on these findings, we developed the proposed scheduling strategy that maps computation of 

chunks to architectures based on their actual execution time of single chunk and new total execution time 

(𝑇′)  of hybrid eligible architectures. While scheduling algorithm[3], [18], [19] uses total execution time (𝑇) 

of fastest architecture as a static reference for comparison process to eliminate ineligible architecture, we 

assure that the new resulting actual total execution time (𝑇′)  of the hybrid eligible architecture should be 

used in the comparison process instead. In addition, the actual execution time for a single chunk should be 

considered for each architecture. We examine the performance trends of each architecture applying different 

numbr of cores. This analysis helps us understand how each architecture scales with increasing number of 

cores. Identifying the performance trends allows us to determine the architecture's efficiency in handling a 

mailto:CPU@2.20GHZ
mailto:CPU@2.20GHZ
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wide range of computational workloads. Evaluation of the proposed approach demonstrated several key 

findings. First, the proposed scheduling approach significantly improved resource utilization compared to 

scheduling algorithm[3], [18], [19]. Second, the proposed scheduling algorithm led to faster job completion 

and improved system efficiency by 9%. Future research directions are proposed to improve the architecture-

aware scheduling approach further. These directions include exploring energy-aware scheduling into the 

scheduling approach. Energy-efficient scheduling aims to minimize energy consumption while maintaining 

high-performance levels. By incorporating energy-awareness, the approach can contribute to more 

sustainable and environmentally friendly computing practices. 
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